TORIC ARRANGEMENTS

Emanuele Delucchi (joint with Giacomo d'Antonio) Universität Bremen

AMS Joint international meeting Alba Iulia June 28., 2013.

THIS TALK WILL OFFER SOME SNAPSHOTS OF

 d'Antonio, D.; A Salvetti complex for toric arrangements and its fundamental group. International Mathematics Research Notices (IMRN), 2011.

 d'Antonio, D.; *Minimality of toric arrangements*. To appear in Journal of the European Mathematical Society (JEMS), 2013.

TORIC ARRANGEMENTS

A complexified toric arrangement is a set

$$\mathscr{A} = \{(\chi_i, a_i)\}_{i=1,\dots,n} \subseteq \mathbb{Z}^d \times S^1.$$

With

$$egin{aligned} \mathbb{Z}^d &\simeq \operatorname{Hom}((\mathbb{C}^*)^d, \mathbb{C}^*),\ S^1 &= \{z \in \mathbb{C}: |z| = 1\}, \end{aligned}$$

define

$$K_i = \chi_i^{-1}(a_i) \subseteq (\mathbb{C}^*)^d.$$

TORIC ARRANGEMENTS

A complexified toric arrangement is a set

$$\mathscr{A} = \{(\chi_i, a_i)\}_{i=1,\ldots,n} \subseteq \mathbb{Z}^d \times S^1.$$

With

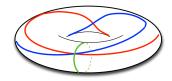
 $\mathbb{Z}^d \simeq \operatorname{Hom}((\mathbb{C}^*)^d, \mathbb{C}^*),$ $S^1 = \{z \in \mathbb{C} : |z| = 1\},$

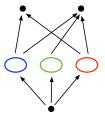
define

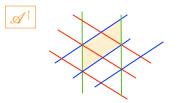
$$K_i = \chi_i^{-1}(a_i) \subseteq (\mathbb{C}^*)^d.$$

Layers of \mathscr{A} : conn. comp. of intersection of some of the K_i .

 $\mathcal{C}(\mathscr{A}) :=$ poset of layers ordered by reverse inclusion.

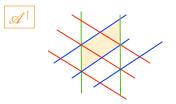








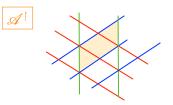
The arrangement \mathscr{A} lifts to an hyperplane arrangement \mathscr{A}^{\uparrow} .





The arrangement \mathscr{A} lifts to an hyperplane arrangement \mathscr{A}^{\uparrow} .

The face poset $\mathcal{F}(\mathscr{A}^{\dagger})$ carries an action of \mathbb{Z}^{d} "by translations".





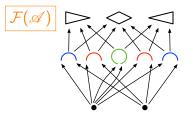
The arrangement \mathscr{A} lifts to an hyperplane arrangement \mathscr{A}^{\uparrow} .

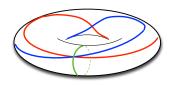
The face poset $\mathcal{F}(\mathscr{A}^{\uparrow})$ carries an action of \mathbb{Z}^{d} "by translations".

The face category of \mathscr{A} is

$$\mathcal{F}(\mathscr{A}) = \mathcal{F}(\mathscr{A}^{\uparrow})/\mathbb{Z}^{d},$$

an acyclic category.





The arrangement \mathscr{A} lifts to an hyperplane arrangement \mathscr{A}^{\uparrow} .

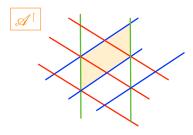
The face poset $\mathcal{F}(\mathscr{A}^{\uparrow})$ carries an action of \mathbb{Z}^{d} "by translations".

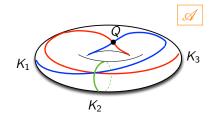
The face category of \mathscr{A} is

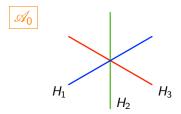
$$\mathcal{F}(\mathscr{A}) = \mathcal{F}(\mathscr{A}^{\uparrow})/\mathbb{Z}^{d},$$

an acyclic category.

COMBINATORIAL BOOKKEEPING I



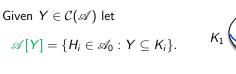


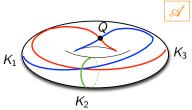


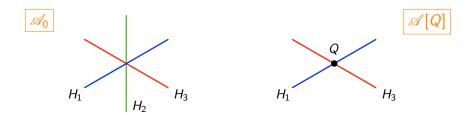
$$\mathscr{A}_0 = \{H_1, \ldots, H_n\}$$

is a central arrangement in \mathbb{R}^d , consisting of the translate at the origin of a lift of each K_i .

