A Lefschetz hyperplane theorem with an assigned base point

June Huh

University of Michigan at Ann Arbor

Alba Iulia, June 30, 2013

http://arxiv.org/abs/1210.2690

http://www-personal.umich.edu/~junehuh/

“If the sum of the Milnor numbers at the singular points of $V(h)$ is large, then $V(h)$ cannot have a point of large multiplicity, unless $V(h)$ is a cone.”
Notations:

- \(h \in \mathbb{C}[z_0, \ldots, z_n] \) is a homogeneous polynomial of degree \(d \).
- \(V(h) := \{ h = 0 \} \subseteq \mathbb{P}^n \) is the projective hypersurface defined by \(h \).
- \(D(h) := \{ h \neq 0 \} \subseteq \mathbb{P}^n \) is the smooth affine variety defined by \(h \).
Notations:

- \(h \in \mathbb{C}[z_0, \ldots, z_n] \) is a homogeneous polynomial of degree \(d \).
- \(V(h) := \{ h = 0 \} \subseteq \mathbb{P}^n \) is the projective hypersurface defined by \(h \).
- \(D(h) := \{ h \neq 0 \} \subseteq \mathbb{P}^n \) is the smooth affine variety defined by \(h \).
- The **gradient map** of \(h \) is the rational map

\[\text{grad}(h) : \mathbb{P}^n \to \mathbb{P}^n, \quad z \mapsto \left(\frac{\partial h}{\partial z_0} : \cdots : \frac{\partial h}{\partial z_n} \right). \]

- The **polar degree** of \(h \) is the degree of \(\text{grad}(h) \).
If $V(h)$ has only isolated singular points, then

$$\deg(\text{grad}(h)) = (d - 1)^n - \sum_{p \in V(h)} \mu^{(n)}(p),$$

where $\mu^{(n)}(p)$ is the Milnor number of $V(h)$ at p.
If $V(h)$ has only isolated singular points, then

$$\deg(\text{grad}(h)) = (d - 1)^n - \sum_{p \in V(h)} \mu^{(n)}(p),$$

where $\mu^{(n)}(p)$ is the Milnor number of $V(h)$ at p.

Theorem (A)

Suppose $V(h)$ has only isolated singular points, and let m be the multiplicity of $V(h)$ at one of its points x. Then

$$\deg(\text{grad}(h)) \geq (m - 1)^{n-1},$$

unless $V(h)$ is a cone with the apex x.
Theorem (A)

Suppose \(V(h) \) has only isolated singular points, and let \(m \) be the multiplicity of \(V(h) \) at one of its points \(x \). Then

\[
\deg(\text{grad}(h)) \geq (m - 1)^{n-1},
\]

unless \(V(h) \) is a cone with the apex \(x \).

It is interesting to observe how badly the inequality fails when \(V(h) \) is a cone over a smooth hypersurface in \(\mathbb{P}^{n-1} \subseteq \mathbb{P}^n \).

In this case, the polar degree is zero, but the apex of the cone has multiplicity \(d \).
Theorem (B)

Suppose $V(h)$ has only isolated singular points, and let $\mu^{(n-1)}$ be the $(n - 1)$-th sectional Milnor number of $V(h)$ at one of its points x. Then

$$\text{deg} \left(\text{grad}(h) \right) \geq \mu^{(n-1)},$$

unless $V(h)$ is a cone with the apex x.

June Huh
Milnor numbers of projective hypersurfaces 6 / 34
Theorem (B)

Suppose $V(h)$ has only isolated singular points, and let $\mu^{(n-1)}$ be the $(n - 1)$-th sectional Milnor number of $V(h)$ at one of its points x. Then

$$\deg(\text{grad}(h)) \geq \mu^{(n-1)},$$

unless $V(h)$ is a cone with the apex x.

