A Lefschetz hyperplane theorem with an assigned base point

June Huh

University of Michigan at Ann Arbor

Alba Iulia, June 30, 2013
http://arxiv.org/abs/1210.2690
http://www-personal.umich.edu/~junehuh/

Part 1. Application.
"If the sum of the Milnor numbers at the singular points of $V(h)$ is large, then $V(h)$ cannot have a point of large multiplicity, unless $V(h)$ is a cone."

Notations:

- $h \in \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ is a homogeneous polynomial of degree d.
- $V(h):=\{h=0\} \subseteq \mathbb{P}^{n}$ is the projective hypersurface defined by h.
- $D(h):=\{h \neq 0\} \subseteq \mathbb{P}^{n}$ is the smooth affine variety defined by h.

Notations:

- $h \in \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ is a homogeneous polynomial of degree d.
- $V(h):=\{h=0\} \subseteq \mathbb{P}^{n}$ is the projective hypersurface defined by h.
- $D(h):=\{h \neq 0\} \subseteq \mathbb{P}^{n}$ is the smooth affine variety defined by h.
- The gradient map of h is the rational map

$$
\operatorname{grad}(h): \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}, \quad z \longmapsto\left(\frac{\partial h}{\partial z_{0}}: \cdots: \frac{\partial h}{\partial z_{n}}\right) .
$$

- The polar degree of h is the degree of $\operatorname{grad}(h)$.

If $V(h)$ has only isolated singular points, then

$$
\operatorname{deg}(\operatorname{grad}(h))=(d-1)^{n}-\sum_{p \in V(h)} \mu^{(n)}(p),
$$

where $\mu^{(n)}(p)$ is the Milnor number of $V(h)$ at p.

If $V(h)$ has only isolated singular points, then

$$
\operatorname{deg}(\operatorname{grad}(h))=(d-1)^{n}-\sum_{p \in V(h)} \mu^{(n)}(p),
$$

where $\mu^{(n)}(p)$ is the Milnor number of $V(h)$ at p.

Theorem (A)

Suppose $V(h)$ has only isolated singular points, and let m be the multiplicity of $V(h)$ at one of its points x. Then

$$
\operatorname{deg}(\operatorname{grad}(h)) \geq(m-1)^{n-1},
$$

unless $V(h)$ is a cone with the apex x.

Theorem (A)

Suppose $V(h)$ has only isolated singular points, and let m be the multiplicity of $V(h)$ at one of its points x. Then

$$
\operatorname{deg}(\operatorname{grad}(h)) \geq(m-1)^{n-1}
$$

unless $V(h)$ is a cone with the apex x.

It is interesting to observe how badly the inequality fails when $V(h)$ is a cone over a smooth hypersurface in $\mathbb{P}^{n-1} \subseteq \mathbb{P}^{n}$.

In this case, the polar degree is zero, but the apex of the cone has multiplicity d.

Theorem (B)

Suppose $V(h)$ has only isolated singular points, and let $\mu^{(n-1)}$ be the $(n-1)$-th sectional Milnor number of $V(h)$ at one of its points x. Then

$$
\operatorname{deg}(\operatorname{grad}(h)) \geq \mu^{(n-1)},
$$

unless $V(h)$ is a cone with the apex x.

Theorem (B)

Suppose $V(h)$ has only isolated singular points, and let $\mu^{(n-1)}$ be the $(n-1)$-th sectional Milnor number of $V(h)$ at one of its points x. Then

$$
\operatorname{deg}(\operatorname{grad}(h)) \geq \mu^{(n-1)},
$$

unless $V(h)$ is a cone with the apex x.

A theorem of Teissier says that, locally at any point x,

$$
\frac{\mu^{(n)}}{\mu^{(n-1)}} \geq \frac{\mu^{(n-1)}}{\mu^{(n-2)}} \geq \cdots \geq \frac{\mu^{(i)}}{\mu^{(i-1)}} \geq \cdots \geq \frac{\mu^{(1)}}{\mu^{(0)}}
$$

Therefore Theorem (B) implies Theorem (A).

