TORIC ARRANGEMENTS

Emanuele Delucchi
(joint with Giacomo d'Antonio)
Universität Bremen

AMS Joint international meeting
Alba Iulia
June 28., 2013.

THIS TALK WILL OFFER SOME SNAPSHOTS OF

- d'Antonio, D.; A Salvetti complex for toric arrangements and its fundamental group. International Mathematics Research Notices (IMRN), 2011.
- d'Antonio, D.; Minimality of toric arrangements. To appear in Journal of the European Mathematical Society (JEMS), 2013.

TORIC ARRANGEMENTS

A complexified toric arrangement is a set
$\mathscr{A}=\left\{\left(\chi_{i}, a_{i}\right)\right\}_{i=1, \ldots, n} \subseteq \mathbb{Z}^{d} \times S^{1}$.
With

$$
\begin{aligned}
& \mathbb{Z}^{d} \simeq \operatorname{Hom}\left(\left(\mathbb{C}^{*}\right)^{d}, \mathbb{C}^{*}\right), \\
& S^{1}=\{z \in \mathbb{C}:|z|=1\},
\end{aligned}
$$

define

$$
K_{i}=\chi_{i}^{-1}\left(a_{i}\right) \subseteq\left(\mathbb{C}^{*}\right)^{d} .
$$

TORIC ARRANGEMENTS

A complexified toric arrangement is a set
$\mathscr{A}=\left\{\left(\chi_{i}, a_{i}\right)\right\}_{i=1, \ldots, n} \subseteq \mathbb{Z}^{d} \times S^{1}$.
With

$$
\begin{aligned}
& \mathbb{Z}^{d} \simeq \operatorname{Hom}\left(\left(\mathbb{C}^{*}\right)^{d}, \mathbb{C}^{*}\right) \\
& S^{1}=\{z \in \mathbb{C}:|z|=1\}
\end{aligned}
$$

define

$$
K_{i}=\chi_{i}^{-1}\left(a_{i}\right) \subseteq\left(\mathbb{C}^{*}\right)^{d}
$$

Layers of \mathscr{A} : conn. comp. of intersection of some of the K_{i}.
$\mathcal{C}(\mathscr{A}):=$ poset of layers ordered by reverse inclusion.

FACE STRUCTURE

\&

The arrangement \mathscr{A} lifts to an hyperplane arrangement \mathscr{A}^{1}.

FACE STRUCTURE

The arrangement \mathscr{A} lifts to an hyperplane arrangement \mathscr{A} 1.

The face poset $\mathcal{F}\left(\mathscr{A}^{1}\right)$ carries an action of \mathbb{Z}^{d} "by translations".

Face structure

The arrangement \mathscr{A} lifts to an hyperplane arrangement \mathscr{A} 1.

The face poset $\mathcal{F}\left(\mathscr{A}^{\dagger}\right)$ carries an action of \mathbb{Z}^{d} "by translations".

The face category of \mathscr{A} is

$$
\mathcal{F}(\mathscr{A})=\mathcal{F}\left(\mathscr{A}^{\Gamma}\right) / \mathbb{Z}^{d},
$$

an acyclic category.

Face structure

$\mathcal{F}(\mathscr{A})$

The arrangement \mathscr{A} lifts to an hyperplane arrangement \mathscr{A}^{1}.

The face poset $\mathcal{F}\left(\mathscr{A}^{\dagger}\right)$ carries an action of \mathbb{Z}^{d} "by translations".

The face category of \mathscr{A} is

$$
\mathcal{F}(\mathscr{A})=\mathcal{F}\left(\mathscr{A}^{\Gamma}\right) / \mathbb{Z}^{d},
$$

an acyclic category.

COMBINATORIAL BOOKKEEPING I

$$
\mathscr{A}_{0}=\left\{H_{1}, \ldots, H_{n}\right\}
$$

is a central arrangement in \mathbb{R}^{d}, consisting of the translate at the origin of a lift of each K_{i}.

