TORIC ARRANGEMENTS

Emanuele Delucchi
(joint with Giacomo d’Antonio)
Universität Bremen

AMS Joint international meeting
Alba Iulia
June 28., 2013.
This talk will offer some snapshots of

A complexified toric arrangement is a set

\[\mathcal{A} = \{(\chi_i, a_i)\}_{i=1,...,n} \subseteq \mathbb{Z}^d \times S^1. \]

With

\[\mathbb{Z}^d \cong \text{Hom}((\mathbb{C}^*)^d, \mathbb{C}^*), \]

\[S^1 = \{z \in \mathbb{C} : |z| = 1\}, \]

define

\[K_i = \chi_i^{-1}(a_i) \subseteq (\mathbb{C}^*)^d. \]
Toric arrangements

A complexified toric arrangement is a set

\[\mathcal{A} = \{(\chi_i, a_i)\}_{i=1,...,n} \subseteq \mathbb{Z}^d \times S^1. \]

With

\[\mathbb{Z}^d \simeq \text{Hom}((\mathbb{C}^*)^d, \mathbb{C}^*), \]

\[S^1 = \{ z \in \mathbb{C} : |z| = 1 \}, \]

define

\[K_i = \chi_i^{-1}(a_i) \subseteq (\mathbb{C}^*)^d. \]

Layers of \(\mathcal{A} \): conn. comp. of intersection of some of the \(K_i \).

\(C(\mathcal{A}) := \) poset of layers ordered by reverse inclusion.
The arrangement \mathcal{A} lifts to an hyperplane arrangement \mathcal{A}^\uparrow.
The arrangement \mathcal{A} lifts to an hyperplane arrangement \mathcal{A}^\uparrow.

The face poset $\mathcal{F}(\mathcal{A}^\uparrow)$ carries an action of \mathbb{Z}^d “by translations”.

FACE STRUCTURE
The arrangement \mathcal{A} lifts to an hyperplane arrangement \mathcal{A}^\uparrow.

The face poset $\mathcal{F}(\mathcal{A}^\uparrow)$ carries an action of \mathbb{Z}^d “by translations”.

The face category of \mathcal{A} is

$$\mathcal{F}(\mathcal{A}) = \mathcal{F}(\mathcal{A}^\uparrow)/\mathbb{Z}^d,$$

an acyclic category.
The arrangement \mathcal{A} lifts to an hyperplane arrangement \mathcal{A}^\uparrow.

The face poset $\mathcal{F}(\mathcal{A}^\uparrow)$ carries an action of \mathbb{Z}^d “by translations”.

The face category of \mathcal{A} is

$$\mathcal{F}(\mathcal{A}) = \mathcal{F}(\mathcal{A}^\uparrow)/\mathbb{Z}^d,$$

an acyclic category.
is a central arrangement in \mathbb{R}^d, consisting of the translate at the origin of a lift of each K_i.

$\mathcal{A}_0 = \{H_1, \ldots, H_n\}$
Given $Y \in \mathcal{C}(\mathcal{A})$ let

$$\mathcal{A}[Y] = \{ H_i \in \mathcal{A}_0 : Y \subseteq K_i \}.$$
Given $Y \in \mathcal{C}(\mathcal{A})$ let

$$\mathcal{A}[Y] = \{ H_i \in \mathcal{A}_0 : Y \subseteq K_i \}.$$

For $i = 1, \ldots, d$, let

$$\mathcal{N}_i := \{(Y, N) \mid Y \in \mathcal{C}(\mathcal{A}), N \in \text{nbc}(\mathcal{A}[Y]), |N| = \text{rk} \mathcal{A}[Y] = i\}.$$
We consider

$$M(\mathcal{A}) := (\mathbb{C}^*)^d \setminus \bigcup_{i=1}^{n} K_i.$$
We consider

\[M(\mathcal{A}) := (\mathbb{C}^*)^d \setminus \bigcup_{i=1}^{n} K_i. \]

▶ [Looijenga ‘98; De Concini, Procesi ‘05] The Poincaré polynomial of \(M(\mathcal{A}) \) can be computed in terms of \(\mathcal{C}(\mathcal{A}) \).

