Torelli problem for arrangements of hypersurfaces

Joint International Meeting
American Mathematical Society \& Romanian Mathematical Society.

Special session
Geometry and Topology of Arrangements of Hypersurfaces

Daniele Faenzi

Université de Pau
E. Angelini (Firenze) + D.F. (Pau) \& G. Ottaviani (Firenze) arXiv:1304.5709

Alba Iulia, June 29, 2013

Riassunto

(1) Divisors in projective space

Riassunto

(1) Divisors in projective space
(2) Logarithmic derivations and 1-forms

Riassunto

(1) Divisors in projective space
(2) Logarithmic derivations and 1-forms
(3) Torelli problem

Riassunto

(1) Divisors in projective space
(2) Logarithmic derivations and 1-forms
(3) Torelli problem
(4) Torelli theorem

Riassunto

(1) Divisors in projective space
(2) Logarithmic derivations and 1-forms
(3) Torelli problem
(4) Torelli theorem
(5) Fibres of Torelli map

Arrangements of hypersurfaces

Arrangement D of hypersurfaces in \mathbb{P}^{n}.

- D is a collection $D=\left(D_{1}, \ldots, D_{m}\right)$ of hypersurfaces D_{i} of \mathbb{P}^{n}. Each D_{i} is irreducible and reduced.

Arrangements of hypersurfaces

Arrangement D of hypersurfaces in \mathbb{P}^{n}.

- D is a collection $D=\left(D_{1}, \ldots, D_{m}\right)$ of hypersurfaces D_{i} of \mathbb{P}^{n}.

Each D_{i} is irreducible and reduced.
Notation. $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$. f_{i} equation of $D_{i} . f=\prod f_{i}$.
$d_{i}=\operatorname{deg}\left(f_{i}\right) . d=\sum d_{i} . \check{D}_{i}=\left[f_{i}\right] \in \mathbb{P}\left(S_{i}\right)$.

Arrangements of hypersurfaces

Arrangement D of hypersurfaces in \mathbb{P}^{n}.

- D is a collection $D=\left(D_{1}, \ldots, D_{m}\right)$ of hypersurfaces D_{i} of \mathbb{P}^{n}.

Each D_{i} is irreducible and reduced.
Notation. $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$. f_{i} equation of $D_{i} . f=\prod f_{i}$.
$d_{i}=\operatorname{deg}\left(f_{i}\right) . d=\sum d_{i} . \check{D}_{i}=\left[f_{i}\right] \in \mathbb{P}\left(S_{i}\right)$.

- D can have normal crossings (NC) or not.

Logarithmic vector fields

Bundle (or sheaf) $\mathcal{T}(-\log D)$.

- $\mathcal{T}(-\log D)=$ vector fields with logarithmic poles along D. Sheaf associated with S-module of logarithmic derivations of D :

$$
\operatorname{Der}(D)=\left\{\theta=\sum p_{i} \partial_{i} \mid \theta(f) \in(f)\right\} .
$$

Logarithmic vector fields

Bundle (or sheaf) $\mathcal{T}(-\log D)$.

- $\mathcal{T}(-\log D)=$ vector fields with logarithmic poles along D. Sheaf associated with S-module of logarithmic derivations of D :

$$
\operatorname{Der}(D)=\left\{\theta=\sum p_{i} \partial_{i} \mid \theta(f) \in(f)\right\} .
$$

$\mathcal{T}(-\log D)$ sheafification of $\operatorname{Der}(D) / \sum x_{i} \partial_{i}$.

Logarithmic vector fields

Bundle (or sheaf) $\mathcal{T}(-\log D)$.

- $\mathcal{T}(-\log D)=$ vector fields with logarithmic poles along D. Sheaf associated with S-module of logarithmic derivations of D :

$$
\operatorname{Der}(D)=\left\{\theta=\sum p_{i} \partial_{i} \mid \theta(f) \in(f)\right\} .
$$

$\mathcal{T}(-\log D)$ sheafification of $\operatorname{Der}(D) / \sum x_{i} \partial_{i}$.

