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A complexified toric arrangement
is a set

o ={(xi,ai)}iz1,..n C ZIx S

With
79 ~ Hom((C*)4,C*),
St={zeC:|z|=1},
define

Ki =X (a) € (C)°.

Layers of &/: conn. comp. of
intersection of some of the K.

C(«/) := poset of layers ordered
by reverse inclusion.
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The arrangement 7 lifts to an The face category of &7 is

hyperplane arrangement 27!
. F(o) = F(a")/27,
The face poset F(.o7!) carries an

action of Z9 “by translations” . an acyclic category.
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%:{Hla~"7Hn}

is a central arrangement in Rd,
consisting of the translate at the
origin of a lift of each K;.
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COMBINATORIAL BOOKKEEPING |

o
Given Y € C(&7) let @
K:
S| ={Hew:YCK). \ ’
Fori=1,...,d, let K>
= {(Y,N) | Y € C(),N € nbe(/[Y]), [N| = tk/[Y] = i}.
Ay A [Q]
H H. H H.
1 H, 3 1 3
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We consider

[ ]
» [Looijenga ‘98; De Concini, Procesi ‘05] /><\

The Poincaré polynomial of M(27) can O OO

be computed in terms of C(). \T/
[ ]

» [dD '11] Presentation of m1(M(27)) in terms of F(<).
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POINCARE POLYNOMIAL

[De Concini and Procesi, ‘05]

The Poincaré polynomial of -

P(M(7),t) = " | (1) ¢

Jj=1

Q

Moreover, when & is unimodular the multiplicative structure of
H*(M(47),C) is computed.

» |s there torsion in H*(M(<7),Z)? [Today]

» What is the multiplicative structure of H*(M(<?),Z)?
[Ongoing project w. F. Callegaro]

» When is M(«7) a K(m,1)?
» Can the category F(<7) be defined axiomatically?
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We consider

The action on /! extends to a cellular action on Sal(</!).

The Salvetti category of &7 is the acyclic category

Sal(.«7) := Sal(e7!) /79,
Theorem [Moci and Settepanella ‘11, dD ‘11]. Sal(«?) can be
defined in terms of F (<), and we have a homotopy equivalence

A(Sal(«)) ~ M().



TOPOLOGY

We consider

The diagram of acyclic categories

2 F(o) — AC
F — Sal(</[|F]]),

with inclusions as morphisms, is “geometric”.

Theorem [dD ‘12].
colim 2 ~ Sal(«)



ORDER ON CHAMBERS

Definition. Let C;, C; be chambers of 2, F any face.
S(Cy, G)C &B: the set of hyperplanes separating C; from G,

Fix a chamber B.
Cy Cs

The partial order
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based at B.

Let < be a linear extension of Pg(%).
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Definition. Let C;, G, be chambers of 9, F any face.
S(Ci, G)C B: the set of hyperplanes separating C; from G,

Fix a chamber B.
The partial order
C1 <g C2 == S(B, Cl) - S(B, Cg)

defines the poset of regions P (%)
based at B.

Let < be a linear extension of Pg(%).
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Xc: TWO APPLICATIONS

Let A be a central arrangement of real hyperplanes, fix B € P(4).
Theorem [D. ‘08]. The order preserving map
¢ Pe(PB) = L(B), C— Xc

satisfies
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Xc: TWO APPLICATIONS

Let A be a central arrangement of real hyperplanes, fix B € P(4).

Theorem [D. ‘08]. The order preserving map
¢ P(B) — L(AB), C— Xc
satisfies
671 (V)] = [{N € nbc(2) [ N = Y}
Theorem [D. ‘08]. There is an order preserving map
Sal(#) — Pe(A)

such that for the preimage N¢ of every C € Pg(%) we have a poset
isomorphism

NC ~ ]:(%XC)OP
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COMBINATORIAL BOOKKEEPING II

Fix
e B e P(a) and

e alin. ext. of Pg(%%). ><

For all Y € C(«/), we have

e By € P(#/[Y]) with B C By

e a lin. ext. of Pg, (#[Y]).

For every i =0,...,d define

Y ={(Y,C)| Y el(), CePp, (H[Y]), Xc =maxL(<[Y])}.

Then,
% = |Ai].



COMBINATORIAL BOOKKEEPING II
Fix
e B e P(a) and
e a lin. ext. of Pg(w).

For all Y € C(«/), we have

e By € P(#/[Y]) with B C By

e a lin. ext. of Pg, (#[Y]).

Let # := Y, %.. For every (Y, C) € % define a subdiagram of

Nv,cy: F(e7) = AC
F HNC(W[\F”)

Theorem [dD ‘12]. This diagram is geometric, and

CO“m./\/'(yﬁc) ~ f(&Z{Y)
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STRATIFICATION
Fix
e B e P(a) and ,
e a lin. ext. of Pg(). N\
Choose total order on %
such that the natural map \
A — PB(%)
is order preserving.
Theorem [dD ‘12]. There is a functor
®:colimP — %

with
®~(Y, C) = colimMy ¢



STRATIFICATION

Fix
e B e P(a) and ,
e a lin. ext. of Pg(). N\
Choose total order on %
such that the natural map \

Y — PB(%)
is order preserving.

We obtain a functor
¢ Sal() = ¥

with
oY, C) = F(o"),

which allows us to turn to Discrete Morse Theory.



DISCRETE MORSE THEORY

Here is a regular CW complex

with its poset of cells:

AN
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Cells:

.. are homotopy equivalences.
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ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram
of the poset of cells.

AN

Question: Does any matchings encode such a sequence?
Answer: No. Only (and exactly) those without “cycles” like

DN

Acyclic matchings <> discrete Morse functions.
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DMT FOR ACYCLIC CATEGORIES

Meta-Theorem [dD ‘12]. Discrete Morse Theory generalizes
successfully to nerves of acyclic categories.

In particular, we have
» A notion of ‘acyclic matching’
» A corresponding ‘main theorem’

» A corresponding ‘Patchwork Lemma’:

Let ¢ : A — B be a functor of acyclic categories. For b € Ob(B) let
M}, be an acyclic matching of the preimage ¢ ~1(b). Then, the union
M :=J, My is an acyclic matching of A.
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Posets of interior cells of
constructible  complexes
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with only one critical cell.
[Benedetti '10]




PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS

AN v
Lemma [dD ‘12]. The category F (<)
admits an acyclic matching with 29
critical cells in total. |
7
~

Posets of interior cells of
constructible  complexes
admit acyclic matchings
with only one critical cell.
[Benedetti '10]
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Theorem [dD ‘12]. Let o/ be a complexified toric arrangement. Then
M(</) has the homotopy type of a minimal CW-complex.

Proof.
» For every y = (Y, C) € # we have a stratum
N, ~ F(a/"Y)eP.

2dim(Y)

» |t admits an acyclic matching with critical cells.

» The functor ¢ : Sal(«) — %, has ~1(y) = N,.

Patchwork Lemma: number of critical cells over all of Sal(%):
d

S ooEmY = ST o8mY S (1 4+ 1) = Py (1),

(Y, Q) ew (Y,N)yes Jj=1

Corollary. All cohomology modules H*(M(<7),Z) are torsion free.