A theorem of Teissier says that, locally at any point x,

$$\frac{\mu^{(n)}}{\mu^{(n-1)}} \geq \frac{\mu^{(n-1)}}{\mu^{(n-2)}} \geq \cdots \geq \frac{\mu^{(i)}}{\mu^{(i-1)}} \geq \cdots \geq \frac{\mu^{(1)}}{\mu^{(0)}}.$$

Therefore Theorem (B) implies Theorem (A).
Theorem (B)

Suppose $V(h)$ has only isolated singular points, and let $\mu^{(n-1)}$ be the $(n - 1)$-th sectional Milnor number of $V(h)$ at one of its points x. Then

$$\deg(\text{grad}(h)) \geq \mu^{(n-1)},$$

unless $V(h)$ is a cone with the apex x.

The inequality of Theorem (B) is tight relative to the degree and the dimension:

For each $d \geq 3$ and $n \geq 2$, there is a degree d hypersurface in \mathbb{P}^n with one singular point, for which the equality holds in Theorem (B).
Conjecture (Dimca and Papadima ’03)

A projective hypersurface with only isolated singular points has polar degree 1 if and only if it is one of the following, after a linear change of coordinates:

- \((n \geq 2, d = 2)\) a smooth quadric
 \[
 h = z_0^2 + \cdots + z_n^2 = 0.
 \]

- \((n = 2, d = 3)\) the union of three nonconcurrent lines
 \[
 h = z_0 z_1 z_2 = 0.
 \]

- \((n = 2, d = 3)\) the union of a smooth conic and one of its tangent
 \[
 h = z_0 (z_1^2 + z_0 z_2) = 0.
 \]
Theorem (C)

The conjecture of Dimca and Papadima is true.
I will sketch an argument for the above theorems when \(n \geq 3 \),
using the *Lefschetz hyperplane theorem with an assigned base point*.

Interestingly, our proof does not work for plane curves.

For \(n = 2 \), one has to argue separately.

(In this case the above statements are theorems of Dolgachev).
Part 2. Lefschetz theorem with an assigned base point

“We may assign a base point when applying Lefschetz hyperplane theorem (unless our variety has a special geometry with respect to the base point).”

“This extra freedom enables us to relate local and global invariants of the variety.”
We drop the assumption that $V(h)$ has only isolated singularities.

Hamm’s Lefschetz theory shows that, if H is a general hyperplane in \mathbb{P}^n, then

$$\pi_i\left(D(h), D(h) \cap H\right) = 0 \quad \text{for} \quad i < n.$$

We refine this result by allowing hyperplanes to have an assigned base point.
Theorem (D)

If H_x is a general hyperplane passing through a point x in \mathbb{P}^n, then

$$\pi_i(D(h), D(h) \cap H_x) = 0 \quad \text{for} \quad i < n,$$

unless
Theorem (D)

If H_x is a general hyperplane passing through a point x in \mathbb{P}^n, then

$$\pi_i(D(h), D(h) \cap H_x) = 0 \quad \text{for} \quad i < n,$$

unless

1. one of the components of $V(h)$ is a cone with the apex x, or
2. the singular locus of $V(h)$ contains a line passing through x.
Theorem (D)

If H_x is a general hyperplane passing through a point x in \mathbb{P}^n, then

$$\pi_i\left(D(h), D(h) \cap H_x \right) = 0 \quad \text{for} \quad i < n,$$

unless

1. one of the components of $V(h)$ is a cone with the apex x, or
2. the singular locus of $V(h)$ contains a line passing through x.

Since $D(h)$ and $D(h) \cap H_x$ are homotopic to CW-complexes of dimensions n and $n - 1$ respectively, the vanishing of the homotopy groups implies

$$H_i\left(D(h), D(h) \cap H_x \right) = 0 \quad \text{for} \quad i \neq n.$$
An example showing that the first condition is necessary for the conclusion:

Example

Let $V(h)$ be the plane curve consisting of a nonsingular conic containing x, the tangent line to the conic at x, and a general line passing through x. Then

$$H_1(D(h), D(h) \cap H_x) \cong H_1(S^1 \times S^1, S^1) \cong \mathbb{Z} \neq 0.$$
How do we prove something like Theorem (D)?

We go back to the idea of Lefschetz.
Say X is a smooth projective variety of dimension n, and let A be a general codimension 2 linear subspace of a fixed ambient projective space of X.
Say \(X \) is a smooth projective variety of dimension \(n \), and let \(A \) be a general codimension 2 linear subspace of a fixed ambient projective space of \(X \).

