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Arrangements of hypersurfaces

Arrangement D of hypersurfaces in Pn.

D is a collection D = (D1, . . . , Dm) of hypersurfaces Di of Pn.
Each Di is irreducible and reduced.

Notation. S = C[x0, . . . , xn]. fi equation of Di. f =
∏
fi.

di = deg(fi). d =
∑
di. Ďi = [fi] ∈ P(Si).

D can have normal crossings (NC) or not.
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Daniele Faenzi (Université de Pau) Alba Iulia, June 29, 2013 3 / 13



Arrangements of hypersurfaces

Arrangement D of hypersurfaces in Pn.

D is a collection D = (D1, . . . , Dm) of hypersurfaces Di of Pn.
Each Di is irreducible and reduced.

Notation. S = C[x0, . . . , xn]. fi equation of Di. f =
∏
fi.

di = deg(fi). d =
∑
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Logarithmic vector fields

Bundle (or sheaf) T (− logD).

T (− logD) = vector fields with logarithmic poles along D.
Sheaf associated with S-module of logarithmic derivations of D:

Der(D) = {θ =
∑

pi∂i | θ(f) ∈ (f)}.

T (− logD) sheafification of Der(D)/
∑
xi∂i.

Syzygy of Jacobian ideal JD.

0→ T (− logD)→ On+1
Pn

(∂0f,...,∂nf)−−−−−−−→ JD(d− 1)→ 0.

Daniele Faenzi (Université de Pau) Alba Iulia, June 29, 2013 4 / 13



Logarithmic vector fields

Bundle (or sheaf) T (− logD).

T (− logD) = vector fields with logarithmic poles along D.
Sheaf associated with S-module of logarithmic derivations of D:

Der(D) = {θ =
∑

pi∂i | θ(f) ∈ (f)}.

T (− logD) sheafification of Der(D)/
∑
xi∂i.

Syzygy of Jacobian ideal JD.

0→ T (− logD)→ On+1
Pn

(∂0f,...,∂nf)−−−−−−−→ JD(d− 1)→ 0.
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Logarithmic 1-forms

Meromorphic 1-forms with logarithmic poles along D is:

Ω(logD) = T (− logD)∗(−1).

For NC arrangements: residue exact sequence

0→ Ω→ Ω(logD)→
⊕
ODi → 0.

For general arrangements: Dolgachev’s sheaf Ω̃(logD).

Non-reflexive sheaf Ω̃(logD).

T (− logD) ' Ω̃(logD)∗(−1).

ν : P̃n → Pn log-resolution of D. Smooth D̃ → D.

0→ Ω→ Ω̃(logD)→ ν∗OD̃ → 0.
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Resolution of T (− logD)

Theorem (Ancona)

If D is NC, then we have a (perhaps non-minimal) resolution:

0→ T (− logD)→ On+1
Pn ⊕OPn(−1)m−1 → ⊕iOPn(di − 1)→ 0.

Consequences

In terms of Ω(logD):
0→ ⊕iOPn(−di)→ On+1

Pn (−1)⊕Om−1
Pn → Ω(logD)→ 0.

Bonhost-Spindler. T (− logD) is stable if d > n+ 1. This means any
sub-bundle of smaller rank has smaller slope c1/rk.

Moduli space of semistable bundle with fixed Chern polynomial c is a
projective variety M(c). Ďi ∈ P(Si). Rational map:

ω :
∏

P(Si) 99KM(c). (Ď) 7→ Ω(logD).
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Torelli problem

Torelli problem in general

Is D Torelli, i.e. Does Ω̃(logD) determine D? Is ω injective?

Torelli theorems

1 Smooth D is Torelli iff D not Thom-Sebastiani (Ueda-Yoshinaga),
f = f1(x0, . . . , xk) + f2(xk+1, . . . , xn).

2 NC hyperplane arrangement is Torelli iff Di don’t osculate RNC
(Dolgachev-Kapranov, Vallès). Dually, the points Ďi of P(S1) = P̌n

do not lie in a RNC P1 → Pn by [sn : sn−1t : . . . : tn].

3 hyperplane arrangement is Torelli iff Ďi not on a KW variety: minors
of On(−1)→ O2 (D.F.-Matei-Vallès).
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Extreme failure of Torelli, I
Torelli fails for Ω(logD) more often than Ω̃(logD).

Free divisors

9 flexes of a smooth plane cubic.

/
(

{

\ (
~ \.',- ...•.... - - -

0→ OP2(−1)6 → O8
P2 → Ω̃(logD)→ 0, so c2 = 21;

Ω(logD) ∼= OP2(3)2 (free!);

Difference of 12 between c2(Ω(logD)) and c2(Ω̃(logD)).
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Extreme failure of Torelli, II

Too small divisors

One smooth quadric D, then T (− logD) ' Ω(1) (polar).

