Wedge operation and torus symmetries

Suyoung Choi (Ajou Univ.) schoi@ajou.ac.kr

(jointly with Hanchul Park (Ajou Univ.))

June 27th 2013

Joint International Meeting of the AMS and the Romanian Mathematical Society Univ. of Alba Iulia, Alba Iulia, Romania

Wedge operation

- Simplicial complex and Wedge operation
- Simplicial sphere

Torus Symmetries

- Toric objects
- Main theorem

3

Applications

- Generalized Bott manifolds
- Classification of toric manifolds of Picard number 3
- Projectivity of toric manifolds of Picard number 3
- Further applications and questions

Wedge operation

- Simplicial complex and Wedge operation
- Simplicial sphere

2 Torus Symmetries

- Toric objects
- Main theorem

Applications

- Generalized Bott manifolds
- Classification of toric manifolds of Picard number 3
- Projectivity of toric manifolds of Picard number 3
- Further applications and questions

A (convex) polytope *P* is the convex hull of a finite set of points in \mathbb{R}^n . Let *P* be a convex polytope of dim *n*.

- *P* is simple if each vertex is the intersection of exactly *n* facets.
- *P* is simplicial if every facet is an (n 1)-simplex.

A simplicial complex *K* (of dim. n - 1) on a finite set *V* is a collection of subsets of *V* satisfying

$$(\max\{|\sigma| \mid \sigma \in K\} = n)$$

Note : The boundary of a simplicial polytope has a simplicial complex str.

A subset $\sigma \subset V$ is called a face of *K* if $\sigma \in K$. A subset $\tau \subset V$ is called a non-face of *K* if $\tau \notin K$. A non-face τ is minimal if any proper subset of τ is a face of *K*.

Note : K is determined by its minimal non-faces.

Wedge operation

Let *K* : simplicial complex on V = [m] and $J = (j_1, \dots, j_m) \in \mathbb{N}^m$. Denote by K(J) the simplicial complex on $j_1 + \dots + j_m$ vertices

$$\{\underbrace{1_1,1_2,\ldots,1_{j_1}},\underbrace{2_1,2_2,\ldots,2_{j_2}},\ldots,\underbrace{m_1,\ldots,m_{j_m}}\}$$

with minimal non-faces

$$\{\underbrace{(i_1)_1,\ldots,(i_1)_{j_{i_1}}}_{\underbrace{(i_2)_1,\ldots,(i_2)_{j_{i_2}}}},\ldots,\underbrace{(i_k)_1,\ldots,(i_k)_{j_{i_k}}}_{\underbrace{(i_k)_1,\ldots,(i_k)_{j_{i_k}}}}\}$$

for each minimal non-face $\{i_1, \ldots, i_k\}$ of K.

The simplicial wedge operation or (simplicial) wedging of K at i is

<u>Note</u> : Let *I* be a 1-simplex *I* with $\partial I = \{i_1, i_2\}$. Then, wedging is also defined as

wedge_{*i*}(*K*) = (*I* * Lk_{*K*}{*i*})
$$\cup$$
 (∂I * (*K* \ {*i*})).

Example

K: the boundary complex of a pentagon. Then the minimal non-faces of K are

$$\{1,3\},\{1,4\},\{2,4\},\{2,5\}, \text{ and } \{3,5\}.$$

Hence, the minimal non-faces of wedge₁(K) = K(2, 1, 1, 1, 1) are

 $\{1_1, 1_2, 3\}, \{1_1, 1_2, 4\}, \{2, 4\}, \{2, 5\}, \text{ and } \{3, 5\}.$

Example

As simple polytope...

 $P \times [0,\infty) \subseteq \mathbb{R}^{n+1}$ and identify *P* with $P \times \{0\}$.

Pick a hyperplane *H* in \mathbb{R}^{n+1} s.t $H \cap P = F$ and $H \cap P \times [0, \infty) \neq \emptyset$. Then *H* cuts $P \times [0, \infty)$ into two parts to obtain the part wedge_{*F*}(*P*) containing *P*.

Simplicial sphere

Let *K* be a simplicial complex of dimension n - 1.

- *K* : simplicial sphere if its geometric realization $|K| \cong S^{n-1}$.
- ② *K* : star-shaped if $\exists |K| \stackrel{emb}{\hookrightarrow} \mathbb{R}^n$ and a point *p* ∈ \mathbb{R}^n s.t. any ray from *p* intersects |K| once and only once.
- Solution K : polytopal if $\exists |K| \xrightarrow{emb} \mathbb{R}^n$ which is the boundary of a simplicial *n*-polytope.

simplicial complexes \supsetneq simplicial spheres

 \supseteq star-shaped complexes \supseteq polytopal complexes.

