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I d’Antonio, D.; A Salvetti complex for toric arrangements and its
fundamental group. International Mathematics Research Notices
(IMRN), 2011.

I d’Antonio, D.; Minimality of toric arrangements. To appear in
Journal of the European Mathematical Society (JEMS), 2013.



TORIC ARRANGEMENTS

A complexified toric arrangement
is a set

A = {(χi , ai )}i=1,...,n ⊆ Zd×S1.

With
Zd ' Hom((C∗)d ,C∗),
S1 = {z ∈ C : |z | = 1},

define

Ki = χ−1i (ai ) ⊆ (C∗)d .
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With
Zd ' Hom((C∗)d ,C∗),
S1 = {z ∈ C : |z | = 1},

define

Ki = χ−1i (ai ) ⊆ (C∗)d .

Layers of A : conn. comp. of
intersection of some of the Ki .

C(A ) := poset of layers ordered
by reverse inclusion.
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COMBINATORIAL BOOKKEEPING I

A � A
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A0 = {H1, . . . ,Hn}

is a central arrangement in Rd ,
consisting of the translate at the
origin of a lift of each Ki .
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COMBINATORIAL BOOKKEEPING I

Given Y ∈ C(A ) let

A [Y ] = {Hi ∈ A0 : Y ⊆ Ki}.

For i = 1, . . . , d , let

Ni := {(Y ,N) | Y ∈ C(A ),N ∈ nbc(A [Y ]), |N| = rk A [Y ] = i}.
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M(A ) := (C∗)d \
n⋃

i=1

Ki .

I [Looijenga ‘98; De Concini, Procesi ‘05]
The Poincaré polynomial of M(A ) can
be computed in terms of C(A ).

I [dD ‘11] Presentation of π1(M(A )) in terms of F(A ).
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I When is M(A ) a K (π, 1)?

I Can the category F(A ) be defined axiomatically?
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TOPOLOGY

We consider

M(A ) := (C∗)d \
n⋃

i=1

Ki .

The action on A � extends to a cellular action on Sal(A �).

The Salvetti category of A is the acyclic category

Sal(A ) := Sal(A �)/Zd .

Theorem [Moci and Settepanella ‘11, dD ‘11]. Sal(A ) can be
defined in terms of F(A ), and we have a homotopy equivalence

∆(Sal(A )) ' M(A ).



TOPOLOGY

We consider

M(A ) := (C∗)d \
n⋃

i=1

Ki .

The diagram of acyclic categories

D : F(A )→ AC

F 7→ Sal(A [|F |]),

with inclusions as morphisms, is “geometric”.

Theorem [dD ‘12].
colim D ' Sal(A )



ORDER ON CHAMBERS

Definition. Let C1, C2 be chambers of B, F any face.
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XC : TWO APPLICATIONS

Let B be a central arrangement of real hyperplanes, fix B ∈ P(B).

Theorem [D. ‘08]. The order preserving map

φ : PB(B)→ L(B), C 7→ XC

satisfies
|φ−1(Y )| = |{N ∈ nbc(B) | ∩N = Y }|



XC : TWO APPLICATIONS

Let B be a central arrangement of real hyperplanes, fix B ∈ P(B).

Theorem [D. ‘08]. The order preserving map

φ : PB(B)→ L(B), C 7→ XC

satisfies
|φ−1(Y )| = |{N ∈ nbc(B) | ∩N = Y }|

Theorem [D. ‘08]. There is an order preserving map

Sal(B)→ PB(B)

such that for the preimage NC of every C ∈ PB(B) we have a poset
isomorphism

NC ' F(BXC )op
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For all Y ∈ C(A ), we have
• BY ∈ P(A [Y ]) with B ⊆ BY

• a lin. ext. of PBY
(A [Y ]).

For every i = 0, . . . , d define

Yi := {(Y ,C ) | Y ∈ C(A ), C ∈ PBY
(A [Y ]), XC = maxL(A [Y ])}.