COMBINATORIAL BOOKKEEPING I

Given $Y \in \mathcal{C}(\mathscr{A})$ let

$$
\mathscr{A}[Y]=\left\{H_{i} \in \mathscr{A}_{0}: Y \subseteq K_{i}\right\} .
$$

COMBINATORIAL BOOKKEEPING I

Given $Y \in \mathcal{C}(\mathscr{A})$ let

$$
\mathscr{A}[Y]=\left\{H_{i} \in \mathscr{A}_{0}: Y \subseteq K_{i}\right\} .
$$

For $i=1, \ldots, d$, let

$$
\mathscr{N}_{i}:=\{(Y, N)|Y \in \mathcal{C}(\mathscr{A}), N \in \operatorname{nbc}(\mathscr{A}[Y]),|N|=\operatorname{rk} \mathscr{A}[Y]=i\} .
$$

\square

TOPOLOGY

We consider

$$
M(\mathscr{A}):=\left(\mathbb{C}^{*}\right)^{d} \backslash \bigcup_{i=1}^{n} K_{i} .
$$

TOPOLOGY

We consider

$$
M(\mathscr{A}):=\left(\mathbb{C}^{*}\right)^{d} \backslash \bigcup_{i=1}^{n} K_{i} .
$$

- [Looijenga '98; De Concini, Procesi '05] The Poincaré polynomial of $M(\mathscr{A})$ can be computed in terms of $\mathcal{C}(\mathscr{A})$.

- [dD '11] Presentation of $\pi_{1}(M(\mathscr{A}))$ in terms of $\mathcal{F}(\mathscr{A})$.

POINCARÉ POLYNOMIAL

[De Concini and Procesi, '05]
The Poincaré polynomial of $M(\mathscr{A})$ is
$P(M(\mathscr{A}), t)=\sum_{j=1}^{d}\left|\mathscr{N}_{j}\right|(1+t)^{d-j} t^{j}$

Moreover, when \mathscr{A} is unimodular the multiplicative structure of $H^{*}(M(\mathscr{A}), \mathbb{C})$ is computed.

POINCARÉ POLYNOMIAL

[De Concini and Procesi, '05]
The Poincaré polynomial of $M(\mathscr{A})$ is
$P(M(\mathscr{A}), t)=\sum_{j=1}^{d}\left|\mathscr{N}_{j}\right|(1+t)^{d-j} t^{j}$

Moreover, when \mathscr{A} is unimodular the multiplicative structure of $H^{*}(M(\mathscr{A}), \mathbb{C})$ is computed.

- Is there torsion in $H^{*}(M(\mathscr{A}), \mathbb{Z})$?
- What is the multiplicative structure of $H^{*}(M(\mathscr{A}), \mathbb{Z})$?
- When is $M(\mathscr{A})$ a $K(\pi, 1)$?
- Can the category $\mathcal{F}(\mathscr{A})$ be defined axiomatically?

POINCARÉ POLYNOMIAL

[De Concini and Procesi, '05]
The Poincaré polynomial of $M(\mathscr{A})$ is
$P(M(\mathscr{A}), t)=\sum_{j=1}^{d}\left|\mathscr{N}_{j}\right|(1+t)^{d-j} t^{j}$

Moreover, when \mathscr{A} is unimodular the multiplicative structure of $H^{*}(M(\mathscr{A}), \mathbb{C})$ is computed.

- Is there torsion in $H^{*}(M(\mathscr{A}), \mathbb{Z})$?
- What is the multiplicative structure of $H^{*}(M(\mathscr{A}), \mathbb{Z})$?
[Ongoing project w. F. Callegaro]
- When is $M(\mathscr{A})$ a $K(\pi, 1)$?
- Can the category $\mathcal{F}(\mathscr{A})$ be defined axiomatically?

TOPOLOGY

We consider

$$
M(\mathscr{A}):=\left(\mathbb{C}^{*}\right)^{d} \backslash \bigcup_{i=1}^{n} K_{i} .
$$

TOPOLOGY

We consider

$$
M(\mathscr{A}):=\left(\mathbb{C}^{*}\right)^{d} \backslash \bigcup_{i=1}^{n} K_{i} .
$$

The action on \mathscr{A}^{\uparrow} extends to a cellular action on $\operatorname{Sal}\left(\mathscr{A}^{1}\right)$.
The Salvetti category of \mathscr{A} is the acyclic category

$$
\operatorname{Sal}(\mathscr{A}):=\operatorname{Sal}\left(\mathscr{A}^{\Gamma}\right) / \mathbb{Z}^{d} .
$$

Theorem [Moci and Settepanella '11, dD '11]. Sal(\mathscr{A}) can be defined in terms of $\mathcal{F}(\mathscr{A})$, and we have a homotopy equivalence

$$
\Delta(\operatorname{Sal}(\mathscr{A})) \simeq M(\mathscr{A}) .
$$

TOPOLOGY

We consider

$$
M(\mathscr{A}):=\left(\mathbb{C}^{*}\right)^{d} \backslash \bigcup_{i=1}^{n} K_{i} .
$$