Proposition

- wedge_{ν}(*K*) is a simplicial sphere if and only if so is *K*.
- wedge_v(K) is star-shaped if and only if so is K.
- S wedge_v(*K*) is polytopal if and only if so is *K*.

Wedge operation

- Simplicial complex and Wedge operation
- Simplicial sphere

Torus Symmetries Toric objects

Main theorem

Applications

- Generalized Bott manifolds
- Classification of toric manifolds of Picard number 3
- Projectivity of toric manifolds of Picard number 3
- Further applications and questions

• M: connected smooth closed manifold of dim n

• $T^k = (S^1)^k$: compact abelian Lie group of rank k

 T^k acts on M effectively $\Longrightarrow \dim T^k + \dim T^k_x \le \dim M$ for any $x \in M$. Hence, if $p \in M^{T^k}$, then $\dim T^k = \dim T^k_p = k$. Hence, $2k \le n$.

Hattori-Masuda¹ introduce one interesting class of manifolds.

Definition

A 2n dimensional connected smooth closed manifold M is called a torus manifold if T^n acts on M effectively with non-empty fixed point set.

A. Hattori and M. Masuda, Theory of multi-fans, Osaka J. Math. 40 (2003)

• $\mathbb{C}^* := \mathbb{C} - O$

 a toric variety X : a normal complex algebraic variety with algebraic (ℂ*)ⁿ-action having a dense orbit

Example

$$(\mathbb{C}^*)^n \curvearrowright \mathbb{C}P^n \ (= \mathbb{C}^{n+1} - O/\sim)$$
 defined by

$$(t_1,\ldots,t_n)\cdot [z_0,z_1,\ldots,z_n] = [z_0,t_1z_1,\ldots,t_nz_n].$$

• a morphism $f: X \to X' : \exists \rho : (\mathbb{C}^*)^n \to (\mathbb{C}^*)^{n'}$ s.t. $f(tx) = \rho(t)f(x)$

• $C \subset \mathbb{R}^n$ is a cone if $\exists \{v_i \in \mathbb{Z}^n\}_{1 \le i \le k}$ s.t.

$$C = \left\{ \sum_{i=1}^k a_i v_i \, \middle| \, a_i \ge 0 \, \forall i \right\}.$$

• A fan Δ : collection of cones in \mathbb{R}^n s.t.

1 $C \in \Delta \Longrightarrow$ faces of $C \in \Delta$ **2** $C_1, C_2 \in \Delta \Longrightarrow C_1 \cap C_2$ is a face of each of C_1 and C_2 .

• a morphism $\Delta \to \Delta'$ is a linear map $\mathbb{R}^n \to \mathbb{R}^{n'}$ which maps $\mathbb{Z}^n \to \mathbb{Z}^{n'}$ and a cone into a cone.

<u>Note</u>: $\Delta = (K_{\Delta}, \lambda(\Delta)) := \{v_i \in \mathbb{Z}^n \mid i = 1, \dots, m\}$.

Theorem (Fundamental theorem for toric varieties)

The category of toric varieties is equivalent to the category of fans.

$$X \longleftrightarrow \Delta_X$$

- *X* is compact $\iff \Delta_X$ covers \mathbb{R}^n (complete).
- *X* is non-singular ⇐⇒ every cone in Δ_X consists of unimodular rays (non-singular).
- *X* is projective $\iff \Delta_X$ is "polytopal".

non-complete

singular

A compact non-singular toric variety is called a toric manifold.

Suyoung Choi

Wedge operation and torus symmetries

27 June 2013 14 / 45

Fan and polytope

 Δ : a polytopal non-singular fan (X_{Δ} : a projective toric manifold)

• $S^1 \subset \mathbb{C}^*$: a unit circle

• $T^n := (S^1)^n \subset (\mathbb{C}^*)^n$: (compact real) torus of dimension *n*

Since $(\mathbb{C}^*)^n$ acts on X_{Δ} , T^n also acts on X_{Δ} , and X_{Δ}/T^n is a simple polytope.

Topological analogue of toric manifolds

²M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991)

Quasitoric manifolds

 P^n : simple polytope with *m* facets $\mathfrak{F} = \{F_1, \ldots, F_m\}$

 $\lambda: \mathfrak{F} \to \mathsf{Hom}(S^1, T^n) \cong \mathbb{Z}^n$ characteristic function of dim *n* satisfying

 $F_{i_1} \cap \cdots \cap F_{i_n} \neq \emptyset \Rightarrow \{\lambda(F_{i_1}), \dots, \lambda(F_{i_n})\}$ is basis for \mathbb{Z}^n .

Theorem (Davis-Januskiewicz 1991)

All quasitoric manifolds can be indexed by (P^n, λ) .

Definition

A characteristic map is a pair (K, λ) of K and $\lambda \colon V(K) = [m] \to \mathbb{Z}^n$ s.t.