Then,
|Yi | = |Ni |.



COMBINATORIAL BOOKKEEPING II

Fix
• B ∈ P(A0) and
• a lin. ext. of PB(A0).

For all Y ∈ C(A ), we have
• BY ∈ P(A [Y ]) with B ⊆ BY

• a lin. ext. of PBY
(A [Y ]).

Let Y :=
⋃

i Yi . For every (Y ,C ) ∈ Y define a subdiagram of D

N(Y ,C) : F(A Y )→ AC

F 7→ NC (A [|F |]).

Theorem [dD ‘12]. This diagram is geometric, and

colimN(Y ,C) ' F(A Y )



STRATIFICATION

Fix
• B ∈ P(A0) and
• a lin. ext. of PB(A0).
Choose total order on Y
such that the natural map

Y → PB(A0)

is order preserving.

BQ B

C

(Q,C )

< in PB(A0)
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STRATIFICATION

Fix
• B ∈ P(A0) and
• a lin. ext. of PB(A0).
Choose total order on Y
such that the natural map

Y → PB(A0)

is order preserving.

We obtain a functor
Φ : Sal(A )→ Y

with
Φ−1(Y ,C ) = F(A Y ),

which allows us to turn to Discrete Morse Theory.



DISCRETE MORSE THEORY

Here is a regular CW complex

with its poset of cells:
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ACYCLIC MATCHINGS

The sequence of collapses is encoded in a matching of the Hasse diagram
of the poset of cells.

Question: Does any matchings encode such a sequence?
Answer: No. Only (and exactly) those without “cycles” like

.

Acyclic matchings ↔ discrete Morse functions.
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DMT FOR ACYCLIC CATEGORIES

Meta-Theorem [dD ‘12]. Discrete Morse Theory generalizes
successfully to nerves of acyclic categories.

In particular, we have

I A notion of ‘acyclic matching’

I A corresponding ‘main theorem’

I A corresponding ‘Patchwork Lemma’:

Let ϕ : A → B be a functor of acyclic categories. For b ∈ Ob(B) let
Mb be an acyclic matching of the preimage ϕ−1(b). Then, the union
M :=

⋃
b Mb is an acyclic matching of A.



DMT FOR ACYCLIC CATEGORIES

Meta-Theorem [dD ‘12]. Discrete Morse Theory generalizes
successfully to nerves of acyclic categories.

In particular, we have

I A notion of ‘acyclic matching’

I A corresponding ‘main theorem’

I A corresponding ‘Patchwork Lemma’:

Let ϕ : A → B be a functor of acyclic categories. For b ∈ Ob(B) let
Mb be an acyclic matching of the preimage ϕ−1(b). Then, the union
M :=

⋃
b Mb is an acyclic matching of A.



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS



PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS

Posets of interior cells of
constructible complexes
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PERFECT MATCHINGS FOR REAL TORIC ARRANGEMENTS

Lemma [dD ‘12]. The category F(A )
admits an acyclic matching with 2d

critical cells in total.

Posets of interior cells of
constructible complexes
admit acyclic matchings
with only one critical cell.
[Benedetti ’10]



FIT FOR MINIMALITY

Theorem [dD ‘12]. Let A be a complexified toric arrangement. Then
M(A ) has the homotopy type of a minimal CW-complex.

Proof.

I For every y = (Y ,C ) ∈ Y we have a stratum

Ny ' F(A ∩Y )op.

I It admits an acyclic matching with 2dim(Y ) critical cells.

I The functor Φ : Sal(A )→ Y , has Φ−1(y) = Ny .

Patchwork Lemma: number of critical cells over all of Sal(A ):∑
(Y ,C)∈Y

2dimY =
∑

(Y ,N)∈N

2dimY =
d∑

j=1

|Nj |(1 + 1)d−j1j = PM(A )(1).

Corollary. All cohomology modules Hk(M(A ),Z) are torsion free.
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