The diagram of acyclic categories

$$
\begin{aligned}
\mathscr{D}: \mathcal{F}(\mathscr{A}) & \rightarrow \mathbf{A C} \\
F & \mapsto \operatorname{Sal}(\mathscr{A}[|F|]),
\end{aligned}
$$

with inclusions as morphisms, is "geometric".
Theorem [dD '12].

$$
\operatorname{colim} \mathscr{D} \simeq \operatorname{Sal}(\mathscr{A})
$$

ORDER ON CHAMBERS

Definition. Let C_{1}, C_{2} be chambers of \mathscr{B}, F any face. $S\left(C_{1}, C_{2}\right) \subset \mathscr{B}$: the set of hyperplanes separating C_{1} from C_{2},

Fix a chamber B.
The partial order
$C_{1} \leq_{B} C_{2} \Leftrightarrow S\left(B, C_{1}\right) \subseteq S\left(B, C_{2}\right)$
defines the poset of regions $\mathcal{P}_{B}(\mathscr{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_{B}(\mathscr{B})$.

ORDER ON CHAMBERS

Definition. Let C_{1}, C_{2} be chambers of \mathscr{B}, F any face. $S\left(C_{1}, C_{2}\right) \subset \mathscr{B}$: the set of hyperplanes separating C_{1} from C_{2},

Fix a chamber B.
The partial order
$C_{1} \leq_{B} C_{2} \Leftrightarrow S\left(B, C_{1}\right) \subseteq S\left(B, C_{2}\right)$
defines the poset of regions $\mathcal{P}_{B}(\mathscr{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_{B}(\mathscr{B})$.

ORDER ON CHAMBERS

Definition. Let C_{1}, C_{2} be chambers of \mathscr{B}, F any face. $S\left(C_{1}, C_{2}\right) \subset \mathscr{B}$: the set of hyperplanes separating C_{1} from C_{2},

Fix a chamber B.
The partial order
$C_{1} \leq{ }_{B} C_{2} \Leftrightarrow S\left(B, C_{1}\right) \subseteq S\left(B, C_{2}\right)$
defines the poset of regions $\mathcal{P}_{B}(\mathscr{B})$ based at B.

ORDER ON CHAMBERS

Definition. Let C_{1}, C_{2} be chambers of \mathscr{B}, F any face. $S\left(C_{1}, C_{2}\right) \subset \mathscr{B}$: the set of hyperplanes separating C_{1} from C_{2},

Fix a chamber B.
The partial order
$C_{1} \leq{ }_{B} C_{2} \Leftrightarrow S\left(B, C_{1}\right) \subseteq S\left(B, C_{2}\right)$
defines the poset of regions $\mathcal{P}_{B}(\mathscr{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_{B}(\mathscr{B})$.

ORDER ON CHAMBERS

Definition. Let C_{1}, C_{2} be chambers of \mathscr{B}, F any face. $S\left(C_{1}, C_{2}\right) \subset \mathscr{B}$: the set of hyperplanes separating C_{1} from C_{2},

Fix a chamber B.
The partial order
$C_{1} \leq_{B} C_{2} \Leftrightarrow S\left(B, C_{1}\right) \subseteq S\left(B, C_{2}\right)$
defines the poset of regions $\mathcal{P}_{B}(\mathscr{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_{B}(\mathscr{B})$.

ORDER ON CHAMBERS

Definition. Let C_{1}, C_{2} be chambers of \mathscr{B}, F any face. $S\left(C_{1}, C_{2}\right) \subset \mathscr{B}$: the set of hyperplanes separating C_{1} from C_{2},

Fix a chamber B.
The partial order
$C_{1} \leq{ }_{B} C_{2} \Leftrightarrow S\left(B, C_{1}\right) \subseteq S\left(B, C_{2}\right)$
defines the poset of regions $\mathcal{P}_{B}(\mathscr{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_{B}(\mathscr{B})$.

ORDER ON CHAMBERS

Definition. Let C_{1}, C_{2} be chambers of \mathscr{B}, F any face. $S\left(C_{1}, C_{2}\right) \subset \mathscr{B}$: the set of hyperplanes separating C_{1} from C_{2},

Fix a chamber B.
The partial order
$C_{1} \leq_{B} C_{2} \Leftrightarrow S\left(B, C_{1}\right) \subseteq S\left(B, C_{2}\right)$
defines the poset of regions $\mathcal{P}_{B}(\mathscr{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_{B}(\mathscr{B})$.