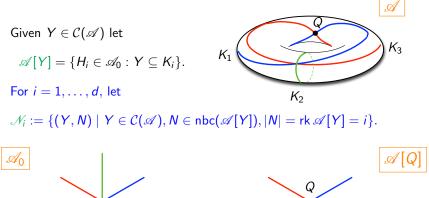
COMBINATORIAL BOOKKEEPING I

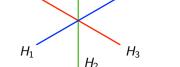


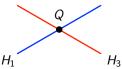




COMBINATORIAL BOOKKEEPING I







We consider

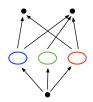
$$M(\mathscr{A}) := (\mathbb{C}^*)^d \setminus \bigcup_{i=1}^n K_i.$$



We consider

$$M(\mathscr{A}) := (\mathbb{C}^*)^d \setminus \bigcup_{i=1}^n K_i.$$

► [Looijenga '98; De Concini, Procesi '05] The Poincaré polynomial of M(𝔄) can be computed in terms of C(𝔄).

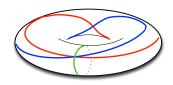


• [dD '11] Presentation of $\pi_1(M(\mathscr{A}))$ in terms of $\mathcal{F}(\mathscr{A})$.

POINCARÉ POLYNOMIAL

[De Concini and Procesi, '05] The Poincaré polynomial of $M(\mathscr{A})$ is

$$P(M(\mathscr{A}),t) = \sum_{j=1}^{d} |\mathscr{N}_j| (1+t)^{d-j} t^j$$

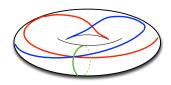


Moreover, when \mathscr{A} is unimodular the multiplicative structure of $H^*(\mathcal{M}(\mathscr{A}),\mathbb{C})$ is computed.

POINCARÉ POLYNOMIAL

[De Concini and Procesi, '05] The Poincaré polynomial of $M(\mathscr{A})$ is

$$P(M(\mathscr{A}),t) = \sum_{j=1}^{d} |\mathscr{N}_{j}| (1+t)^{d-j} t^{j}$$



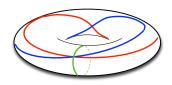
Moreover, when \mathscr{A} is unimodular the multiplicative structure of $H^*(\mathcal{M}(\mathscr{A}), \mathbb{C})$ is computed.

- ▶ Is there torsion in $H^*(M(\mathscr{A}), \mathbb{Z})$?
- What is the multiplicative structure of $H^*(M(\mathscr{A}), \mathbb{Z})$?
- When is $M(\mathscr{A})$ a $K(\pi, 1)$?
- Can the category $\mathcal{F}(\mathscr{A})$ be defined axiomatically?

POINCARÉ POLYNOMIAL

[De Concini and Procesi, '05] The Poincaré polynomial of $M(\mathscr{A})$ is

$$P(M(\mathscr{A}),t) = \sum_{j=1}^{d} |\mathscr{N}_{j}| (1+t)^{d-j} t^{j}$$



Moreover, when \mathscr{A} is unimodular the multiplicative structure of $H^*(\mathcal{M}(\mathscr{A}), \mathbb{C})$ is computed.

- ► Is there torsion in $H^*(M(\mathscr{A}), \mathbb{Z})$? [Today]
- ► What is the multiplicative structure of H*(M(𝔄), ℤ)? [Ongoing project w. F. Callegaro]
- When is $M(\mathscr{A})$ a $K(\pi, 1)$?
- Can the category $\mathcal{F}(\mathscr{A})$ be defined axiomatically?

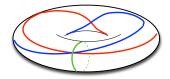
We consider

$$M(\mathscr{A}) := (\mathbb{C}^*)^d \setminus \bigcup_{i=1}^n K_i.$$



We consider

$$M(\mathscr{A}) := (\mathbb{C}^*)^d \setminus \bigcup_{i=1}^n K_i.$$



The action on \mathscr{A}^{\uparrow} extends to a cellular action on Sal(\mathscr{A}^{\uparrow}). The Salvetti category of \mathscr{A} is the acyclic category

 $\operatorname{Sal}(\mathscr{A}) := \operatorname{Sal}(\mathscr{A}^{\uparrow})/\mathbb{Z}^{d}.$