- Syzygy of Jacobian ideal J_{D}.

$$
0 \rightarrow \mathcal{T}(-\log D) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1} \xrightarrow{\left(\partial_{0} f, \ldots, \partial_{n} f\right)} J_{D}(d-1) \rightarrow 0 .
$$

Logarithmic 1-forms

Meromorphic 1 -forms with logarithmic poles along D is:

$$
\Omega(\log D)=\mathcal{T}(-\log D)^{*}(-1)
$$

For NC arrangements: residue exact sequence

$$
0 \rightarrow \Omega \rightarrow \Omega(\log D) \rightarrow \bigoplus \mathcal{O}_{D_{i}} \rightarrow 0
$$

Logarithmic 1-forms

Meromorphic 1-forms with logarithmic poles along D is:

$$
\Omega(\log D)=\mathcal{T}(-\log D)^{*}(-1)
$$

For NC arrangements: residue exact sequence

$$
0 \rightarrow \Omega \rightarrow \Omega(\log D) \rightarrow \bigoplus \mathcal{O}_{D_{i}} \rightarrow 0
$$

For general arrangements: Dolgachev's sheaf $\tilde{\Omega}(\log D)$.
Non-reflexive sheaf $\tilde{\Omega}(\log D)$.

$$
\mathcal{T}(-\log D) \simeq \tilde{\Omega}(\log D)^{*}(-1)
$$

Logarithmic 1-forms

Meromorphic 1-forms with logarithmic poles along D is:

$$
\Omega(\log D)=\mathcal{T}(-\log D)^{*}(-1)
$$

For NC arrangements: residue exact sequence

$$
0 \rightarrow \Omega \rightarrow \Omega(\log D) \rightarrow \bigoplus \mathcal{O}_{D_{i}} \rightarrow 0
$$

For general arrangements: Dolgachev's sheaf $\tilde{\Omega}(\log D)$.
Non-reflexive sheaf $\tilde{\Omega}(\log D)$.

$$
\mathcal{T}(-\log D) \simeq \tilde{\Omega}(\log D)^{*}(-1)
$$

$\nu: \tilde{\mathbb{P}}^{n} \rightarrow \mathbb{P}^{n}$ log-resolution of D. Smooth $\tilde{D} \rightarrow D$.

$$
0 \rightarrow \Omega \rightarrow \tilde{\Omega}(\log D) \rightarrow \nu_{*} \mathcal{O}_{\tilde{D}} \rightarrow 0
$$

Resolution of $\mathcal{T}(-\log D)$

Theorem (Ancona)
If D is NC, then we have a (perhaps non-minimal) resolution:

$$
0 \rightarrow \mathcal{T}(-\log D) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-1)^{m-1} \rightarrow \oplus_{i} \mathcal{O}_{\mathbb{P}^{n}}\left(d_{i}-1\right) \rightarrow 0 .
$$

Resolution of $\mathcal{T}(-\log D)$

Theorem (Ancona)
If D is NC, then we have a (perhaps non-minimal) resolution:

$$
0 \rightarrow \mathcal{T}(-\log D) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-1)^{m-1} \rightarrow \oplus_{i} \mathcal{O}_{\mathbb{P}^{n}}\left(d_{i}-1\right) \rightarrow 0 .
$$

Consequences

- In terms of $\Omega(\log D)$:

$$
0 \rightarrow \oplus_{i} \mathcal{O}_{\mathbb{P}^{n}}\left(-d_{i}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1}(-1) \oplus \mathcal{O}_{\mathbb{P}^{n}}^{m-1} \rightarrow \Omega(\log D) \rightarrow 0
$$

Resolution of $\mathcal{T}(-\log D)$

Theorem (Ancona)

If D is NC, then we have a (perhaps non-minimal) resolution:

$$
0 \rightarrow \mathcal{T}(-\log D) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-1)^{m-1} \rightarrow \oplus_{i} \mathcal{O}_{\mathbb{P}^{n}}\left(d_{i}-1\right) \rightarrow 0 .
$$

Consequences

- In terms of $\Omega(\log D)$:
$0 \rightarrow \oplus_{i} \mathcal{O}_{\mathbb{P}^{n}}\left(-d_{i}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1}(-1) \oplus \mathcal{O}_{\mathbb{P}^{n}}^{m-1} \rightarrow \Omega(\log D) \rightarrow 0$.
- Bonhost-Spindler. $\mathcal{T}(-\log D)$ is stable if $d>n+1$. This means any sub-bundle of smaller rank has smaller slope $c_{1} /$ rk.