The main conclusion of Lefschetz is the isomorphism

\[
H_{i+1}(X, X_c) \sim H_{i-1}(X_c, X_c \cap A), \quad i < n - 1,
\]

where \(X_c \) is a general member of the pencil of hyperplane sections of \(X \) associated to \(A \).

(By induction, one has the vanishing \(H_i(X, X_c) = 0 \) for \(i < n \).)
Why does he need A to be general?

Let \mathcal{P}_A be the pencil of hyperplanes associated to A, and let \tilde{X} be the blowup of X along $X \cap A$.
Why does he need \(A \) to be general?

Let \(\mathcal{P}_A \) be the pencil of hyperplanes associated to \(A \), and let \(\tilde{X} \) be the blowup of \(X \) along \(X \cap A \).

The point of the genericity is that, for such \(A \), the map

\[
p : \tilde{X} \longrightarrow \mathcal{P}_A \sim \mathbb{P}^1
\]

has only isolated singular points.
This main idea has been refined in the last ninety years.

Here is the current version (which we need).
• Y is a projective variety.
- Y is a projective variety.
- V is a closed subset of Y.
- Y is a projective variety.
- V is a closed subset of Y.
- X is the quasi-projective variety $Y \setminus V$.

W is a Whitney stratification of Y such that V is a union of strata.

A is a codimension 2 linear subspace of a fixed ambient projective space of Y.

$W_j Y_n A$ is the Whitney stratification of $Y_n A$ obtained by restricting W.

P_A is the pencil of hyperplanes containing the axis A. We write $Y_n A \to P_A$ for the map sending p to the member of P_A containing p.

$e Y$ is the blow-up of Y along $Y \setminus A$. We write $p : e Y \to P_A$ for the map which agrees with p on $Y_n A$.

S is a Whitney stratification of $e Y$ which extends $W_j Y_n A$.

June Huh
Milnor numbers of projective hypersurfaces 19 / 34
\begin{itemize}
 \item Y is a projective variety.
 \item V is a closed subset of Y.
 \item X is the quasi-projective variety $Y \setminus V$.
 \item \mathcal{W} is a Whitney stratification of Y such that V is a union of strata.
\end{itemize}
- \(Y \) is a projective variety.
- \(V \) is a closed subset of \(Y \).
- \(X \) is the quasi-projective variety \(Y \setminus V \).
- \(W \) is a Whitney stratification of \(Y \) such that \(V \) is a union of strata.
- \(A \) is a codimension 2 linear subspace of a fixed ambient projective space of \(Y \).
- Y is a projective variety.
- V is a closed subset of Y.
- X is the quasi-projective variety $Y \setminus V$.
- W is a Whitney stratification of Y such that V is a union of strata.
- A is a codimension 2 linear subspace of a fixed ambient projective space of Y.
- $W|_{Y \setminus A}$ is the Whitney stratification of $Y \setminus A$ obtained by restricting W.
- \(Y \) is a projective variety.
- \(V \) is a closed subset of \(Y \).
- \(X \) is the quasi-projective variety \(Y \setminus V \).
- \(W \) is a Whitney stratification of \(Y \) such that \(V \) is a union of strata.
- \(A \) is a codimension 2 linear subspace of a fixed ambient projective space of \(Y \).
- \(W|_{Y \setminus A} \) is the Whitney stratification of \(Y \setminus A \) obtained by restricting \(W \).
- \(\mathcal{P}_A \) is the pencil of hyperplanes containing the axis \(A \). We write
 \[\pi : Y \setminus A \to \mathcal{P}_A \]
 for the map sending \(p \) to the member of \(\mathcal{P}_A \) containing \(p \).
\begin{itemize}
 \item Y is a projective variety.
 \item V is a closed subset of Y.
 \item X is the quasi-projective variety $Y \setminus V$.
 \item W is a Whitney stratification of Y such that V is a union of strata.
 \item A is a codimension 2 linear subspace of a fixed ambient projective space of Y.
 \item $W|_{Y\setminus A}$ is the Whitney stratification of $Y \setminus A$ obtained by restricting W.
 \item \mathcal{P}_A is the pencil of hyperplanes containing the axis A. We write
 \[\pi : Y \setminus A \to \mathcal{P}_A \]
 for the map sending p to the member of \mathcal{P}_A containing p.
 \item \widetilde{Y} is the blow-up of Y along $Y \cap A$. We write
 \[p : \widetilde{Y} \to \mathcal{P}_A \]
 for the map which agrees with π on $Y \setminus A$.
\end{itemize}
- Y is a projective variety.
- V is a closed subset of Y.
- X is the quasi-projective variety $Y \setminus V$.
- W is a Whitney stratification of Y such that V is a union of strata.
- A is a codimension 2 linear subspace of a fixed ambient projective space of Y.
- $W|_{Y \setminus A}$ is the Whitney stratification of $Y \setminus A$ obtained by restricting W.
- P_A is the pencil of hyperplanes containing the axis A. We write
 \[\pi : Y \setminus A \to P_A \]
 for the map sending p to the member of P_A containing p.
- \widetilde{Y} is the blow-up of Y along $Y \cap A$. We write
 \[p : \widetilde{Y} \to P_A \]
 for the map which agrees with π on $Y \setminus A$.
- S is a Whitney stratification of \widetilde{Y} which extends $W|_{Y \setminus A}$.
The singular locus of p with respect to \mathcal{I} is the following closed subset of \tilde{Y}:

$$\text{Sing}_{\mathcal{I}} p := \bigcup_{s \in \mathcal{I}} \text{Sing} p|_{s}.$$

We say that \mathcal{P}_{A} has only only isolated singular points with respect to \mathcal{I} if

$$\dim \text{Sing}_{\mathcal{I}} p \leq 0.$$

The singular locus of p is a closed subset of \tilde{Y} because \mathcal{I} is a Whitney stratification.
Theorem (Lefschetz, Andreotti, Frankel, Hamm, Lê, Deligne, Goresky, MacPherson, Nemethi, Siersma, Tibăr)

Let X_c be a general member of the pencil on X. Suppose that

1. the axis A is not contained in V,

2. the rectified homotopical depth of X is $\geq n$ for some $n \geq 2$,

3. the pencil \mathcal{P}_A has only isolated singular points with respect to \mathcal{I}, and

4. the pair $(X_c, X_c \cap A)$ is $(n - 2)$-connected.

Then the pair (X, X_c) is $(n - 1)$-connected.

Replace the condition 2 by “$\dim X = n \geq 2$ and X is a local complete intersection” if you don’t like the rectified homotopical depth.
We are ready for the \textit{inductive} proof of

\begin{center}
\textbf{Theorem (D)}
\end{center}

\textit{If H_x is a general hyperplane passing through a point x in \mathbb{P}^n, then}

\[\pi_i(D(h), D(h) \cap H_x) = 0 \text{ for } i < n, \]

\textit{unless}

1. \textit{one of the components of $V(h)$ is a cone with the apex x, or}
2. \textit{the singular locus of $V(h)$ contains a line passing through x.}
We are ready for the *inductive* proof of

Theorem (D)

If H_x is a general hyperplane passing through a point x in \mathbb{P}^n, then

$$\pi_i(D(h), D(h) \cap H_x) = 0 \quad \text{for} \quad i < n,$$

unless

1. one of the components of $V(h)$ is a cone with the apex x, or
2. the singular locus of $V(h)$ contains a line passing through x.

Let A_x be a general codimension 2 linear subspace of \mathbb{P}^n containing x,

and let $\widetilde{\mathbb{P}}^n$ be the blowup of \mathbb{P}^n along A_x.
Our goal is

a. to show that the two conditions on $V(h)$ are satisfied by $V(h) \cap H_x$, where H_x is a general member of the pencil \mathcal{P}_{A_x},
Our goal is

a. to show that the two conditions on \(V(h) \) are satisfied by \(V(h) \cap H_x \),

where \(H_x \) is a general member of the pencil \(\mathcal{P}_{A_x} \),

b. to produce a Whitney stratification \(\mathcal{S} \) of \(\mathbb{P}^n \) such that