▶ [dD ‘11] Presentation of \(\pi_1(M(\mathcal{A})) \) in terms of \(\mathcal{F}(\mathcal{A}) \).
The Poincaré polynomial of $M(\mathcal{A})$ is

$$P(M(\mathcal{A}), t) = \sum_{j=1}^{d} |N_j|(1+t)^{d-j} t^j$$

Moreover, when \mathcal{A} is unimodular the multiplicative structure of $H^*(M(\mathcal{A}), \mathbb{C})$ is computed.
The Poincaré polynomial of $M(\mathcal{A})$ is

$$P(M(\mathcal{A}), t) = \sum_{j=1}^{d} |\mathcal{N}_j|(1+t)^{d-j} t^j$$

Moreover, when \mathcal{A} is unimodular the multiplicative structure of $H^*(M(\mathcal{A}), \mathbb{C})$ is computed.

► Is there torsion in $H^*(M(\mathcal{A}), \mathbb{Z})$?

► What is the multiplicative structure of $H^*(M(\mathcal{A}), \mathbb{Z})$?

► When is $M(\mathcal{A})$ a $K(\pi, 1)$?

► Can the category $\mathcal{F}(\mathcal{A})$ be defined axiomatically?
Poincaré Polynomial

[De Concini and Procesi, ’05]

The Poincaré polynomial of \(M(\mathcal{A}) \) is

\[
P(M(\mathcal{A}), t) = \sum_{j=1}^{d} |N_j|(1+t)^{d-j} t^j
\]

Moreover, when \(\mathcal{A} \) is unimodular the multiplicative structure of \(H^*(M(\mathcal{A}), \mathbb{C}) \) is computed.

- Is there torsion in \(H^*(M(\mathcal{A}), \mathbb{Z})? \) [Today]
- What is the multiplicative structure of \(H^*(M(\mathcal{A}), \mathbb{Z})? \) [Ongoing project w. F. Callegaro]
- When is \(M(\mathcal{A}) \) a \(K(\pi, 1) \)?
- Can the category \(\mathcal{F}(\mathcal{A}) \) be defined axiomatically?
We consider

\[M(\mathcal{A}) := (\mathbb{C}^*)^d \setminus \bigcup_{i=1}^{n} K_i. \]
We consider

\[M(\mathcal{A}) := (\mathbb{C}^*)^d \setminus \bigcup_{i=1}^{n} K_i. \]

The action on \(\mathcal{A} \) extends to a cellular action on \(\text{Sal}(\mathcal{A}) \).

The Salvetti category of \(\mathcal{A} \) is the acyclic category

\[\text{Sal}(\mathcal{A}) := \text{Sal}(\mathcal{A})/\mathbb{Z}^d. \]

Theorem [Moci and Settepanella ‘11, dD ‘11]. \(\text{Sal}(\mathcal{A}) \) can be defined in terms of \(\mathcal{F}(\mathcal{A}) \), and we have a homotopy equivalence

\[\Delta(\text{Sal}(\mathcal{A})) \cong M(\mathcal{A}). \]
We consider

\[M(\mathcal{A}) := (\mathbb{C}^*)^d \setminus \bigcup_{i=1}^{n} K_i. \]

The diagram of acyclic categories

\[\mathcal{D} : \mathcal{F}(\mathcal{A}) \to \text{AC} \]

\[F \mapsto \text{Sal}(\mathcal{A}[|F|]), \]

with inclusions as morphisms, is “geometric”.

Theorem [dD ’12].

\[\text{colim} \mathcal{D} \simeq \text{Sal}(\mathcal{A}) \]
Order on Chambers

Definition. Let C_1, C_2 be chambers of \mathcal{B}, F any face.
$S(C_1, C_2) \subseteq \mathcal{B}$: the set of hyperplanes separating C_1 from C_2,

Fix a chamber B.