Resolution of $\mathcal{T}(-\log D)$

Theorem (Ancona)

If D is NC, then we have a (perhaps non-minimal) resolution:

$$
0 \rightarrow \mathcal{T}(-\log D) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-1)^{m-1} \rightarrow \oplus_{i} \mathcal{O}_{\mathbb{P}^{n}}\left(d_{i}-1\right) \rightarrow 0 .
$$

Consequences

- In terms of $\Omega(\log D)$:
$0 \rightarrow \oplus_{i} \mathcal{O}_{\mathbb{P}^{n}}\left(-d_{i}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1}(-1) \oplus \mathcal{O}_{\mathbb{P}^{n}}^{m-1} \rightarrow \Omega(\log D) \rightarrow 0$.
- Bonhost-Spindler. $\mathcal{T}(-\log D)$ is stable if $d>n+1$. This means any sub-bundle of smaller rank has smaller slope $c_{1} /$ rk.
- Moduli space of semistable bundle with fixed Chern polynomial c is a projective variety $M(c)$.

Resolution of $\mathcal{T}(-\log D)$

Theorem (Ancona)

If D is NC, then we have a (perhaps non-minimal) resolution:

$$
0 \rightarrow \mathcal{T}(-\log D) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-1)^{m-1} \rightarrow \oplus_{i} \mathcal{O}_{\mathbb{P}^{n}}\left(d_{i}-1\right) \rightarrow 0 .
$$

Consequences

- In terms of $\Omega(\log D)$:
$0 \rightarrow \oplus_{i} \mathcal{O}_{\mathbb{P}^{n}}\left(-d_{i}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1}(-1) \oplus \mathcal{O}_{\mathbb{P}^{n}}^{m-1} \rightarrow \Omega(\log D) \rightarrow 0$.
- Bonhost-Spindler. $\mathcal{T}(-\log D)$ is stable if $d>n+1$. This means any sub-bundle of smaller rank has smaller slope $c_{1} /$ rk.
- Moduli space of semistable bundle with fixed Chern polynomial c is a projective variety $M(c) . \check{D}_{i} \in \mathbb{P}\left(S_{i}\right)$. Rational map:

$$
\omega: \prod \mathbb{P}\left(S_{i}\right) \rightarrow M(c) . \quad(\check{D}) \mapsto \Omega(\log D)
$$

Torelli problem

Torelli problem in general
Is D Torelli, i.e. Does $\tilde{\Omega}(\log D)$ determine D ? Is ω injective?

Torelli problem

Torelli problem in general Is D Torelli, i.e. Does $\tilde{\Omega}(\log D)$ determine D ? Is ω injective?

Torelli theorems
(1) Smooth D is Torelli iff D not Thom-Sebastiani (Ueda-Yoshinaga), $f=f_{1}\left(x_{0}, \ldots, x_{k}\right)+f_{2}\left(x_{k+1}, \ldots, x_{n}\right)$.

Torelli problem

Torelli problem in general Is D Torelli, i.e. Does $\tilde{\Omega}(\log D)$ determine D ? Is ω injective?

Torelli theorems
(1) Smooth D is Torelli iff D not Thom-Sebastiani (Ueda-Yoshinaga), $f=f_{1}\left(x_{0}, \ldots, x_{k}\right)+f_{2}\left(x_{k+1}, \ldots, x_{n}\right)$.
(2) NC hyperplane arrangement is Torelli iff D_{i} don't osculate RNC (Dolgachev-Kapranov, Vallès).