i. \(V(h) \setminus A_x \) is a union of strata,

ii. the map

\[
p : \mathbb{P}^n \longrightarrow \mathcal{P}_{A_x}
\]

has only isolated singularities with respect to \(\mathcal{S} \),

and
Our goal is

a. to show that the two conditions on $V(h)$ are satisfied by $V(h) \cap H_x$, where H_x is a general member of the pencil \mathcal{P}_{A_x},

b. to produce a Whitney stratification \mathcal{I} of $\tilde{\mathbb{P}}^n$ such that
 i. $V(h) \setminus A_x$ is a union of strata,
 ii. the map

 \[p : \tilde{\mathbb{P}}^n \longrightarrow \mathcal{P}_{A_x} \]

 has only isolated singularities with respect to \mathcal{I},

 and

c. to check for $n = 2$, which is an assertion on the fundamental group of plane curve complements.
Of course, we have to use our conditions on $V(h)$ at some point, since otherwise a,b,c are not possible.
Let V be an irreducible subvariety of positive dimension $k + 1$ in \mathbb{P}^n.

Lemma (a)

The following conditions are equivalent for a point x in \mathbb{P}^n.

1. V is a cone with the apex x.

2. For any point y of V different from x, the line joining x and y is contained in V.

3. If E_x is a general codimension k linear subspace in \mathbb{P}^n containing x, then every irreducible component of $V \cap E_x$ is a line containing x.

The irreducibility assumption is clearly necessary in order to deduce 3 from 4.
Let V be an irreducible subvariety of positive dimension $k + 1$ in \mathbb{P}^n.

Lemma (a)

The following conditions are equivalent for a point x in \mathbb{P}^n.

1. V is a cone with the apex x.

2. For any point y of V different from x, the line joining x and y is contained in V.

3. If E_x is a general codimension k linear subspace in \mathbb{P}^n containing x, then every irreducible component of $V \cap E_x$ is a line containing x.

4. If E_x is a general codimension k linear subspace in \mathbb{P}^n containing x, then some irreducible component of $V \cap E_x$ is a line containing x.

The irreducibility assumption is clearly necessary in order to deduce 3 from 4.
Here is another characterization of cones, in the view point of Lefschetz theory.

Let S be a smooth and irreducible locally closed subset of \mathbb{P}^n.

(S will be a stratum of the stratification \mathcal{S}.)

Lemma (b)

*If A_x is a general codimension 2 linear subspace passing through a point x in \mathbb{P}^n, then

$$p_{A_x} : S \setminus A_x \rightarrow \mathcal{P}_{A_x}$$

has only isolated singular points, unless the closure of S in \mathbb{P}^n is a cone with the apex x.***
Suppose that

- no component of $V(h)$ is a cone over a smooth variety with the apex x, and
- the singular locus of $V(h)$ does not contain a line passing through x.

Then we can find a Whitney stratification \mathcal{W} of \mathbb{P}^n such that

- $\{x\}$ is a stratum of \mathcal{W},
- $V(h)$ is a union of strata of \mathcal{W}, and
- the closure of a stratum of $\mathcal{W} \setminus \{\{x\}\}$ is not a cone with the apex x.

\mathbb{P}^n is a subset of $\mathbb{P}^n \times \mathbb{P}^1$.
Suppose that

- no component of \(V(h) \) is a cone over a smooth variety with the apex \(x \), and
- the singular locus of \(V(h) \) does not contain a line passing through \(x \).

Then we can find a Whitney stratification \(W \) of \(\mathbb{P}^n \) such that

- \(\{x\} \) is a stratum of \(W \),
- \(V(h) \) is a union of strata of \(W \), and
- the closure of a stratum of \(W \setminus \{\{x\}\} \) is not a cone with the apex \(x \).