Theorem [Moci and Settepanella '11, dD '11]. Sal(\mathscr{A}) can be defined in terms of $\mathcal{F}(\mathscr{A})$, and we have a homotopy equivalence

 $\Delta(\mathsf{Sal}(\mathscr{A})) \simeq M(\mathscr{A}).$

We consider

$$M(\mathscr{A}) := (\mathbb{C}^*)^d \setminus \bigcup_{i=1}^n K_i.$$



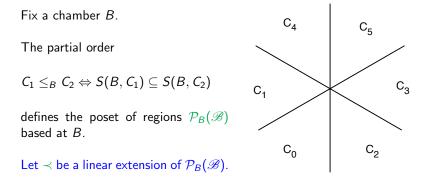
The diagram of acyclic categories

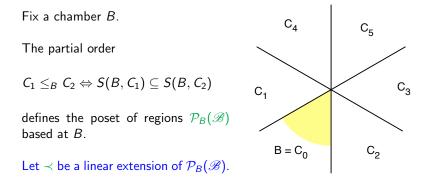
 $\mathscr{D}: \mathcal{F}(\mathscr{A}) \to \mathsf{AC}$ $F \mapsto \mathsf{Sal}(\mathscr{A}[|F|]),$

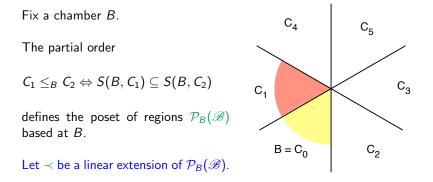
with inclusions as morphisms, is "geometric".

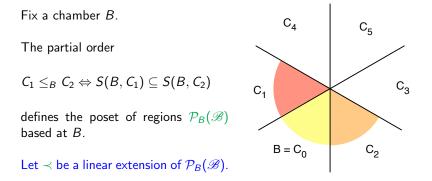
Theorem [dD '12].

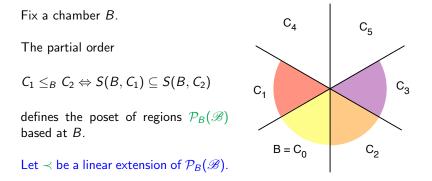
 $\operatorname{colim} \mathscr{D} \simeq \operatorname{Sal}(\mathscr{A})$











Definition. Let C_1 , C_2 be chambers of \mathscr{B} , F any face. $S(C_1, C_2) \subset \mathscr{B}$: the set of hyperplanes separating C_1 from C_2 ,

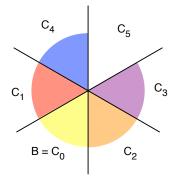
Fix a chamber B.

The partial order

 $C_1 \leq_B C_2 \Leftrightarrow S(B, C_1) \subseteq S(B, C_2)$

defines the poset of regions $\mathcal{P}_B(\mathscr{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_B(\mathscr{B})$.



Definition. Let C_1 , C_2 be chambers of \mathscr{B} , F any face. $S(C_1, C_2) \subset \mathscr{B}$: the set of hyperplanes separating C_1 from C_2 ,

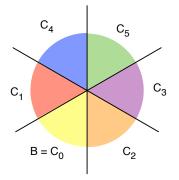
Fix a chamber B.

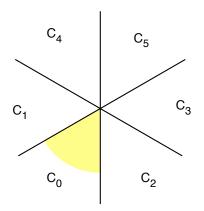
The partial order

 $C_1 \leq_B C_2 \Leftrightarrow S(B, C_1) \subseteq S(B, C_2)$

defines the poset of regions $\mathcal{P}_B(\mathscr{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_B(\mathscr{B})$.

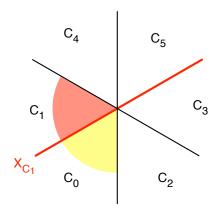




For every chamber Cthere a unique minimal $X_C \in \mathcal{L}(\mathscr{B})$ s.t. the set

$$\{H \in \mathscr{B} : H \supseteq X_C\}$$

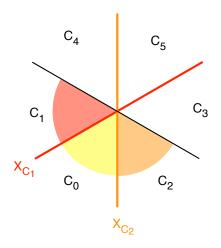
separates *C* from the previous.