Theorem (B)

Suppose $V(h)$ has only isolated singular points, and let $\mu^{(n-1)}$ be the $(n-1)$-th sectional Milnor number of $V(h)$ at one of its points x. Then

$$
\operatorname{deg}(\operatorname{grad}(h)) \geq \mu^{(n-1)},
$$

unless $V(h)$ is a cone with the apex x.

The inequality of Theorem (B) is tight relative to the degree and the dimension:
For each $d \geq 3$ and $n \geq 2$, there is a degree d hypersurface in \mathbb{P}^{n} with one singular point, for which the equality holds in Theorem (B).

Conjecture (Dimca and Papadima '03)

A projective hypersurface with only isolated singular points has polar degree 1 if and only if it is one of the following, after a linear change of coordinates:

- ($n \geq 2, d=2$) a smooth quadric

$$
h=z_{0}^{2}+\cdots+z_{n}^{2}=0
$$

- ($n=2, d=3$) the union of three nonconcurrent lines

$$
h=z_{0} z_{1} z_{2}=0 .
$$

- ($n=2, d=3$) the union of a smooth conic and one of its tangent

$$
h=z_{0}\left(z_{1}^{2}+z_{0} z_{2}\right)=0 .
$$

Theorem (C)

The conjecture of Dimca and Papadima is true.

I will sketch an argument for the above theorems when $n \geq 3$, using the Lefschetz hyperplane theorem with an assigned base point.

Interestingly, our proof does not work for plane curves.
For $n=2$, one has to argue separately.
(In this case the above statements are theorems of Dolgachev).

Part 2. Lefschetz theorem with an assigned base point
"We may assign a base point when applying Lefschetz hyperplane theorem (unless our variety has a special geometry with respect to the base point)."
"This extra freedom enables us to relate local and global invariants of the variety."

We drop the assumption that $V(h)$ has only isolated singularities.

Hamm's Lefschetz theory shows that, if H is a general hyperplane in \mathbb{P}^{n}, then

$$
\pi_{i}(D(h), D(h) \cap H)=0 \quad \text { for } \quad i<n .
$$

We refine this result by allowing hyperplanes to have an assigned base point.

Theorem (D)

If H_{x} is a general hyperplane passing through a point x in \mathbb{P}^{n}, then

$$
\pi_{i}\left(D(h), D(h) \cap H_{x}\right)=0 \quad \text { for } \quad i<n,
$$

unless

Theorem (D)

If H_{x} is a general hyperplane passing through a point x in \mathbb{P}^{n}, then

$$
\pi_{i}\left(D(h), D(h) \cap H_{x}\right)=0 \quad \text { for } \quad i<n
$$

unless

1. one of the components of $V(h)$ is a cone with the apex x, or
2. the singular locus of $V(h)$ contains a line passing through x.

Theorem (D)

If H_{x} is a general hyperplane passing through a point x in \mathbb{P}^{n}, then

$$
\pi_{i}\left(D(h), D(h) \cap H_{x}\right)=0 \quad \text { for } \quad i<n
$$

unless

1. one of the components of $V(h)$ is a cone with the apex x, or
2. the singular locus of $V(h)$ contains a line passing through x.

Since $D(h)$ and $D(h) \cap H_{x}$ are homotopic to CW-complexes of dimensions n and $n-1$ respectively, the vanishing of the homotopy groups implies

$$
H_{i}\left(D(h), D(h) \cap H_{x}\right)=0 \quad \text { for } \quad i \neq n
$$

An example showing that the first condition is necessary for the conclusion:

Example

Let $V(h)$ be the plane curve consisting of a nonsingular conic containing x, the tangent line to the conic at x, and a general line passing through x. Then

$$
H_{1}\left(D(h), D(h) \cap H_{x}\right) \simeq H_{1}\left(S^{1} \times S^{1}, S^{1}\right) \simeq \mathbb{Z} \neq 0 .
$$

How do we prove something like Theorem (D)?

We go back to the idea of Lefschetz.

Say X is a smooth projective variety of dimension n, and let A be a general codimension 2 linear subspace of a fixed ambient projective space of X.

Say X is a smooth projective variety of dimension n, and let A be a general codimension 2 linear subspace of a fixed ambient projective space of X.

