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TORIC ARRANGEMENTS

A complexified toric arrangement
is a set

A = {(χi , ai )}i=1,...,n ⊆ Zd×S1.

With
Zd ' Hom((C∗)d ,C∗),
S1 = {z ∈ C : |z | = 1},

define

Ki = χ−1i (ai ) ⊆ (C∗)d .
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With
Zd ' Hom((C∗)d ,C∗),
S1 = {z ∈ C : |z | = 1},

define

Ki = χ−1i (ai ) ⊆ (C∗)d .

Layers of A : conn. comp. of
intersection of some of the Ki .

C(A ) := poset of layers ordered
by reverse inclusion.
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COMBINATORIAL BOOKKEEPING I

A � A
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A0 = {H1, . . . ,Hn}

is a central arrangement in Rd ,
consisting of the translate at the
origin of a lift of each Ki .
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COMBINATORIAL BOOKKEEPING I

Given Y ∈ C(A ) let

A [Y ] = {Hi ∈ A0 : Y ⊆ Ki}.

For i = 1, . . . , d , let

Ni := {(Y ,N) | Y ∈ C(A ),N ∈ nbc(A [Y ]), |N| = rk A [Y ] = i}.
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M(A ) := (C∗)d \
n⋃

i=1

Ki .

I [Looijenga ‘98; De Concini, Procesi ‘05]
The Poincaré polynomial of M(A ) can
be computed in terms of C(A ).

I [dD ‘11] Presentation of π1(M(A )) in terms of F(A ).
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I When is M(A ) a K (π, 1)?

I Can the category F(A ) be defined axiomatically?
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TOPOLOGY

We consider

M(A ) := (C∗)d \
n⋃

i=1

Ki .

The action on A � extends to a cellular action on Sal(A �).

The Salvetti category of A is the acyclic category

Sal(A ) := Sal(A �)/Zd .

Theorem [Moci and Settepanella ‘11, dD ‘11]. Sal(A ) can be
defined in terms of F(A ), and we have a homotopy equivalence

∆(Sal(A )) ' M(A ).



TOPOLOGY

We consider

M(A ) := (C∗)d \
n⋃

i=1

Ki .

The diagram of acyclic categories

D : F(A )→ AC

F 7→ Sal(A [|F |]),

with inclusions as morphisms, is “geometric”.

Theorem [dD ‘12].
colim D ' Sal(A )



ORDER ON CHAMBERS

Definition. Let C1, C2 be chambers of B, F any face.
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XC : TWO APPLICATIONS

Let B be a central arrangement of real hyperplanes, fix B ∈ P(B).

Theorem [D. ‘08]. The order preserving map

φ : PB(B)→ L(B), C 7→ XC

satisfies
|φ−1(Y )| = |{N ∈ nbc(B) | ∩N = Y }|



XC : TWO APPLICATIONS

Let B be a central arrangement of real hyperplanes, fix B ∈ P(B).

Theorem [D. ‘08]. The order preserving map

φ : PB(B)→ L(B), C 7→ XC

satisfies
|φ−1(Y )| = |{N ∈ nbc(B) | ∩N = Y }|

Theorem [D. ‘08]. There is an order preserving map

Sal(B)→ PB(B)

such that for the preimage NC of every C ∈ PB(B) we have a poset
isomorphism

NC ' F(BXC )op
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For all Y ∈ C(A ), we have
• BY ∈ P(A [Y ]) with B ⊆ BY

• a lin. ext. of PBY
(A [Y ]).

For every i = 0, . . . , d define

Yi := {(Y ,C ) | Y ∈ C(A ), C ∈ PBY
(A [Y ]), XC = maxL(A [Y ])}.

Then,
|Yi | = |Ni |.



COMBINATORIAL BOOKKEEPING II

Fix
• B ∈ P(A0) and
• a lin. ext. of PB(A0).

For all Y ∈ C(A ), we have
• BY ∈ P(A [Y ]) with B ⊆ BY

• a lin. ext. of PBY
(A [Y ]).

Let Y :=
⋃

i Yi . For every (Y ,C ) ∈ Y define a subdiagram of D

N(Y ,C) : F(A Y )→ AC

F 7→ NC (A [|F |]).

Theorem [dD ‘12]. This diagram is geometric, and

colimN(Y ,C) ' F(A Y )



STRATIFICATION

Fix
• B ∈ P(A0) and
• a lin. ext. of PB(A0).
Choose total order on Y
such that the natural map

Y → PB(A0)

is order preserving.

BQ B

C

(Q,C )

< in PB(A0)
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STRATIFICATION

Fix
• B ∈ P(A0) and
• a lin. ext. of PB(A0).
Choose total order on Y
such that the natural map

Y → PB(A0)

is order preserving.

We obtain a functor
Φ : Sal(A )→ Y

with
Φ−1(Y ,C ) = F(A Y ),

which allows us to turn to Discrete Morse Theory.



DISCRETE MORSE THEORY

Here is a regular CW complex

with its poset of cells:
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ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram
of the poset of cells.

Question: Does any matchings encode such a sequence?
Answer: No. Only (and exactly) those without “cycles” like

.

Acyclic matchings ↔ discrete Morse functions.
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DMT FOR ACYCLIC CATEGORIES

Meta-Theorem [dD ‘12]. Discrete Morse Theory generalizes
successfully to nerves of acyclic categories.

In particular, we have

I A notion of ‘acyclic matching’

I A corresponding ‘main theorem’

I A corresponding ‘Patchwork Lemma’:

Let ϕ : A → B be a functor of acyclic categories. For b ∈ Ob(B) let
Mb be an acyclic matching of the preimage ϕ−1(b). Then, the union
M :=

⋃
b Mb is an acyclic matching of A.
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constructible complexes
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PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS

Lemma [dD ‘12]. The category F(A )
admits an acyclic matching with 2d

critical cells in total.

Posets of interior cells of
constructible complexes
admit acyclic matchings
with only one critical cell.
[Benedetti ’10]



FIT FOR MINIMALITY

Theorem [dD ‘12]. Let A be a complexified toric arrangement. Then
M(A ) has the homotopy type of a minimal CW-complex.

Proof.

I For every y = (Y ,C ) ∈ Y we have a stratum

Ny ' F(A ∩Y )op.

I It admits an acyclic matching with 2dim(Y ) critical cells.

I The functor Φ : Sal(A )→ Y , has Φ−1(y) = Ny .

Patchwork Lemma: number of critical cells over all of Sal(A ):∑
(Y ,C)∈Y

2dimY =
∑

(Y ,N)∈N

2dimY =
d∑

j=1

|Nj |(1 + 1)d−j1j = PM(A )(1).

Corollary. All cohomology modules Hk(M(A ),Z) are torsion free.
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