The partial order

$C_1 \leq_B C_2 \iff S(B, C_1) \subseteq S(B, C_2)$

defines the poset of regions $\mathcal{P}_B(\mathcal{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_B(\mathcal{B})$.
Order on Chambers

Definition. Let C_1, C_2 be chambers of \mathcal{B}, F any face. $S(C_1, C_2) \subseteq \mathcal{B}$: the set of hyperplanes separating C_1 from C_2.

Fix a chamber B.

The partial order

$$C_1 \leq_B C_2 \iff S(B, C_1) \subseteq S(B, C_2)$$

defines the poset of regions $\mathcal{P}_B(\mathcal{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_B(\mathcal{B})$.
Definition. Let C_1, C_2 be chambers of \mathcal{B}, F any face. $S(C_1, C_2) \subseteq \mathcal{B}$: the set of hyperplanes separating C_1 from C_2.

Fix a chamber B.

The partial order

$$C_1 \leq_B C_2 \iff S(B, C_1) \subseteq S(B, C_2)$$

defines the poset of regions $\mathcal{P}_B(\mathcal{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_B(\mathcal{B})$.
ORDER ON CHAMBERS

Definition. Let C_1, C_2 be chambers of \mathcal{B}, F any face. $S(C_1, C_2) \subset \mathcal{B}$: the set of hyperplanes separating C_1 from C_2.

Fix a chamber B.

The partial order

$$C_1 \leq_B C_2 \iff S(B, C_1) \subseteq S(B, C_2)$$

defines the poset of regions $\mathcal{P}_B(\mathcal{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_B(\mathcal{B})$.

![Diagram showing chambers and hyperplanes](image)
Definition. Let C_1, C_2 be chambers of \mathcal{B}, F any face.
$S(C_1, C_2) \subseteq \mathcal{B}$: the set of hyperplanes separating C_1 from C_2.

Fix a chamber B.

The partial order

$C_1 \leq_B C_2 \iff S(B, C_1) \subseteq S(B, C_2)$

defines the poset of regions $\mathcal{P}_B(\mathcal{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_B(\mathcal{B})$.
Definition. Let C_1, C_2 be chambers of \mathcal{B}, F any face. $S(C_1, C_2) \subset \mathcal{B}$: the set of hyperplanes separating C_1 from C_2.

Fix a chamber B.

The partial order $C_1 \leq_B C_2 \iff S(B, C_1) \subseteq S(B, C_2)$

defines the poset of regions $\mathcal{P}_B(\mathcal{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_B(\mathcal{B})$.
Order on Chambers

Definition. Let C_1, C_2 be chambers of \mathcal{B}, F any face.

$S(C_1, C_2) \subseteq \mathcal{B}$: the set of hyperplanes separating C_1 from C_2.

Fix a chamber B.

The partial order

$$C_1 \preceq_B C_2 \iff S(B, C_1) \subseteq S(B, C_2)$$

defines the poset of regions $\mathcal{P}_B(\mathcal{B})$ based at B.

Let \prec be a linear extension of $\mathcal{P}_B(\mathcal{B})$.
Definition: X_C

For every chamber C there a unique minimal $X_C \in \mathcal{L}(\mathcal{B})$ s.t. the set

$$\{H \in \mathcal{B} : H \supseteq X_C\}$$

separates C from the previous.
Definition: X_C

For every chamber C there a unique minimal $X_C \in \mathcal{L}(\mathcal{B})$ s.t. the set

$$\{H \in \mathcal{B} : H \supseteq X_C\}$$

separates C from the previous.
Definition: X_C

For every chamber C there a unique minimal $X_C \in \mathcal{L}(\mathcal{B})$ s.t. the set

$$\{H \in \mathcal{B} : H \supseteq X_C\}$$

separates C from the previous.
DEFINITION: X_C

For every chamber C there a unique minimal $X_C \in \mathcal{L}(\mathcal{B})$ s.t. the set

$$\{H \in \mathcal{B} : H \supseteq X_C\}$$

separates C from the previous.
DEFINITION: X_C

For every chamber C there a unique minimal $X_C \in \mathcal{L}(\mathcal{B})$ s.t. the set

$$\{H \in \mathcal{B} : H \supseteq X_C\}$$

separates C from the previous.
DEFINITION: X_C

For every chamber C there is a unique minimal $X_C \in \mathcal{L}(\mathcal{B})$ such that the set

$$\{H \in \mathcal{B} : H \supseteq X_C\}$$

separates C from the previous.
Let \mathcal{B} be a central arrangement of real hyperplanes, fix $B \in \mathcal{P}(\mathcal{B})$.