For every chamber Cthere a unique minimal $X_C \in \mathcal{L}(\mathscr{B})$ s.t. the set

$$\{H \in \mathscr{B} : H \supseteq X_C\}$$

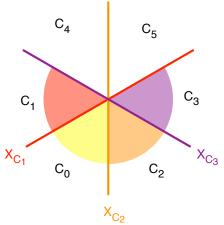
separates *C* from the previous.



For every chamber Cthere a unique minimal $X_C \in \mathcal{L}(\mathscr{B})$ s.t. the set

$$\{H\in\mathscr{B}:H\supseteq X_C\}$$

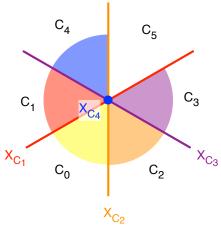
separates *C* from the previous.



For every chamber Cthere a unique minimal $X_C \in \mathcal{L}(\mathscr{B})$ s.t. the set

$$\{H \in \mathscr{B} : H \supseteq X_C\}$$

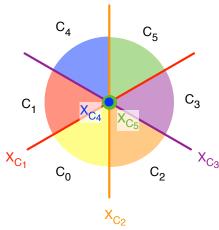
 X_{C_3} separates C from the previous.



For every chamber C there a unique minimal $X_C \in \mathcal{L}(\mathscr{B})$ s.t. the set

$$\{H \in \mathscr{B} : H \supseteq X_C\}$$

 X_{C_3} separates C from the previous.



For every chamber Cthere a unique minimal $X_C \in \mathcal{L}(\mathscr{B})$ s.t. the set

$$\{H \in \mathscr{B} : H \supseteq X_C\}$$

 X_{C_3} separates C from the previous.

X_C : TWO APPLICATIONS

Let \mathscr{B} be a central arrangement of real hyperplanes, fix $B \in \mathcal{P}(\mathscr{B})$.

Theorem [D. '08]. The order preserving map

$$\phi:\mathcal{P}_B(\mathcal{B})\to\mathcal{L}(\mathcal{B}),\ C\mapsto X_C$$

satisfies

$$|\phi^{-1}(Y)| = |\{N \in \mathsf{nbc}(\mathscr{B}) \mid \cap N = Y\}|$$

X_C : TWO APPLICATIONS

Let \mathscr{B} be a central arrangement of real hyperplanes, fix $B \in \mathcal{P}(\mathscr{B})$.

Theorem [D. '08]. The order preserving map

$$\phi:\mathcal{P}_B(\mathcal{B})\to\mathcal{L}(\mathcal{B}),\ C\mapsto X_C$$

satisfies

$$|\phi^{-1}(Y)| = |\{N \in \mathsf{nbc}(\mathscr{B}) \mid \cap N = Y\}|$$

Theorem [D. '08]. There is an order preserving map

$$\mathsf{Sal}(\mathscr{B}) o \mathcal{P}_{\mathsf{B}}(\mathscr{B})$$

such that for the preimage \mathcal{N}_C of every $C \in \mathcal{P}_B(\mathscr{B})$ we have a poset isomorphism

$$\mathcal{N}_{\mathcal{C}} \simeq \mathcal{F}(\mathscr{B}^{X_{\mathcal{C}}})^{op}$$

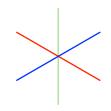
COMBINATORIAL BOOKKEEPING II

Fix

- $B \in \mathcal{P}(\mathscr{A}_0)$ and
- a lin. ext. of $\mathcal{P}_B(\mathscr{A}_0)$.

For all $Y \in \mathcal{C}(\mathscr{A})$, we have

- $B_Y \in \mathcal{P}(\mathscr{A}[Y])$ with $B \subseteq B_Y$
- a lin. ext. of $\mathcal{P}_{B_Y}(\mathscr{A}[Y])$.



COMBINATORIAL BOOKKEEPING II

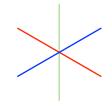
Fix

• $B \in \mathcal{P}(\mathscr{A}_0)$ and

• a lin. ext. of $\mathcal{P}_B(\mathscr{A}_0)$.

For all $Y \in \mathcal{C}(\mathscr{A})$, we have • $B_Y \in \mathcal{P}(\mathscr{A}[Y])$ with $B \subseteq B_Y$ • a lin. ext. of $\mathcal{P}_{B_Y}(\mathscr{A}[Y])$.