Torelli problem

Torelli problem in general
Is D Torelli, i.e. Does $\tilde{\Omega}(\log D)$ determine D ? Is ω injective?
Torelli theorems
(1) Smooth D is Torelli iff D not Thom-Sebastiani (Ueda-Yoshinaga), $f=f_{1}\left(x_{0}, \ldots, x_{k}\right)+f_{2}\left(x_{k+1}, \ldots, x_{n}\right)$.
(2) NC hyperplane arrangement is Torelli iff D_{i} don't osculate RNC (Dolgachev-Kapranov, Vallès). Dually, the points \check{D}_{i} of $\mathbb{P}\left(S_{1}\right)=\check{\mathbb{P}}^{n}$ do not lie in a RNC $\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ by $\left[s^{n}: s^{n-1} t: \ldots: t^{n}\right]$.

Torelli problem

Torelli problem in general
Is D Torelli, i.e. Does $\tilde{\Omega}(\log D)$ determine D ? Is ω injective?
Torelli theorems
(1) Smooth D is Torelli iff D not Thom-Sebastiani (Ueda-Yoshinaga), $f=f_{1}\left(x_{0}, \ldots, x_{k}\right)+f_{2}\left(x_{k+1}, \ldots, x_{n}\right)$.
(2) NC hyperplane arrangement is Torelli iff D_{i} don't osculate RNC (Dolgachev-Kapranov, Vallès). Dually, the points \check{D}_{i} of $\mathbb{P}\left(S_{1}\right)=\check{\mathbb{P}}^{n}$ do not lie in a RNC $\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ by $\left[s^{n}: s^{n-1} t: \ldots: t^{n}\right]$.
(3) hyperplane arrangement is Torelli iff \check{D}_{i} not on a KW variety: minors of $\mathcal{O}^{n}(-1) \rightarrow \mathcal{O}^{2}$ (D.F.-Matei-Vallès).

Extreme failure of Torelli, I

Torelli fails for $\Omega(\log D)$ more often than $\tilde{\Omega}(\log D)$.

Free divisors

9 flexes of a smooth plane cubic.

Extreme failure of Torelli, I

Torelli fails for $\Omega(\log D)$ more often than $\tilde{\Omega}(\log D)$.

Free divisors

9 flexes of a smooth plane cubic.

- $0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1)^{6} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}^{8} \rightarrow \tilde{\Omega}(\log D) \rightarrow 0$, so $c_{2}=21$;

Extreme failure of Torelli, I

Torelli fails for $\Omega(\log D)$ more often than $\tilde{\Omega}(\log D)$.

Free divisors

9 flexes of a smooth plane cubic.

- $0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1)^{6} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}^{8} \rightarrow \tilde{\Omega}(\log D) \rightarrow 0$, so $c_{2}=21$;
- $\Omega(\log D) \cong \mathcal{O}_{\mathbb{P}^{2}}(3)^{2}$ (free!);

Extreme failure of Torelli, I

Torelli fails for $\Omega(\log D)$ more often than $\tilde{\Omega}(\log D)$.

Free divisors

9 flexes of a smooth plane cubic.

- $0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1)^{6} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}^{8} \rightarrow \tilde{\Omega}(\log D) \rightarrow 0$, so $c_{2}=21$;
- $\Omega(\log D) \cong \mathcal{O}_{\mathbb{P}^{2}}(3)^{2}$ (free!);
- Difference of 12 between $c_{2}(\Omega(\log D))$ and $c_{2}(\tilde{\Omega}(\log D))$.

Extreme failure of Torelli, II

Too small divisors

- One smooth quadric D, then $\mathcal{T}(-\log D) \simeq \Omega(1)$ (polar).

Extreme failure of Torelli, II

Too small divisors

- One smooth quadric D, then $\mathcal{T}(-\log D) \simeq \Omega(1)$ (polar).

Too small moduli

Extreme failure of Torelli, II

Too small divisors

- One smooth quadric D, then $\mathcal{T}(-\log D) \simeq \Omega(1)$ (polar).

Too small moduli

- Example: one conic and $1 \leq m \leq 3$ lines then $\prod \mathbb{P}\left(S_{i}\right)>\operatorname{dim} M(c)$.