Theorem [D. ‘08]. The order preserving map

$$\phi : \mathcal{P}_B(\mathcal{B}) \to \mathcal{L}(\mathcal{B}), \ C \mapsto \chi_C$$

satisfies

$$|\phi^{-1}(Y)| = |\{N \in \text{nbc} B | \cap N = Y\}|$$
X_C: TWO APPLICATIONS

Let \mathcal{B} be a central arrangement of real hyperplanes, fix $B \in \mathcal{P}(\mathcal{B})$.

Theorem [D. ‘08]. The order preserving map

$$\phi : \mathcal{P}_B(\mathcal{B}) \to \mathcal{L}(\mathcal{B}), \ C \mapsto X_C$$

satisfies

$$|\phi^{-1}(Y)| = |\{ N \in \text{nbc}(\mathcal{B}) \mid \cap N = Y \}|$$

Theorem [D. ‘08]. There is an order preserving map

$$\text{Sal}(\mathcal{B}) \to \mathcal{P}_B(\mathcal{B})$$

such that for the preimage N_C of every $C \in \mathcal{P}_B(\mathcal{B})$ we have a poset isomorphism

$$N_C \simeq \mathcal{F}(\mathcal{B}^{X_C})^{op}$$
COMBINATORIAL BOOKKEEPING II

Fix
• $B \in \mathcal{P}(\mathcal{A}_0)$ and
• a lin. ext. of $\mathcal{P}_B(\mathcal{A}_0)$.

For all $Y \in C(\mathcal{A})$, we have
• $B_Y \in \mathcal{P}(\mathcal{A}[Y])$ with $B \subseteq B_Y$
• a lin. ext. of $\mathcal{P}_{B_Y}(\mathcal{A}[Y])$.
COMBINATORIAL BOOKKEEPING II

Fix
• \(B \in \mathcal{P}(\mathcal{A}_0) \) and
• a lin. ext. of \(\mathcal{P}_B(\mathcal{A}_0) \).

For all \(Y \in \mathcal{C}(\mathcal{A}) \), we have
• \(B_Y \in \mathcal{P}(\mathcal{A}[Y]) \) with \(B \subseteq B_Y \)
• a lin. ext. of \(\mathcal{P}_{B_Y}(\mathcal{A}[Y]) \).

For every \(i = 0, \ldots, d \) define
\[
\mathcal{Y}_i := \{(Y, C) \mid Y \in \mathcal{C}(\mathcal{A}), C \in \mathcal{P}_{B_Y}(\mathcal{A}[Y]), X_C = \max \mathcal{L}(\mathcal{A}[Y])\}.
\]

Then,
\[
|\mathcal{Y}_i| = |\mathcal{N}_i|.
\]
Fix
- $B \in \mathcal{P}(\mathcal{A}_0)$ and
- a lin. ext. of $\mathcal{P}_B(\mathcal{A}_0)$.

For all $Y \in \mathcal{C}(\mathcal{A})$, we have
- $B_Y \in \mathcal{P}(\mathcal{A}[Y])$ with $B \subseteq B_Y$
- a lin. ext. of $\mathcal{P}_{B_Y}(\mathcal{A}[Y])$.