For every $i = 0, \ldots, d$ define



$$\mathscr{Y}_i := \{(Y, C) \mid Y \in \mathcal{C}(\mathscr{A}), C \in \mathcal{P}_{B_Y}(\mathscr{A}[Y]), X_C = \max \mathcal{L}(\mathscr{A}[Y])\}.$$

Then,

$$|\mathscr{Y}_i| = |\mathscr{N}_i|.$$

COMBINATORIAL BOOKKEEPING II

Fix

• $B \in \mathcal{P}(\mathscr{A}_0)$ and

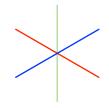
• a lin. ext. of $\mathcal{P}_B(\mathscr{A}_0)$.

For all $Y \in \mathcal{C}(\mathscr{A})$, we have • $B_Y \in \mathcal{P}(\mathscr{A}[Y])$ with $B \subseteq B_Y$ • a lin. ext. of $\mathcal{P}_{B_Y}(\mathscr{A}[Y])$.

Let $\mathscr{Y} := \bigcup_{i} \mathscr{Y}_{i}$. For every $(Y, C) \in \mathscr{Y}$ define a subdiagram of \mathscr{D} $\mathcal{N}_{(Y,C)} : \mathcal{F}(\mathscr{A}^{Y}) \to \mathbf{AC}$ $F \mapsto \mathcal{N}_{C}(\mathscr{A}[|F|]).$

Theorem [dD '12]. This diagram is geometric, and

 $\operatorname{colim} \mathcal{N}_{(Y,C)} \simeq \mathcal{F}(\mathscr{A}^Y)$

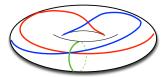


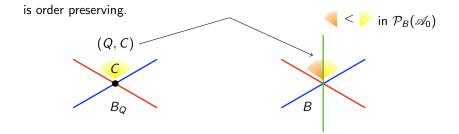
STRATIFICATION

Fix

• $B \in \mathcal{P}(\mathscr{A}_0)$ and • a lin. ext. of $\mathcal{P}_B(\mathscr{A}_0)$. Choose total order on \mathscr{Y} such that the natural map

 $\mathscr{Y} \to \mathcal{P}_B(\mathscr{A}_0)$





STRATIFICATION

Fix

• $B \in \mathcal{P}(\mathscr{A}_0)$ and • a lin. ext. of $\mathcal{P}_B(\mathscr{A}_0)$. Choose total order on \mathscr{Y} such that the natural map

 $\mathscr{Y} \to \mathcal{P}_B(\mathscr{A}_0)$

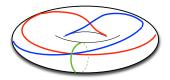
is order preserving.

Theorem [dD '12]. There is a functor

 $\Phi: \mathsf{colim}\, \mathscr{D} \to \mathscr{Y}$

with

$$\Phi^{-1}(Y,C) = \operatorname{colim} \mathcal{N}_{(Y,C)}$$



STRATIFICATION

Fix

• $B \in \mathcal{P}(\mathscr{A}_0)$ and • a lin. ext. of $\mathcal{P}_B(\mathscr{A}_0)$. Choose total order on \mathscr{Y} such that the natural map

 $\mathscr{Y} \to \mathcal{P}_B(\mathscr{A}_0)$

is order preserving.

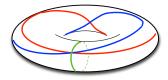
We obtain a functor

 $\Phi: \mathsf{Sal}(\mathscr{A}) \to \mathscr{Y}$

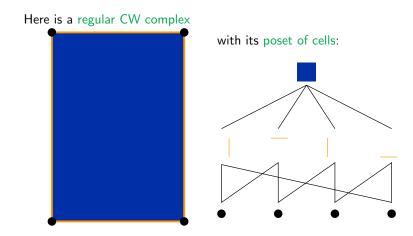
with

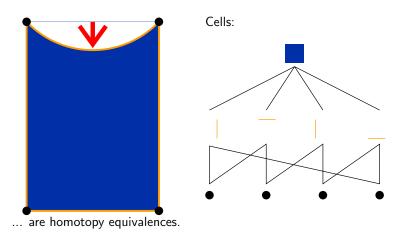
$$\Phi^{-1}(Y,C) = \mathcal{F}(\mathscr{A}^Y),$$

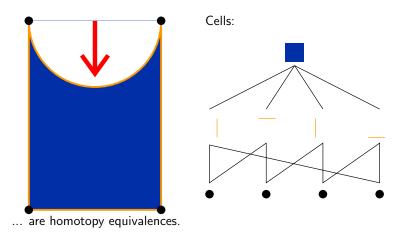
which allows us to turn to Discrete Morse Theory.