Extreme failure of Torelli, II

Too small divisors

- One smooth quadric D, then $\mathcal{T}(-\log D) \simeq \Omega(1)$ (polar).

Too small moduli

- Example: one conic and $1 \leq m \leq 3$ lines then $\prod \mathbb{P}\left(S_{i}\right)>\operatorname{dim} M(c)$. For instance 1 conic 3 lines: 11 parameters, $\operatorname{dim}(M(c))=9$.

Extreme failure of Torelli, II

Too small divisors

- One smooth quadric D, then $\mathcal{T}(-\log D) \simeq \Omega(1)$ (polar).

Too small moduli

- Example: one conic and $1 \leq m \leq 3$ lines then $\prod \mathbb{P}\left(S_{i}\right)>\operatorname{dim} M(c)$. For instance 1 conic 3 lines: 11 parameters, $\operatorname{dim}(M(c))=9$.
- Look at fibre of ω to see "periods".

Extreme failure of Torelli, II

Too small divisors

- One smooth quadric D, then $\mathcal{T}(-\log D) \simeq \Omega(1)$ (polar).

Too small moduli

- Example: one conic and $1 \leq m \leq 3$ lines then $\prod \mathbb{P}\left(S_{i}\right)>\operatorname{dim} M(c)$. For instance 1 conic 3 lines: 11 parameters, $\operatorname{dim}(M(c))=9$.
- Look at fibre of ω to see "periods".

Rational normal curves

Extreme failure of Torelli, II

Too small divisors

- One smooth quadric D, then $\mathcal{T}(-\log D) \simeq \Omega(1)$ (polar).

Too small moduli

- Example: one conic and $1 \leq m \leq 3$ lines then $\prod \mathbb{P}\left(S_{i}\right)>\operatorname{dim} M(c)$. For instance 1 conic 3 lines: 11 parameters, $\operatorname{dim}(M(c))=9$.
- Look at fibre of ω to see "periods".

Rational normal curves

- Take C RNC in $\mathbb{P}\left(S_{1}\right)=\check{\mathbb{P}}^{n}$: any set \check{D} of m points on C gives same $\Omega(\log D)$.

Extreme failure of Torelli, II

Too small divisors

- One smooth quadric D, then $\mathcal{T}(-\log D) \simeq \Omega(1)$ (polar).

Too small moduli

- Example: one conic and $1 \leq m \leq 3$ lines then $\prod \mathbb{P}\left(S_{i}\right)>\operatorname{dim} M(c)$. For instance 1 conic 3 lines: 11 parameters, $\operatorname{dim}(M(c))=9$.
- Look at fibre of ω to see "periods".

Rational normal curves

- Take C RNC in $\mathbb{P}\left(S_{1}\right)=\check{\mathbb{P}}^{n}$: any set \check{D} of m points on C gives same $\Omega(\log D)$.
- Totally non-Torelli non-NC arrangements iff \check{D} contained in a tree of rational curves.

Torelli theorem for many hypersurfaces

Notation. $m_{d}=$ number of hypersurfaces of degree d.

Torelli theorem for many hypersurfaces

Notation. $m_{d}=$ number of hypersurfaces of degree d.
Theorem (D.F.-Angelini)
Assume $m_{d} \gg n$ for all d and each D_{i} general enough. Then D is Torelli.

Torelli theorem for many hypersurfaces

Notation. $m_{d}=$ number of hypersurfaces of degree d.
Theorem (D.F.-Angelini)
Assume $m_{d} \gg n$ for all d and each D_{i} general enough. Then D is Torelli.

Proof for a single m_{d}.

Torelli theorem for many hypersurfaces

Notation. $m_{d}=$ number of hypersurfaces of degree d.
Theorem (D.F.-Angelini)
Assume $m_{d} \gg n$ for all d and each D_{i} general enough. Then D is Torelli.

Proof for a single m_{d}.
(1) Set $m_{d}=m$. Take $V_{d}^{n} \hookrightarrow \mathbb{P}^{N} d$-th Veronese of \mathbb{P}^{n}.