Let $\mathcal{Y} := \bigcup_i \mathcal{Y}_i$. For every $(Y, C) \in \mathcal{Y}$ define a subdiagram of \mathcal{D}

$$\mathcal{N}_{(Y, C)} : \mathcal{F}(\mathcal{A}^Y) \to \mathcal{AC}$$

$$F \mapsto \mathcal{N}_C(\mathcal{A}[|F|]).$$

Theorem [dD ‘12]. This diagram is geometric, and

$$\text{colim} \mathcal{N}_{(Y, C)} \simeq \mathcal{F}(\mathcal{A}^Y)$$
Fix
• $B \in \mathcal{P}(A_0)$ and
• a lin. ext. of $\mathcal{P}_B(A_0)$.
Choose total order on Y such that the natural map

$$Y \to \mathcal{P}_B(A_0)$$

is order preserving.
Fix

• $B \in \mathcal{P}(\mathcal{A}_0)$ and
• a lin. ext. of $\mathcal{P}_B(\mathcal{A}_0)$.

Choose total order on Y such that the natural map

$$Y \rightarrow \mathcal{P}_B(\mathcal{A}_0)$$

is order preserving.

Theorem [dD ‘12]. There is a functor

$$\Phi : \text{colim } \mathcal{D} \rightarrow Y$$

with

$$\Phi^{-1}(Y, C) = \text{colim } \mathcal{N}_{(Y, C)}$$
STRAITIFICATION

Fix
• $B \in \mathcal{P}(\mathcal{A}_0)$ and
• a lin. ext. of $\mathcal{P}_B(\mathcal{A}_0)$.
Choose total order on \mathcal{Y} such that the natural map

$$\mathcal{Y} \rightarrow \mathcal{P}_B(\mathcal{A}_0)$$

is order preserving.

We obtain a functor

$$\Phi : \text{Sal}(\mathcal{A}) \rightarrow \mathcal{Y}$$

with

$$\Phi^{-1}(\mathcal{Y}, C) = F(\mathcal{A}^\mathcal{Y}),$$

which allows us to turn to Discrete Morse Theory.
Here is a regular CW complex with its poset of cells:
ELEMENTARY COLLAPSES...

... are homotopy equivalences.

Cells:
Elementary collapses...

... are homotopy equivalences.

Cells:
ELEMENTARY COLLAPSES...

... are homotopy equivalences.
Elementary collapses...

Cells:

... are homotopy equivalences.
ELEMENTARY COLLAPSES...

... are homotopy equivalences.
Elementary collapses...

... are homotopy equivalences.
ELEMENTARY COLLAPSES...

Cells:

... are homotopy equivalences.
Elementary collapses...

Cells:

... are homotopy equivalences.
Elementary collapses...

Cells:

... are homotopy equivalences.
ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram of the poset of cells.
ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram of the poset of cells.

Question: Does any matchings encode such a sequence?
ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram of the poset of cells.

Question: Does any matchings encode such a sequence?
Answer: No. Only (and exactly) those without “cycles” like

Acyclic matchings ↔ discrete Morse functions.
DMT FORACYCLIC CATEGORIES

Meta-Theorem [dD ‘12]. Discrete Morse Theory generalizes successfully to nerves of acyclic categories.

In particular, we have

- A notion of ‘acyclic matching’
- A corresponding ‘main theorem’
- A corresponding ‘Patchwork Lemma’:
Meta-Theorem [dD ‘12]. Discrete Morse Theory generalizes successfully to nerves of acyclic categories.

In particular, we have

- A notion of ‘acyclic matching’
- A corresponding ‘main theorem’
- A corresponding ‘Patchwork Lemma’:

Let \(\varphi : \mathcal{A} \to \mathcal{B} \) be a functor of acyclic categories. For \(b \in \text{Ob}(\mathcal{B}) \) let \(M_b \) be an acyclic matching of the preimage \(\varphi^{-1}(b) \). Then, the union \(M := \bigcup_b M_b \) is an acyclic matching of \(\mathcal{A} \).
PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS

Posets of interior cells of constructible complexes admit acyclic matchings with only one critical cell. [Benedetti '10]
Lemma [dD ‘12]. The category $\mathcal{F}(\mathcal{A})$ admits an acyclic matching with 2^d critical cells in total.