The main conclusion of Lefschetz is the isomorphism

$$
H_{i+1}\left(X, X_{c}\right) \simeq H_{i-1}\left(X_{c}, X_{c} \cap A\right), \quad i<n-1,
$$

where X_{c} is a general member of the pencil of hyperplane sections of X associated to A.
(By induction, one has the vanishing $H_{i}\left(X, X_{c}\right)=0$ for $\left.i<n\right)$.

Why does he need A to be general?

Let \mathscr{P}_{A} be the pencil of hyperplanes associated to A, and let \tilde{X} be the blowup of X along $X \cap A$.

Why does he need A to be general?

Let \mathscr{P}_{A} be the pencil of hyperplanes associated to A, and let \tilde{X} be the blowup of X along $X \cap A$.

The point of the genericity is that, for such A, the map

$$
p: \tilde{X} \longrightarrow \mathscr{P}_{A} \simeq \mathbb{P}^{1}
$$

has only isolated singular points.

This main idea has been refined in the last ninety years.
Here is the current version (which we need).

- Y is a projective variety.
- Y is a projective variety.
- V is a closed subset of Y.
- Y is a projective variety.
- V is a closed subset of Y.
- X is the quasi-projective variety $Y \backslash V$.
- Y is a projective variety.
- V is a closed subset of Y.
- X is the quasi-projective variety $Y \backslash V$.
- \mathscr{W} is a Whitney stratification of Y such that V is a union of strata.
- Y is a projective variety.
- V is a closed subset of Y.
- X is the quasi-projective variety $Y \backslash V$.
- \mathscr{W} is a Whitney stratification of Y such that V is a union of strata.
- A is a codimension 2 linear subspace of a fixed ambient projective space of Y.
- Y is a projective variety.
- V is a closed subset of Y.
- X is the quasi-projective variety $Y \backslash V$.
- \mathscr{W} is a Whitney stratification of Y such that V is a union of strata.
- A is a codimension 2 linear subspace of a fixed ambient projective space of Y.
- $\left.\mathscr{W}\right|_{Y \backslash A}$ is the Whitney stratification of $Y \backslash A$ obtained by restricting \mathscr{W}.
- Y is a projective variety.
- V is a closed subset of Y.
- X is the quasi-projective variety $Y \backslash V$.
- \mathscr{W} is a Whitney stratification of Y such that V is a union of strata.
- A is a codimension 2 linear subspace of a fixed ambient projective space of Y.
- $\left.\mathscr{W}\right|_{Y \backslash A}$ is the Whitney stratification of $Y \backslash A$ obtained by restricting \mathscr{W}.
- \mathscr{P}_{A} is the pencil of hyperplanes containing the axis A. We write

$$
\pi: Y \backslash A \longrightarrow \mathscr{P}_{A}
$$

for the map sending p to the member of \mathscr{P}_{A} containing p.

- Y is a projective variety.
- V is a closed subset of Y.
- X is the quasi-projective variety $Y \backslash V$.
- \mathscr{W} is a Whitney stratification of Y such that V is a union of strata.
- A is a codimension 2 linear subspace of a fixed ambient projective space of Y.
- $\left.\mathscr{W}\right|_{Y \backslash A}$ is the Whitney stratification of $Y \backslash A$ obtained by restricting \mathscr{W}.
- \mathscr{P}_{A} is the pencil of hyperplanes containing the axis A. We write

$$
\pi: Y \backslash A \longrightarrow \mathscr{P}_{A}
$$

for the map sending p to the member of \mathscr{P}_{A} containing p.

- \tilde{Y} is the blow-up of Y along $Y \cap A$. We write

$$
p: \tilde{Y} \longrightarrow \mathscr{P}_{A}
$$

for the map which agrees with π on $Y \backslash A$.