DEFINITION: X_{C}

For every chamber C there a unique minimal $X_{C} \in \mathcal{L}(\mathscr{B})$ s.t. the set
$\left\{H \in \mathscr{B}: H \supseteq X_{C}\right\}$
separates C from the previous.

DEFINITION: X_{C}

For every chamber C there a unique minimal $X_{C} \in \mathcal{L}(\mathscr{B})$ s.t. the set

$$
\left\{H \in \mathscr{B}: H \supseteq X_{C}\right\}
$$

separates C from the previous.

DEFINITION: X_{C}

For every chamber C there a unique minimal $X_{C} \in \mathcal{L}(\mathscr{B})$ s.t. the set

$$
\left\{H \in \mathscr{B}: H \supseteq X_{C}\right\}
$$

separates C from the previous.

DEFINITION: X_{C}

DEFINITION: X_{C}

DEFINITION: X_{C}

X_{C} : TWO APPLICATIONS

Let \mathscr{B} be a central arrangement of real hyperplanes, fix $B \in \mathcal{P}(\mathscr{B})$.
Theorem [D. '08]. The order preserving map

$$
\phi: \mathcal{P}_{B}(\mathscr{B}) \rightarrow \mathcal{L}(\mathscr{B}), C \mapsto X_{C}
$$

satisfies

$$
\left|\phi^{-1}(Y)\right|=|\{N \in \operatorname{nbc}(\mathscr{B}) \mid \cap N=Y\}|
$$

X_{C} : TWO APPLICATIONS

Let \mathscr{B} be a central arrangement of real hyperplanes, fix $B \in \mathcal{P}(\mathscr{B})$.
Theorem [D. '08]. The order preserving map

$$
\phi: \mathcal{P}_{B}(\mathscr{B}) \rightarrow \mathcal{L}(\mathscr{B}), C \mapsto X_{C}
$$

satisfies

$$
\left|\phi^{-1}(Y)\right|=|\{N \in \operatorname{nbc}(\mathscr{B}) \mid \cap N=Y\}|
$$

Theorem [D. '08]. There is an order preserving map

$$
\operatorname{Sal}(\mathscr{B}) \rightarrow \mathcal{P}_{B}(\mathscr{B})
$$

such that for the preimage \mathcal{N}_{C} of every $C \in \mathcal{P}_{B}(\mathscr{B})$ we have a poset isomorphism

$$
\mathcal{N}_{C} \simeq \mathcal{F}\left(\mathscr{B}^{X_{C}}\right)^{o p}
$$

COMBINATORIAL BOOKKEEPING II

Fix

- $B \in \mathcal{P}\left(\mathscr{A}_{0}\right)$ and
- a lin. ext. of $\mathcal{P}_{B}\left(\mathscr{A}_{0}\right)$.

For all $Y \in \mathcal{C}(\mathscr{A})$, we have

- $B_{Y} \in \mathcal{P}(\mathscr{A}[Y])$ with $B \subseteq B_{Y}$
- a lin. ext. of $\mathcal{P}_{B_{Y}}(\mathscr{A}[Y])$.

COMBINATORIAL BOOKKEEPING II

Fix

- $B \in \mathcal{P}\left(\mathscr{A}_{0}\right)$ and
- a lin. ext. of $\mathcal{P}_{B}\left(\mathscr{A}_{0}\right)$.

For all $Y \in \mathcal{C}(\mathscr{A})$, we have

- $B_{Y} \in \mathcal{P}(\mathscr{A}[Y])$ with $B \subseteq B_{Y}$
- a lin. ext. of $\mathcal{P}_{B_{Y}}(\mathscr{A}[Y])$.

For every $i=0, \ldots, d$ define

$$
\mathscr{Y}_{i}:=\left\{(Y, C) \mid Y \in \mathcal{C}(\mathscr{A}), C \in \mathcal{P}_{B_{Y}}(\mathscr{A}[Y]), X_{C}=\max \mathcal{L}(\mathscr{A}[Y])\right\} .
$$

Then,

$$
\left|\mathscr{Y}_{i}\right|=\left|\mathscr{N}_{i}\right| .
$$

COMBINATORIAL BOOKKEEPING II

Fix

- $B \in \mathcal{P}\left(\mathscr{A}_{0}\right)$ and
- a lin. ext. of $\mathcal{P}_{B}\left(\mathscr{A}_{0}\right)$.