Too small moduli

Example: one conic and 1 ≤ m ≤ 3 lines then
∏

P(Si) > dimM(c).
For instance 1 conic 3 lines: 11 parameters, dim(M(c)) = 9.

Look at fibre of ω to see “periods”.

Rational normal curves

Take C RNC in P(S1) = P̌n: any set Ď of m points on C gives same
Ω(logD).

Totally non-Torelli non-NC arrangements iff Ď contained in a tree of
rational curves.
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Daniele Faenzi (Université de Pau) Alba Iulia, June 29, 2013 9 / 13



Extreme failure of Torelli, II

Too small divisors

One smooth quadric D, then T (− logD) ' Ω(1) (polar).

Too small moduli

Example: one conic and 1 ≤ m ≤ 3 lines then
∏

P(Si) > dimM(c).
For instance 1 conic 3 lines: 11 parameters, dim(M(c)) = 9.

Look at fibre of ω to see “periods”.

Rational normal curves

Take C RNC in P(S1) = P̌n: any set Ď of m points on C gives same
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Torelli theorem for many hypersurfaces
Notation. md =number of hypersurfaces of degree d.

Theorem (D.F.-Angelini)

Assume md � n for all d and each Di general enough. Then D is Torelli.

Proof for a single md.

1 Set md = m. Take V n
d ↪→PN d-th Veronese of Pn.

2 Each Di is Hi ⊂ PN . Take D = (H1, . . . ,Hm).

D ∩ Vn,d = D.

3 H hyperplane in PN unstable for D if H0(Ω(logD)∗|H) 6= 0.

4 WD=unstable hyps of D. So D Torelli if D = WD. Always D⊆WD.

5 Normal bundle sequence:

0→ ΩPn(logD)∗ → ΩPN (logD)∗|V n
d
→ NV n

d
→ 0
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Theorem (D.F.-Angelini)

Assume md � n for all d and each Di general enough. Then D is Torelli.

Proof for a single md.
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Torelli theorem for many hypersurfaces (continued)

Proof for a single m = md (continued).

6 C unstable hypersurface for Ω(logD)
⇒ unstable hyperplane H of D. Lift global section:

ΩPn(logD)∗|C

⇒ ΩPN (logD)∗|V n
d ∩H ⇒ ΩPN (logD)∗|H .

7 It’s ok if H1(ΩPn(logD)∗|H ⊗ IV n
d

) = 0. Tensor product of
ΩPn(logD)∗|H and ideal sequence:

0→ IV n
d
→ OPN → OV n

d
→ 0.

8 Tensor product of OH ⊗ IV n
d

and of Steiner resolution:

0→ ΩPn(logD)∗ → Om−1
PN → Om−N−1

PN (1)→ 0.
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Torelli theorem for many hypersurfaces (continued)

For more md’s

9 Work in the product
∏

d PNd and embed by Segre-Veronese.

ΩPn(logD)∗ ⊂
⊕
d

ΩPNd (logDd)∗|V n
d

10 Reduce by divisor D′ ⊂ D of highest degree d and iterate.

D′ =
⋃

deg(Di)=d

Di,

0→ Ω(log(D \D′))→ Ω(logD)→
⊕

deg(Di)=d

ODi → 0.
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Logarithmic derivations for two conics

Two conics, three points, 4 lines

2 smooth transverse conics C,D in P2 give 4 bitangents H1, . . . ,H4.

K
L

M

Theorem (Angelini)

D′ gives T (− logD′) ' T (− logD) iff 4 bitangents to D′ are H1, . . . ,H4.

Daniele Faenzi (Université de Pau) Alba Iulia, June 29, 2013 13 / 13



Logarithmic derivations for two conics

Two conics, three points, 4 lines

2 smooth transverse conics C,D in P2 give 4 bitangents H1, . . . ,H4.

K
L

M

Theorem (Angelini)

D′ gives T (− logD′) ' T (− logD) iff 4 bitangents to D′ are H1, . . . ,H4.
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Questions

On Torelli problem

Find optimal bounds on the number md of general hypersurfaces for
Torelli to hold.

First open cases: 3 conics should be Torelli (almost
proved); 4 lines and a conic, etc.

Describe fibres of ω below these bounds.

Give conditions for Torelli failure above the bounds.

On resolutions

Study arrangements having JD of low projective dimension (e.g. free
arrangements pd = 1 and so on).

What is Ω(logD) when D is an invariant hypersurface? Example:
discriminant of binary forms, determinant of n× n matrices, etc.
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