- Y is a projective variety.
- V is a closed subset of Y.
- X is the quasi-projective variety $Y \backslash V$.
- \mathscr{W} is a Whitney stratification of Y such that V is a union of strata.
- A is a codimension 2 linear subspace of a fixed ambient projective space of Y.
- $\left.\mathscr{W}\right|_{Y \backslash A}$ is the Whitney stratification of $Y \backslash A$ obtained by restricting \mathscr{W}.
- \mathscr{P}_{A} is the pencil of hyperplanes containing the axis A. We write

$$
\pi: Y \backslash A \longrightarrow \mathscr{P}_{A}
$$

for the map sending p to the member of \mathscr{P}_{A} containing p.

- \tilde{Y} is the blow-up of Y along $Y \cap A$. We write

$$
p: \tilde{Y} \longrightarrow \mathscr{P}_{A}
$$

for the map which agrees with π on $Y \backslash A$.

- \mathscr{S} is a Whitney stratification of \widetilde{Y} which extends $\left.\mathscr{W}\right|_{Y \backslash A}$.

Definition

The singular locus of p with respect to \mathscr{S} is the following closed subset of \tilde{Y} :

$$
\operatorname{Sing}_{\mathscr{S}} p:=\bigcup_{\mathcal{S} \in \mathscr{S}} \operatorname{Sing} p \mid s
$$

We say that \mathscr{P}_{A} has only only isolated singular points with respect to \mathscr{S} if $\operatorname{dim} \operatorname{Sing}_{\mathscr{S}} p \leq 0$.

The singular locus of p is a closed subset of \widetilde{Y} because \mathscr{S} is a Whitney stratification.

Theorem (Lelschelz, Andreotil, Frankel, Hamm, Le, Deilign, Goressky, MacPherson, Nementi, Siersma, Tibär)

Let X_{c} be a general member of the pencil on X. Suppose that

1. the axis A is not contained in V,
2. the rectified homotopical depth of X is $\geq n$ for some $n \geq 2$,
3. the pencil \mathscr{P}_{A} has only isolated singular points with respect to \mathscr{S}, and
4. the pair $\left(X_{c}, X_{c} \cap A\right)$ is $(n-2)$-connected.

Then the pair $\left(X, X_{c}\right)$ is $(n-1)$-connected.

Replace the condition 2 by " $\operatorname{dim} X=n \geq 2$ and X is a local complete intersection" if you don't like the rectified homotopical depth.

We are ready for the inductive proof of

Theorem (D)

If H_{x} is a general hyperplane passing through a point x in \mathbb{P}^{n}, then

$$
\pi_{i}\left(D(h), D(h) \cap H_{x}\right)=0 \quad \text { for } \quad i<n
$$

unless

1. one of the components of $V(h)$ is a cone with the apex x, or
2. the singular locus of $V(h)$ contains a line passing through x.

We are ready for the inductive proof of

Theorem (D)

If H_{x} is a general hyperplane passing through a point x in \mathbb{P}^{n}, then

$$
\pi_{i}\left(D(h), D(h) \cap H_{x}\right)=0 \quad \text { for } \quad i<n
$$

unless

1. one of the components of $V(h)$ is a cone with the apex x, or
2. the singular locus of $V(h)$ contains a line passing through x.

Let A_{x} be a general codimension 2 linear subspace of \mathbb{P}^{n} containing x, and let $\widetilde{\mathbb{P}}^{n}$ be the blowup of \mathbb{P}^{n} along A_{x}.

Our goal is

a. to show that the two conditions on $V(h)$ are satisfied by $V(h) \cap H_{x}$, where H_{x} is a general member of the pencil $\mathscr{P}_{A_{x}}$,

Our goal is
a. to show that the two conditions on $V(h)$ are satisfied by $V(h) \cap H_{x}$, where H_{x} is a general member of the pencil $\mathscr{P}_{A_{x}}$,
b. to produce a Whitney stratification \mathscr{S} of $\widetilde{\mathbb{P}}^{n}$ such that
i. $V(h) \backslash A_{x}$ is a union of strata,
ii. the map

$$
p: \widetilde{\mathbb{P}}^{n} \longrightarrow \mathscr{P}_{A_{x}}
$$

has only isolated singularities with respect to \mathscr{S},
and

Our goal is
a. to show that the two conditions on $V(h)$ are satisfied by $V(h) \cap H_{x}$, where H_{x} is a general member of the pencil $\mathscr{P}_{A_{x}}$,
b. to produce a Whitney stratification \mathscr{S} of $\widetilde{\mathbb{P}}^{n}$ such that
i. $V(h) \backslash A_{x}$ is a union of strata,
ii. the map

$$
p: \widetilde{\mathbb{P}}^{n} \longrightarrow \mathscr{P}_{A_{x}}
$$

has only isolated singularities with respect to \mathscr{S},
and
c. to check for $n=2$, which is an assertion on the fundamental group of plane curve complements.