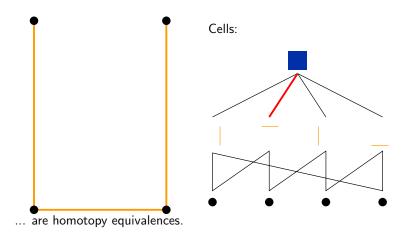


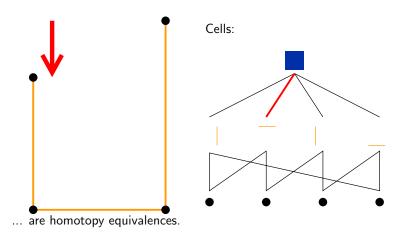
DISCRETE MORSE THEORY

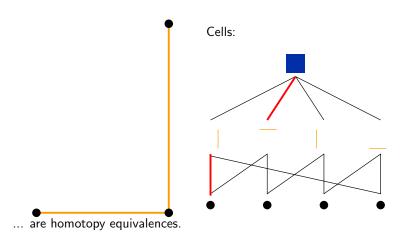


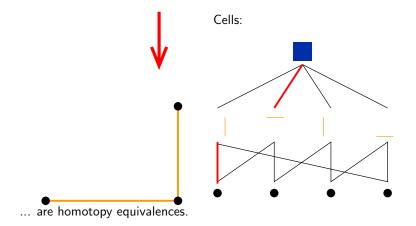


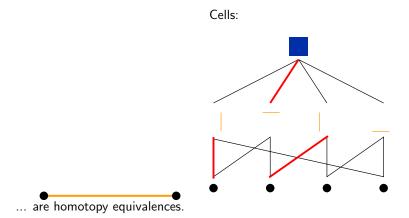


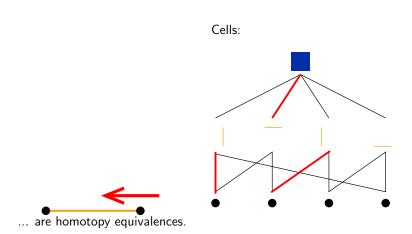


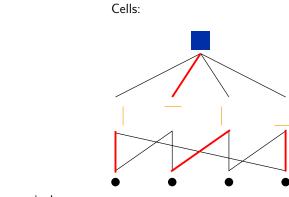








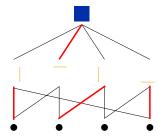




... are homotopy equivalences.

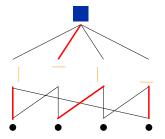
ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram of the poset of cells.



ACYCLIC MATCHINGS

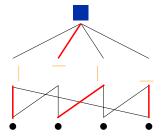
The sequence of collapses is encoded in a matching of the Hasse diagram of the poset of cells.



Question: Does any matchings encode such a sequence?

ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram of the poset of cells.



Question: Does any matchings encode such a sequence? Answer: No. Only (and exactly) those without "cycles" like

Acyclic matchings \leftrightarrow discrete Morse functions.

DMT FOR ACYCLIC CATEGORIES

Meta-Theorem [dD '12]. Discrete Morse Theory generalizes successfully to nerves of acyclic categories.

In particular, we have

- A notion of 'acyclic matching'
- A corresponding 'main theorem'
- A corresponding 'Patchwork Lemma':

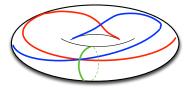
DMT FOR ACYCLIC CATEGORIES

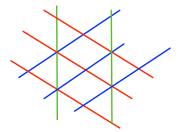
Meta-Theorem [dD '12]. Discrete Morse Theory generalizes successfully to nerves of acyclic categories.

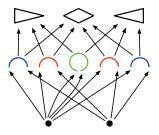
In particular, we have

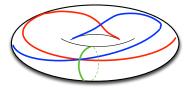
- A notion of 'acyclic matching'
- A corresponding 'main theorem'
- A corresponding 'Patchwork Lemma':

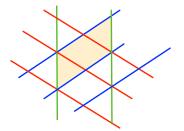
Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a functor of acyclic categories. For $b \in Ob(\mathcal{B})$ let M_b be an acyclic matching of the preimage $\varphi^{-1}(b)$. Then, the union $M := \bigcup_b M_b$ is an acyclic matching of \mathcal{A} .