For all $Y \in \mathcal{C}(\mathscr{A})$, we have

- $B_{Y} \in \mathcal{P}(\mathscr{A}[Y])$ with $B \subseteq B_{Y}$

- a lin. ext. of $\mathcal{P}_{B_{Y}}(\mathscr{A}[Y])$.

Let $\mathscr{Y}:=\bigcup_{i} \mathscr{Y}_{i}$. For every $(Y, C) \in \mathscr{Y}$ define a subdiagram of \mathscr{D}

$$
\begin{aligned}
\mathcal{N}_{(Y, C)}: \mathcal{F}\left(\mathscr{A}^{Y}\right) & \rightarrow \mathbf{A C} \\
F & \mapsto \mathcal{N}_{C}(\mathscr{A}[|F|]) .
\end{aligned}
$$

Theorem [dD '12]. This diagram is geometric, and

$$
\operatorname{colim} \mathcal{N}_{(Y, C)} \simeq \mathcal{F}\left(\mathscr{A}^{Y}\right)
$$

Stratification

Fix

- $B \in \mathcal{P}\left(\mathscr{A}_{0}\right)$ and
- a lin. ext. of $\mathcal{P}_{B}\left(\mathscr{A}_{0}\right)$.

Choose total order on \mathscr{Y} such that the natural map

$$
\mathscr{Y} \rightarrow \mathcal{P}_{B}\left(\mathscr{A}_{0}\right)
$$

is order preserving.

$$
<\quad \text { in } \mathcal{P}_{B}\left(\mathscr{A}_{0}\right)
$$

Stratification

Fix

- $B \in \mathcal{P}\left(\mathscr{A}_{0}\right)$ and
- a lin. ext. of $\mathcal{P}_{B}\left(\mathscr{A}_{0}\right)$.

Choose total order on \mathscr{Y} such that the natural map

$$
\mathscr{Y} \rightarrow \mathcal{P}_{B}\left(\mathscr{I}_{0}\right)
$$

is order preserving.
Theorem [dD '12]. There is a functor

$$
\Phi: \operatorname{colim} \mathscr{D} \rightarrow \mathscr{Y}
$$

with

$$
\Phi^{-1}(Y, C)=\operatorname{colim} \mathcal{N}_{(Y, C)}
$$

Stratification

Fix

- $B \in \mathcal{P}\left(\mathscr{A}_{0}\right)$ and
- a lin. ext. of $\mathcal{P}_{B}\left(\mathscr{A}_{0}\right)$.

Choose total order on $\mathscr{9}$ such that the natural map

$$
\mathscr{Y} \rightarrow \mathcal{P}_{B}\left(\mathscr{A}_{0}\right)
$$

is order preserving.
We obtain a functor

$$
\Phi: \operatorname{Sal}(\mathscr{A}) \rightarrow \mathscr{Y}
$$

with

$$
\Phi^{-1}(Y, C)=\mathcal{F}\left(\mathscr{A}^{Y}\right)
$$

which allows us to turn to Discrete Morse Theory.

Discrete Morse theory

Here is a regular CW complex

with its poset of cells:

Elementary collapses...

are homotopy equivalences.

Elementary collapses...

are homotopy equivalences.

Elementary collapses...

Cells:

Elementary collapses...

Cells:

Elementary collapses...

Cells:

Elementary collapses...

Cells:

Elementary collapses...

Cells:

... are homotopy equivalences.

ELEMENTARY COLLAPSES...

Cells:

... are homotopy equivalences.

ELEMENTARY COLLAPSES...

Cells:

... are homotopy equivalences.

ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram of the poset of cells.

ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram of the poset of cells.

Question: Does any matchings encode such a sequence?

ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram of the poset of cells.

Question: Does any matchings encode such a sequence? Answer: No. Only (and exactly) those without "cycles" like

Acyclic matchings \leftrightarrow discrete Morse functions.

DMT FOR ACYCLIC CATEGORIES

Meta-Theorem [dD '12]. Discrete Morse Theory generalizes successfully to nerves of acyclic categories.

In particular, we have

- A notion of 'acyclic matching'
- A corresponding 'main theorem'
- A corresponding 'Patchwork Lemma':

DMT FOR ACYCLIC CATEGORIES

Meta-Theorem [dD '12]. Discrete Morse Theory generalizes successfully to nerves of acyclic categories.