Of course, we have to use our conditions on $V(h)$ at some point, since otherwise a, b, c are not possible.

Let V be an irreducible subvariety of positive dimension $k+1$ in \mathbb{P}^{n}.

Lemma (a)

The following conditions are equivalent for a point x in \mathbb{P}^{n}.

1. V is a cone with the apex x.
2. For any point y of V different from x, the line joining x and y is contained in V.
3. If E_{x} is a general codimension k linear subspace in \mathbb{P}^{n} containing x, then every irreducible component of $V \cap E_{x}$ is a line containing x.

Let V be an irreducible subvariety of positive dimension $k+1$ in \mathbb{P}^{n}.

Lemma (a)

The following conditions are equivalent for a point x in \mathbb{P}^{n}.

1. V is a cone with the apex x.
2. For any point y of V different from x, the line joining x and y is contained in V.
3. If E_{x} is a general codimension k linear subspace in \mathbb{P}^{n} containing x, then every irreducible component of $V \cap E_{x}$ is a line containing x.
4. If E_{x} is a general codimension k linear subspace in \mathbb{P}^{n} containing x, then some irreducible component of $V \cap E_{x}$ is a line containing x.

The irreducibility assumption is clearly necessary in order to deduce 3 from 4.

Here is another characterization of cones, in the view point of Lefschetz theory.

Let S be a smooth and irreducible locally closed subset of \mathbb{P}^{n}.
(S will be a stratum of the stratification \mathscr{S}.)

Lemma (b)

If A_{x} is a general codimension 2 linear subspace passing through a point x in \mathbb{P}^{n}, then

$$
p_{A_{x}}: S \backslash A_{x} \longrightarrow \mathscr{P}_{A_{x}}
$$

has only isolated singular points, unless the closure of S in \mathbb{P}^{n} is a cone with the apex x.

Suppose that

- no component of $V(h)$ is a cone over a smooth variety with the apex x, and
- the singular locus of $V(h)$ does not contain a line passing through x.

Then we can find a Whitney stratification \mathscr{W} of \mathbb{P}^{n} such that

- $\{x\}$ is a stratum of \mathscr{W},
- $V(h)$ is a union of strata of \mathscr{W}, and
- the closure of a stratum of $\mathscr{W} \backslash\{\{x\}\}$ is not a cone with the apex x. $\widetilde{\mathbb{P}}^{n}$ is a subset of $\mathbb{P}^{n} \times \mathbb{P}^{1}$.

Suppose that

- no component of $V(h)$ is a cone over a smooth variety with the apex x, and
- the singular locus of $V(h)$ does not contain a line passing through x.

Then we can find a Whitney stratification \mathscr{W} of \mathbb{P}^{n} such that

- $\{x\}$ is a stratum of \mathscr{W},
- $V(h)$ is a union of strata of \mathscr{W}, and
- the closure of a stratum of $\mathscr{W} \backslash\{\{x\}\}$ is not a cone with the apex x. $\widetilde{\mathbb{P}}^{n}$ is a subset of $\mathbb{P}^{n} \times \mathbb{P}^{1}$. We use \mathscr{W} to produce the stratification \mathscr{S} of $\widetilde{\mathbb{P}}^{n}$.