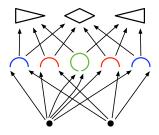


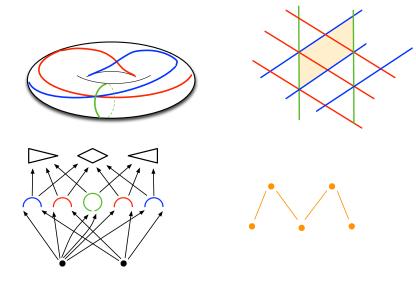


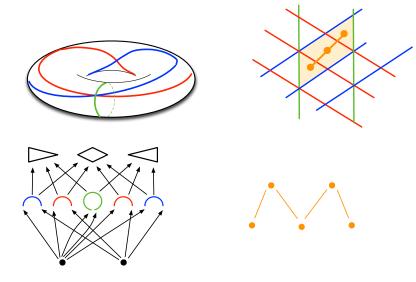


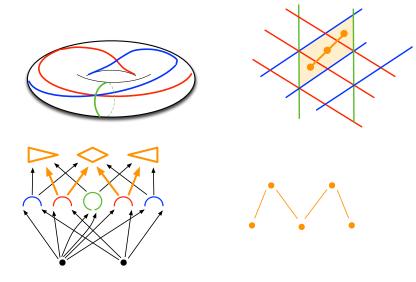


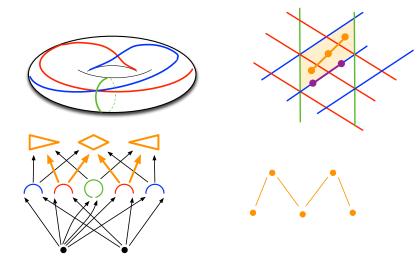


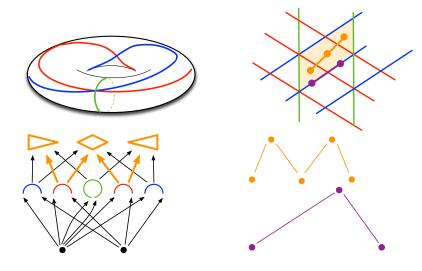


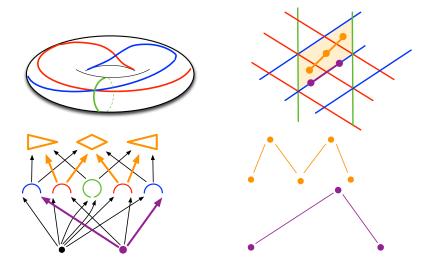


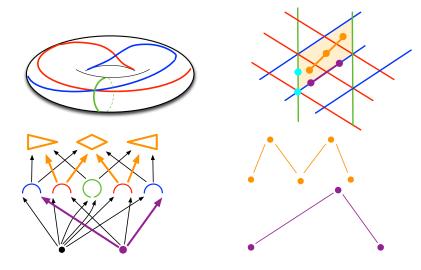


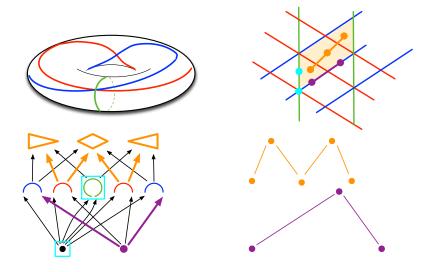


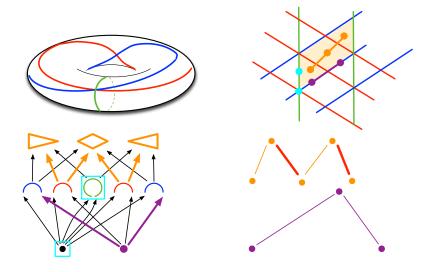


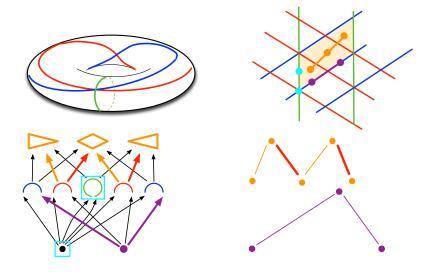


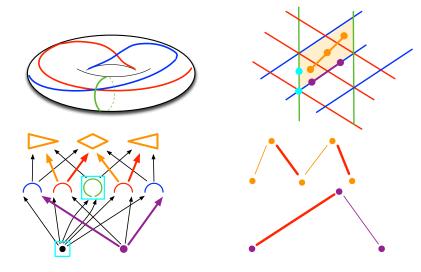


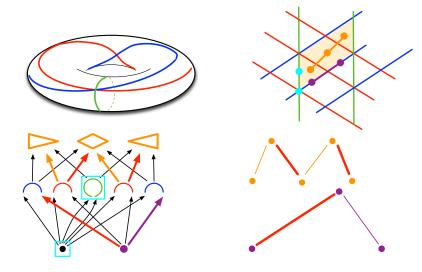


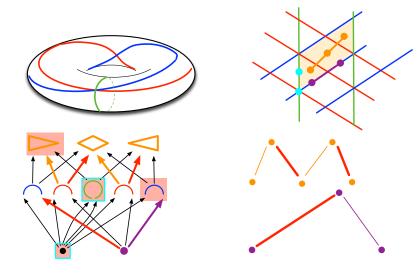


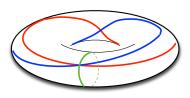


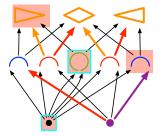


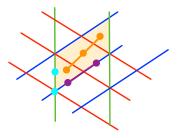






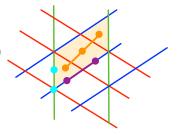


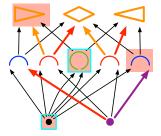




Posets of interior cells of constructible complexes admit acyclic matchings with only one critical cell. [Benedetti '10]

Lemma [dD '12]. The category $\mathcal{F}(\mathscr{A})$ admits an acyclic matching with 2^d critical cells in total.





Posets of interior cells of constructible complexes admit acyclic matchings with only one critical cell. [Benedetti '10]

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Proof.

• For every $y = (Y, C) \in \mathscr{Y}$ we have a stratum

 $\mathcal{N}_y \simeq \mathcal{F}(\mathscr{A}^{\cap Y})^{op}.$

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- ► For every $y = (Y, C) \in \mathscr{Y}$ we have a stratum $\mathcal{N}_{v} \simeq \mathcal{F}(\mathscr{A}^{\cap Y})^{op}.$
- ▶ It admits an acyclic matching with 2^{dim(Y)} critical cells.