In particular, we have

- A notion of 'acyclic matching'
- A corresponding 'main theorem'
- A corresponding 'Patchwork Lemma':

Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a functor of acyclic categories. For $b \in \mathrm{Ob}(\mathcal{B})$ let M_{b} be an acyclic matching of the preimage $\varphi^{-1}(b)$. Then, the union $M:=\bigcup_{b} M_{b}$ is an acyclic matching of \mathcal{A}.

Perfect matchings for real toric arrangements

Posets of interior cells of constructible complexes admit acyclic matchings with only one critical cell. [Benedetti '10]

PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS

Lemma [dD '12]. The category $\mathcal{F}(\mathscr{A})$ admits an acyclic matching with 2^{d} critical cells in total.

Posets of interior cells of constructible complexes admit acyclic matchings with only one critical cell. [Benedetti '10]

FIT FOR MINIMALITY

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

FIT FOR MINIMALITY

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- For every $y=(Y, C) \in \mathscr{Y}$ we have a stratum

$$
\mathcal{N}_{y} \simeq \mathcal{F}\left(\mathscr{A}^{\cap Y}\right)^{o p} .
$$

FIT FOR MINIMALITY

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- For every $y=(Y, C) \in \mathscr{Y}$ we have a stratum

$$
\mathcal{N}_{y} \simeq \mathcal{F}\left(\mathscr{A}^{\cap Y}\right)^{o p} .
$$

- It admits an acyclic matching with $2^{\operatorname{dim}(Y)}$ critical cells.

FIT FOR MINIMALITY

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- For every $y=(Y, C) \in \mathscr{Y}$ we have a stratum

$$
\mathcal{N}_{y} \simeq \mathcal{F}\left(\mathscr{A}^{\cap Y}\right)^{o p} .
$$

- It admits an acyclic matching with $2^{\operatorname{dim}(Y)}$ critical cells.
- The functor $\Phi: \operatorname{Sal}(\mathscr{A}) \rightarrow \mathscr{Y}$, has $\Phi^{-1}(y)=\mathcal{N}_{y}$.

FIT FOR MINIMALITY

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- For every $y=(Y, C) \in \mathscr{Y}$ we have a stratum

$$
\mathcal{N}_{y} \simeq \mathcal{F}\left(\mathscr{A}^{\cap Y}\right)^{o p} .
$$

- It admits an acyclic matching with $2^{\operatorname{dim}(Y)}$ critical cells.
- The functor $\Phi: \operatorname{Sal}(\mathscr{A}) \rightarrow \mathscr{Y}$, has $\Phi^{-1}(y)=\mathcal{N}_{y}$.

Patchwork Lemma: number of critical cells over all of $\operatorname{Sal}(\mathscr{A})$:

$$
\sum_{(Y, C) \in \mathscr{Y}} 2^{\operatorname{dim} Y}=\sum_{(Y, N) \in \mathscr{N}} 2^{\operatorname{dim} Y}=\sum_{j=1}^{d}\left|\mathscr{N}_{j}\right|(1+1)^{d-j} 1^{j}=P_{M(\mathscr{A})}(1) .
$$

FIT FOR MINIMALITY

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- For every $y=(Y, C) \in \mathscr{Y}$ we have a stratum

$$
\mathcal{N}_{y} \simeq \mathcal{F}\left(\mathscr{A}^{\cap Y}\right)^{o p} .
$$

- It admits an acyclic matching with $2^{\operatorname{dim}(Y)}$ critical cells.
- The functor $\Phi: \operatorname{Sal}(\mathscr{A}) \rightarrow \mathscr{Y}$, has $\Phi^{-1}(y)=\mathcal{N}_{y}$.

Patchwork Lemma: number of critical cells over all of $\operatorname{Sal}(\mathscr{A})$:

$$
\sum_{(Y, C) \in \mathscr{Y}} 2^{\operatorname{dim} Y}=\sum_{(Y, N) \in \mathscr{N}} 2^{\operatorname{dim} Y}=\sum_{j=1}^{d}\left|\mathscr{N}_{j}\right|(1+1)^{d-j} 1^{j}=P_{M(\mathscr{A})}(1) .
$$

Corollary. All cohomology modules $H^{k}(M(\mathscr{A}), \mathbb{Z})$ are torsion free.