\(\mathbf{P}^n \) is a subset of \(\mathbb{P}^n \times \mathbb{P}^1 \). We use \(W \) to produce the stratification \(\mathcal{S} \) of \(\mathbf{P}^n \).
Lemma (b')

Let \mathcal{S} be the stratification of \mathbb{P}^n with strata

1. $(S \times \mathbb{P}^1) \cap (\mathbb{P}^n \setminus A \times \mathbb{P}^1)$ for $S \in \mathcal{W} \setminus \{\{x\}\}$,

2. $(S \times \mathbb{P}^1) \cap (A \times \mathbb{P}^1)$ for $S \in \mathcal{W} \setminus \{\{x\}\}$,

3. $\{x\} \times \mathbb{P}^1 \setminus E$, and

4. E,

where E is the set of points at which one of the strata from (1) and (2) fails to be Whitney regular over $\{x\} \times \mathbb{P}^1$. Then, for a sufficiently general A through x,

1. \mathcal{S} is a Whitney stratification, and

2. \mathcal{P} has only isolated singular points with respect to \mathcal{S}.

Now the base case of the induction.

Let C be a curve in \mathbb{P}^2, and x be a point of \mathbb{P}^2.

Lemma (c)

Suppose that no line containing x is a component of the curve C. Then for a sufficiently general line L_x passing through x, there is an epimorphism

$$\pi_1\left(L_x \setminus C\right) \longrightarrow \pi_1\left(\mathbb{P}^2 \setminus C\right)$$

induced by the inclusion.

A plane curve may contain a line through x without being a cone, but such a curve cannot be a general hyperplane section through x.
Part 3. Geography of singularities
We use our Lefschetz theorem to justify

Theorem (B)

Suppose $V(h)$ has only isolated singular points, and let $\mu^{(n-1)}$ be the $(n-1)$-th sectional Milnor number of $V(h)$ at one of its points x. Then

$$\deg(\text{grad}(h)) \geq \mu^{(n-1)},$$

unless $V(h)$ is a cone with the apex x.
Proof of Theorem (B) when $n \geq 3$.

We know that

$$\chi(D(h)) = (-1)^n \deg(\text{grad}(h)) + \sum_{i=0}^{n-1} (-1)^i (d - 1)^i.$$

If $V(h)$ is not a cone with the apex x, choose a general hyperplane H_x containing x so that

(i) $V(h) \cap H_x$ is smooth outside x, and

(ii) the Milnor number of $V(h) \cap H_x$ at x is the sectional Milnor number $\mu^{(n-1)}$.

□
Proof of Theorem (B) when $n \geq 3$.

We know that

$$\chi(D(h)) = (-1)^n \deg(\text{grad}(h)) + \sum_{i=0}^{n-1} (-1)^i (d - 1)^i.$$

If $V(h)$ is not a cone with the apex x, choose a general hyperplane H_x containing x so that

(i) $V(h) \cap H_x$ is smooth outside x, and

(ii) the Milnor number of $V(h) \cap H_x$ at x is the sectional Milnor number $\mu^{(n-1)}$.

Then

$$\text{rank } H_n\left(D(h), D(h) \cap H_x\right) = (-1)^n \left(\chi(D(h)) - \chi(D(h) \cap H_x)\right)$$

$$= \deg(\text{grad}(h)) - \mu^{(n-1)} \geq 0.$$
Therefore, if $\deg(\text{grad}(\mathcal{h})) = 1$, then $\mu^{(n-1)} = 1$ at all the singular points.
Therefore, if $\deg(\nabla h) = 1$, then $\mu^{(n-1)} = 1$ at all the singular points.

Lemma (d)

Let $(V, 0)$ be the germ of an isolated hypersurface singularity at the origin of \mathbb{C}^n. If $\mu^{(n-1)}$ of the germ is equal to 1, then the singularity is of type A_k for some $k \geq 1$.

(The conjecture of DP follows.)
In conclusion, we have

Theorem

There is a forbidden value for the total Milnor number at the ‘top’, except for quadric hypersurfaces and cubic plane curves.
In conclusion, we have

Theorem

There is a forbidden value for the total Milnor number at the ‘top’, except for quadric hypersurfaces and cubic plane curves.

I believe

Conjecture

This forbidden region is large if \(n \) and \(d \) are large. More precisely, for any positive integer \(k \), there is no projective hypersurface of polar degree \(k \) with only isolated singular points, for sufficiently large \(n \) and \(d \).