Posets of interior cells of constructible complexes admit acyclic matchings with only one critical cell. [Benedetti ’10]
FIT FOR MINIMALITY

Theorem [dD ‘12]. Let \mathcal{A} be a complexified toric arrangement. Then $M(\mathcal{A})$ has the homotopy type of a minimal CW-complex.
FIT FOR MINIMALITY

Theorem [dD ‘12]. Let \mathcal{A} be a complexified toric arrangement. Then $M(\mathcal{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- For every $y = (Y, C) \in \mathcal{Y}$ we have a stratum
 $\mathcal{N}_y \simeq \mathcal{F}(\mathcal{A} \cap Y)^{op}$.
FIT FOR MINIMALITY

Theorem [dD ‘12]. Let \mathcal{A} be a complexified toric arrangement. Then $M(\mathcal{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- For every $y = (Y, C) \in \mathcal{Y}$ we have a stratum

 $N_y \simeq F(\mathcal{A} \cap Y)^{op}$.

- It admits an acyclic matching with $2^{\dim(Y)}$ critical cells.

Corollary. All cohomology modules $H^k(M(\mathcal{A}), \mathbb{Z})$ are torsion free.
FIT FOR MINIMALITY

Theorem [dD ‘12]. Let \mathcal{A} be a complexified toric arrangement. Then $M(\mathcal{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- For every $y = (Y, C) \in \mathcal{Y}$ we have a stratum $\mathcal{N}_y \simeq \mathcal{F}(\mathcal{A} \cap Y)^{op}$.

- It admits an acyclic matching with $2^{\dim(Y)}$ critical cells.

- The functor $\Phi : \text{Sal}(\mathcal{A}) \to \mathcal{Y}$, has $\Phi^{-1}(y) = \mathcal{N}_y$.

Corollary. All cohomology modules $H^k(M(\mathcal{A}), \mathbb{Z})$ are torsion free.
FIT FOR MINIMALITY

Theorem [dD ‘12]. Let \mathcal{A} be a complexified toric arrangement. Then $M(\mathcal{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- For every $y = (Y, C) \in \mathcal{Y}$ we have a stratum $\mathcal{N}_y \simeq \mathcal{F}(\mathcal{A} \cap Y)^{op}$.

- It admits an acyclic matching with $2^{\dim(Y)}$ critical cells.

- The functor $\Phi : \text{Sal}(\mathcal{A}) \to \mathcal{Y}$, has $\Phi^{-1}(y) = \mathcal{N}_y$.

Patchwork Lemma: number of critical cells over all of $\text{Sal}(\mathcal{A})$:

$$\sum_{(Y, C) \in \mathcal{Y}} 2^{\dim Y} = \sum_{(Y, N) \in \mathcal{N}} 2^{\dim Y} = \sum_{j=1}^{d} |\mathcal{N}_j|(1 + 1)^{d-j}1^j = P_{M(\mathcal{A})}(1).$$

Corollary. All cohomology modules $H^k(M(A), \mathbb{Z})$ are torsion free.
FIT FOR MINIMALITY

Theorem [dD ‘12]. Let \mathcal{A} be a complexified toric arrangement. Then $M(\mathcal{A})$ has the homotopy type of a minimal CW-complex.

Proof.

- For every $y = (Y, C) \in \mathcal{Y}$ we have a stratum $\mathcal{N}_y \simeq \mathcal{F}(\mathcal{A} \cap Y)^{op}$.

- It admits an acyclic matching with $2^{\dim(Y)}$ critical cells.

- The functor $\Phi : Sal(\mathcal{A}) \to \mathcal{Y}$, has $\Phi^{-1}(y) = \mathcal{N}_y$.

Patchwork Lemma: number of critical cells over all of $Sal(\mathcal{A})$:

$$\sum_{(Y, C) \in \mathcal{Y}} 2^{\dim Y} = \sum_{(Y, N) \in \mathcal{N}} 2^{\dim Y} = \sum_{j=1}^{d} |\mathcal{N}_j|(1 + 1)^{d-j}j = P_{M(\mathcal{A})}(1).$$

Corollary. All cohomology modules $H^k(M(\mathcal{A}), \mathbb{Z})$ are torsion free.