Torelli theorem for many hypersurfaces

Notation. $m_{d}=$ number of hypersurfaces of degree d.
Theorem (D.F.-Angelini)
Assume $m_{d} \gg n$ for all d and each D_{i} general enough. Then D is Torelli.

Proof for a single m_{d}.
(1) Set $m_{d}=m$. Take $V_{d}^{n} \hookrightarrow \mathbb{P}^{N} d$-th Veronese of \mathbb{P}^{n}.
(2) Each D_{i} is $H_{i} \subset \mathbb{P}^{N}$. Take $\mathcal{D}=\left(H_{1}, \ldots, H_{m}\right)$.

$$
\mathcal{D} \cap V_{n, d}=D
$$

Torelli theorem for many hypersurfaces

Notation. $m_{d}=$ number of hypersurfaces of degree d.
Theorem (D.F.-Angelini)
Assume $m_{d} \gg n$ for all d and each D_{i} general enough. Then D is Torelli.

Proof for a single m_{d}.
(1) Set $m_{d}=m$. Take $V_{d}^{n} \hookrightarrow \mathbb{P}^{N} d$-th Veronese of \mathbb{P}^{n}.
(2) Each D_{i} is $H_{i} \subset \mathbb{P}^{N}$. Take $\mathcal{D}=\left(H_{1}, \ldots, H_{m}\right)$.

$$
\mathcal{D} \cap V_{n, d}=D
$$

(3) H hyperplane in \mathbb{P}^{N} unstable for \mathcal{D} if $H^{0}\left(\left.\Omega(\log \mathcal{D})^{*}\right|_{H}\right) \neq 0$.

Torelli theorem for many hypersurfaces

Notation. $m_{d}=$ number of hypersurfaces of degree d.
Theorem (D.F.-Angelini)
Assume $m_{d} \gg n$ for all d and each D_{i} general enough. Then D is Torelli.

Proof for a single m_{d}.
(1) Set $m_{d}=m$. Take $V_{d}^{n} \hookrightarrow \mathbb{P}^{N} d$-th Veronese of \mathbb{P}^{n}.
(2) Each D_{i} is $H_{i} \subset \mathbb{P}^{N}$. Take $\mathcal{D}=\left(H_{1}, \ldots, H_{m}\right)$.

$$
\mathcal{D} \cap V_{n, d}=D
$$

(3) H hyperplane in \mathbb{P}^{N} unstable for \mathcal{D} if $H^{0}\left(\left.\Omega(\log \mathcal{D})^{*}\right|_{H}\right) \neq 0$.
(4) $W_{\mathcal{D}}=$ unstable hyps of \mathcal{D}. So D Torelli if $D=W_{\mathcal{D}}$. Always $D \subseteq W_{\mathcal{D}}$.

Torelli theorem for many hypersurfaces

Notation. $m_{d}=$ number of hypersurfaces of degree d.
Theorem (D.F.-Angelini)
Assume $m_{d} \gg n$ for all d and each D_{i} general enough. Then D is Torelli.

Proof for a single m_{d}.
(1) Set $m_{d}=m$. Take $V_{d}^{n} \hookrightarrow \mathbb{P}^{N} d$-th Veronese of \mathbb{P}^{n}.
(2) Each D_{i} is $H_{i} \subset \mathbb{P}^{N}$. Take $\mathcal{D}=\left(H_{1}, \ldots, H_{m}\right)$.

$$
\mathcal{D} \cap V_{n, d}=D
$$

(3) H hyperplane in \mathbb{P}^{N} unstable for \mathcal{D} if $H^{0}\left(\left.\Omega(\log \mathcal{D})^{*}\right|_{H}\right) \neq 0$.
(4) $W_{\mathcal{D}}=$ unstable hyps of \mathcal{D}. So D Torelli if $D=W_{\mathcal{D}}$. Always $D \subseteq W_{\mathcal{D}}$.
(5) Normal bundle sequence:

$$
\left.0 \rightarrow \Omega_{\mathbb{P}^{n}}(\log D)^{*} \rightarrow \Omega_{\mathbb{P}^{N}}(\log \mathcal{D})^{*}\right|_{V_{d}^{n}} \rightarrow \mathcal{N}_{V_{d}^{n}} \rightarrow 0
$$

Torelli theorem for many hypersurfaces (continued)

Proof for a single $m=m_{d}$ (continued).