Lemma (b')

Let \mathscr{S} be the stratification of $\widetilde{\mathbb{P}}^{n}$ with strata
(1) $\left(S \times \mathbb{P}^{1}\right) \cap\left(\widetilde{\mathbb{P}}^{n} \backslash A \times \mathbb{P}^{1}\right)$ for $S \in \mathscr{W} \backslash\{\{x\}\}$,
(2) $\left(S \times \mathbb{P}^{1}\right) \cap\left(A \times \mathbb{P}^{1}\right)$ for $S \in \mathscr{W} \backslash\{\{x\}\}$,
(3) $\{x\} \times \mathbb{P}^{1} \backslash E$, and
(4) E,
where E is the set of points at which one of the strata from (1) and (2) fails to be Whitney regular over $\{x\} \times \mathbb{P}^{1}$. Then, for a sufficiently general A through x,

1. \mathscr{S} is a Whitney stratification, and
2. p has only isolated singular points with respect to \mathscr{S}.

Now the base case of the induction.

Let C be a curve in \mathbb{P}^{2}, and x be a point of \mathbb{P}^{2}.

Lemma (c)

Suppose that no line containing x is a component of the curve C. Then for a sufficiently general line L_{x} passing through x, there is an epimorphism

$$
\pi_{1}\left(L_{x} \backslash C\right) \longrightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash C\right)
$$

induced by the inclusion.

A plane curve may contain a line through x without being a cone, but such a curve cannot be a general hyperplane section through x.

Part 3. Geography of singularities

We use our Lefschetz theorem to justify

Theorem (B)

Suppose $V(h)$ has only isolated singular points, and let $\mu^{(n-1)}$ be the $(n-1)$-th sectional Milnor number of $V(h)$ at one of its points x. Then

$$
\operatorname{deg}(\operatorname{grad}(h)) \geq \mu^{(n-1)}
$$

unless $V(h)$ is a cone with the apex x.

Proof of Theorem (B) when $n \geq 3$.

We know that

$$
\chi(D(h))=(-1)^{n} \operatorname{deg}(\operatorname{grad}(h))+\sum_{i=0}^{n-1}(-1)^{i}(d-1)^{i}
$$

If $V(h)$ is not a cone with the apex x, choose a general hyperplane H_{x} containing x so that
(i) $V(h) \cap H_{x}$ is smooth outside x, and
(ii) the Milnor number of $V(h) \cap H_{x}$ at x is the sectional Milnor number $\mu^{(n-1)}$.

Proof of Theorem (B) when $n \geq 3$.

We know that

$$
\chi(D(h))=(-1)^{n} \operatorname{deg}(\operatorname{grad}(h))+\sum_{i=0}^{n-1}(-1)^{i}(d-1)^{i} .
$$

If $V(h)$ is not a cone with the apex x, choose a general hyperplane H_{x} containing x so that
(i) $V(h) \cap H_{x}$ is smooth outside x, and
(ii) the Milnor number of $V(h) \cap H_{x}$ at x is the sectional Milnor number $\mu^{(n-1)}$.

Then

$$
\text { rank } \begin{aligned}
H_{n}\left(D(h), D(h) \cap H_{x}\right) & =(-1)^{n}\left(\chi(D(h))-\chi\left(D(h) \cap H_{x}\right)\right) \\
& =\operatorname{deg}(\operatorname{grad}(h))-\mu^{(n-1)} \geq 0 .
\end{aligned}
$$

Therefore, if $\operatorname{deg}(\operatorname{grad}(h))=1$, then $\mu^{(n-1)}=1$ at all the singular points.

Therefore, if $\operatorname{deg}(\operatorname{grad}(h))=1$, then $\mu^{(n-1)}=1$ at all the singular points.

Lemma (d)

Let $(V, \mathbf{0})$ be the germ of an isolated hypersurface singularity at the origin of \mathbb{C}^{n}. If $\mu^{(n-1)}$ of the germ is equal to 1 , then the singularity is of type A_{k} for some $k \geq 1$.
(The conjecture of DP follows.)

In conclusion, we have

Theorem

There is a forbidden value for the total Milnor number at the 'top', except for quadric hypersurfaces and cubic plane curves.

In conclusion, we have

Theorem

There is a forbidden value for the total Milnor number at the 'top', except for quadric hypersurfaces and cubic plane curves.

I believe

Conjecture

This forbidden region is large if n and d are large. More precisely, for any positive integer k, there is no projective hypersurface of polar degree k with only isolated singular points, for sufficiently large n and d.