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- ► For every $y = (Y, C) \in \mathscr{Y}$ we have a stratum $\mathcal{N}_{v} \simeq \mathcal{F}(\mathscr{A}^{\cap Y})^{op}.$
- ▶ It admits an acyclic matching with 2^{dim(Y)} critical cells.
- The functor Φ : Sal(\mathscr{A}) $\rightarrow \mathscr{Y}$, has $\Phi^{-1}(y) = \mathcal{N}_y$.

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- ▶ It admits an acyclic matching with 2^{dim(Y)} critical cells.
- The functor Φ : Sal(\mathscr{A}) $\rightarrow \mathscr{Y}$, has $\Phi^{-1}(y) = \mathcal{N}_y$.

Patchwork Lemma: number of critical cells over all of $Sal(\mathscr{A})$:

$$\sum_{Y,C)\in\mathscr{Y}} 2^{\dim Y} = \sum_{(Y,N)\in\mathscr{N}} 2^{\dim Y} = \sum_{j=1}^d |\mathscr{N}_j| (1+1)^{d-j} 1^j = P_{M(\mathscr{A})}(1).$$

Theorem [dD '12]. Let \mathscr{A} be a complexified toric arrangement. Then $M(\mathscr{A})$ has the homotopy type of a minimal CW-complex.

Proof.

For every
$$y = (Y, C) \in \mathscr{Y}$$
 we have a stratum

$$\mathcal{N}_y \simeq \mathcal{F}(\mathscr{A}^{\cap Y})^{op}.$$

- ▶ It admits an acyclic matching with 2^{dim(Y)} critical cells.
- The functor $\Phi : \mathsf{Sal}(\mathscr{A}) \to \mathscr{Y}$, has $\Phi^{-1}(y) = \mathcal{N}_y$.

Patchwork Lemma: number of critical cells over all of $Sal(\mathscr{A})$:

$$\sum_{(Y,C)\in\mathscr{Y}} 2^{\dim Y} = \sum_{(Y,\mathcal{N})\in\mathscr{N}} 2^{\dim Y} = \sum_{j=1}^{d} |\mathscr{N}_j| (1+1)^{d-j} 1^j = P_{\mathcal{M}(\mathscr{A})}(1).$$

Corollary. All cohomology modules $H^k(M(\mathscr{A}), \mathbb{Z})$ are torsion free.