Torelli theorem for many hypersurfaces (continued)
Proof for a single $m=m_{d}$ (continued).
(6) C unstable hypersurface for $\Omega(\log D)$
\Rightarrow unstable hyperplane H of \mathcal{D}. Lift global section:

$$
\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*}\right|_{C}
$$

Torelli theorem for many hypersurfaces (continued)
Proof for a single $m=m_{d}$ (continued).
(6) C unstable hypersurface for $\Omega(\log D)$
\Rightarrow unstable hyperplane H of \mathcal{D}. Lift global section:

$$
\left.\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*}\right|_{C} \Rightarrow \Omega_{\mathbb{P}^{N}}(\log \mathcal{D})^{*}\right|_{V_{d}^{n} \cap H}
$$

Torelli theorem for many hypersurfaces (continued)
Proof for a single $m=m_{d}$ (continued).
(6) C unstable hypersurface for $\Omega(\log D)$
\Rightarrow unstable hyperplane H of \mathcal{D}. Lift global section:

$$
\left.\left.\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*}\right|_{C} \Rightarrow \Omega_{\mathbb{P}^{N}}(\log \mathcal{D})^{*}\right|_{V_{d}^{n} \cap H} \Rightarrow \Omega_{\mathbb{P}^{N}}(\log \mathcal{D})^{*}\right|_{H}
$$

Torelli theorem for many hypersurfaces (continued)
Proof for a single $m=m_{d}$ (continued).
(6) C unstable hypersurface for $\Omega(\log D)$
\Rightarrow unstable hyperplane H of \mathcal{D}. Lift global section:

$$
\left.\left.\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*}\right|_{C} \Rightarrow \Omega_{\mathbb{P}^{N}}(\log \mathcal{D})^{*}\right|_{V_{d}^{n} \cap H} \Rightarrow \Omega_{\mathbb{P}^{N}}(\log \mathcal{D})^{*}\right|_{H}
$$

(7) It's ok if $H^{1}\left(\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*}\right|_{H} \otimes \mathcal{I}_{V_{d}^{n}}\right)=0$. Tensor product of $\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*}\right|_{H}$ and ideal sequence:

$$
0 \rightarrow \mathcal{I}_{V_{d}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{N}} \rightarrow \mathcal{O}_{V_{d}^{n}} \rightarrow 0 .
$$

Torelli theorem for many hypersurfaces (continued)
Proof for a single $m=m_{d}$ (continued).
(6) C unstable hypersurface for $\Omega(\log D)$
\Rightarrow unstable hyperplane H of \mathcal{D}. Lift global section:

$$
\left.\left.\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*}\right|_{C} \Rightarrow \Omega_{\mathbb{P}^{N}}(\log \mathcal{D})^{*}\right|_{V_{d}^{n} \cap H} \Rightarrow \Omega_{\mathbb{P}^{N}}(\log \mathcal{D})^{*}\right|_{H}
$$

(7) It's ok if $H^{1}\left(\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*}\right|_{H} \otimes \mathcal{I}_{V_{d}^{n}}\right)=0$. Tensor product of $\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*}\right|_{H}$ and ideal sequence:

$$
0 \rightarrow \mathcal{I}_{V_{d}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{N}} \rightarrow \mathcal{O}_{V_{d}^{n}} \rightarrow 0 .
$$

(8) Tensor product of $\mathcal{O}_{H} \otimes \mathcal{I}_{V_{d}^{n}}$ and of Steiner resolution:

$$
0 \rightarrow \Omega_{\mathbb{P}^{n}}(\log D)^{*} \rightarrow \mathcal{O}_{\mathbb{P}^{N}}^{m-1} \rightarrow \mathcal{O}_{\mathbb{P}^{N}}^{m-N-1}(1) \rightarrow 0
$$

Torelli theorem for many hypersurfaces (continued)

For more m_{d} 's
(9) Work in the product $\prod_{d} \mathbb{P}^{N_{d}}$ and embed by Segre-Veronese.

$$
\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*} \subset \bigoplus_{d} \Omega_{\mathbb{P}^{N_{d}}}\left(\log \mathcal{D}_{d}\right)^{*}\right|_{d} ^{n}
$$

Torelli theorem for many hypersurfaces (continued)

For more m_{d} 's
(9) Work in the product $\prod_{d} \mathbb{P}^{N_{d}}$ and embed by Segre-Veronese.

$$
\left.\Omega_{\mathbb{P}^{n}}(\log D)^{*} \subset \bigoplus_{d} \Omega_{\mathbb{P}^{N_{d}}}\left(\log \mathcal{D}_{d}\right)^{*}\right|_{d} ^{n}
$$

(10) Reduce by divisor $D^{\prime} \subset D$ of highest degree d and iterate.

$$
\begin{aligned}
& D^{\prime}=\bigcup_{\operatorname{deg}\left(D_{i}\right)=d} D_{i}, \\
& 0 \rightarrow \Omega\left(\log \left(D \backslash D^{\prime}\right)\right) \rightarrow \Omega(\log D) \rightarrow \bigoplus_{\operatorname{deg}\left(D_{i}\right)=d} \mathcal{O}_{D_{i}} \rightarrow 0 .
\end{aligned}
$$

Logarithmic derivations for two conics

Two conics, three points, 4 lines
2 smooth transverse conics C, D in \mathbb{P}^{2} give 4 bitangents H_{1}, \ldots, H_{4}.

Logarithmic derivations for two conics

Two conics, three points, 4 lines
2 smooth transverse conics C, D in \mathbb{P}^{2} give 4 bitangents H_{1}, \ldots, H_{4}.

Logarithmic derivations for two conics

Two conics, three points, 4 lines
2 smooth transverse conics C, D in \mathbb{P}^{2} give 4 bitangents H_{1}, \ldots, H_{4}.

Theorem (Angelini)
D^{\prime} gives $\mathcal{T}\left(-\log D^{\prime}\right) \simeq \mathcal{T}(-\log D)$ iff 4 bitangents to D^{\prime} are H_{1}, \ldots, H_{4}.

Questions

On Torelli problem

- Find optimal bounds on the number m_{d} of general hypersurfaces for Torelli to hold.

Questions

On Torelli problem

- Find optimal bounds on the number m_{d} of general hypersurfaces for Torelli to hold. First open cases: 3 conics should be Torelli (almost proved); 4 lines and a conic, etc.

Questions

On Torelli problem

- Find optimal bounds on the number m_{d} of general hypersurfaces for Torelli to hold. First open cases: 3 conics should be Torelli (almost proved); 4 lines and a conic, etc.
- Describe fibres of ω below these bounds.

Questions

On Torelli problem

- Find optimal bounds on the number m_{d} of general hypersurfaces for Torelli to hold. First open cases: 3 conics should be Torelli (almost proved); 4 lines and a conic, etc.
- Describe fibres of ω below these bounds.
- Give conditions for Torelli failure above the bounds.

Questions

On Torelli problem

- Find optimal bounds on the number m_{d} of general hypersurfaces for Torelli to hold. First open cases: 3 conics should be Torelli (almost proved); 4 lines and a conic, etc.
- Describe fibres of ω below these bounds.
- Give conditions for Torelli failure above the bounds.

On resolutions

- Study arrangements having J_{D} of low projective dimension (e.g. free arrangements $\mathrm{pd}=1$ and so on).

Questions

On Torelli problem

- Find optimal bounds on the number m_{d} of general hypersurfaces for Torelli to hold. First open cases: 3 conics should be Torelli (almost proved); 4 lines and a conic, etc.
- Describe fibres of ω below these bounds.
- Give conditions for Torelli failure above the bounds.

On resolutions

- Study arrangements having J_{D} of low projective dimension (e.g. free arrangements $\mathrm{pd}=1$ and so on).
- What is $\Omega(\log D)$ when D is an invariant hypersurface? Example: discriminant of binary forms, determinant of $n \times n$ matrices, etc.