- $\lambda(i)$ is primitive $\forall i \in V(K)$
- $\{\lambda(i) \mid i \in \sigma\}$ is linearly independent over $\mathbb{R} \ \forall \sigma \in K$.

Moreover,

- ((K, λ)) is called complete if K is star-shaped.
- **2** (K, λ) is called non-singular if $\{\lambda(i) \mid i \in \sigma\}$ spans a unimodular submodule of \mathbb{Z}^n of rank $|\sigma| \forall \sigma \in K$.
- (3) (K, λ) is called positive if $sign \det(\lambda(i_1), \ldots, \lambda(i_n)) = o(\sigma)$ $\forall \sigma = (i_1, \ldots, i_n) \in K$, where *o* is the ori. of *K* as a simplicial mfd.
- (1) (K, λ) is called fan-giving if $\exists \Delta$ s.t. (K, λ) = ($K_{\Delta}, \lambda(\Delta)$).

Sometimes we call the map λ itself a characteristic map.

Topological toric manifolds

Recall that a toric manifold admits an algebraic $(\mathbb{C}^*)^n$ -action. A topological toric manifold is a closed smooth 2n-manifold M with an effective smooth $(\mathbb{C}^*)^n$ -action with some condition.³

Theorem (Ishida-Fukukawa-Masuda 2013)

All topological toric manifolds can be indexed by (K, λ) as T^n -manifolds, where (K, λ) is non-singular complete.

Note :

- If (K, λ) is singular, $M(K, \lambda)$ is an orbifold.
- If *K* is polytopal, $M(K, \lambda)$ is a quasitoric manifold.
- If *K* is polytopal and (K, λ) is positive, $M(K, \lambda)$ admits a T^n -equivariant almost complex structure. ⁴
- If (K, λ) is fan-giving, $M(K, \lambda)$ is a toric manifold.

³H. Ishida, Y. Fukukawa, M. Masuda, Topological toric manifolds, Moscow Math. J. 13 (2013)

⁴A. A. Kustarev, Equivariant almost complex structures on quasitoric manifolds, Uspekhi Mat. Nauk 64 (2009)

Examples

Wedge operation and torus symmetries

⁵T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, 1988.

⁶H. Ishida, Y. Fukukawa, M. Masuda, Topological toric manifolds, Moscow Math. J. 13 (2013)

Ewald and BBCG construction

Ewald found infinitely many non-projective toric manifolds. 7

Theorem (Ewald 1986)

 $M(K,\lambda)$: toric $\implies \exists M(\text{wedge}_{v}(K),\lambda')$: toric.

Furthermore, $M(K, \lambda)$ is projective $\Leftrightarrow M(\text{wedge}_{\nu}(K), \lambda')$ is projective.

BBCG rediscovered the idea to produce infinitely many quasitoric mfds.⁸

Theorem (Bahri-Bendersky-Cohen-Gitler 2010)

 $M(K,\lambda)$: quasitoric $\implies \exists M(wedge_{v}(K),\lambda')$: quasitoric.

In fact, $M(K, \lambda)$ is toric $\Leftrightarrow M(\text{wedge}_{\nu}(K), \lambda')$ is toric.

Suyoung Choi

⁷G. Ewald, Spherical complexes and nonprojective toric varieties, Discrete Comput. Geom. 1 (1986)

⁸A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, Operations on polyhedral products and a new topological construction of infinite families of toric manifolds, arXiv:1011.0094 (2010)

To classify toric objects, it seems natural to classify *K* supporting a toric object first, and find all available λ on a fixed *K*.

It raises the following natural question.

Question

Find all available λ on wedge_v(K) when K supports a toric object in each category.

Equivalence

Let *K* : star-shaped simplicial sphere with V(K) = [m] and $\lambda : V(K) \rightarrow \mathbb{Z}^n$ a characteristic function of dim *n*. Denote λ by an $n \times m$ matrix

$$\lambda = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & \cdots & m \\ \hline \lambda(1) & \lambda(2) & \lambda(3) & \lambda(4) & \cdots & \lambda(m) \end{array}\right)$$

Note : TFAE

- $M(K, \lambda)$ is D-J equivalent to $M(K, \lambda')$
- \exists weakly equivariant $f: M(K, \lambda) \to M(K, \lambda')$ s.t.

λ' can be obtained from λ by elementary row operations.

Projected characteristic map

Let *K* be a simplicial complex and $\sigma \in K$. The link of σ is

$$Lk_{K} \sigma := \{ \tau \in K \mid \sigma \cup \tau \in K, \ \sigma \cap \tau = \emptyset \}.$$

$$\underline{Note} : Lk_{wedge_{\nu}K}\{v_{1}\} \cong K \qquad \underbrace{5 \atop 1} 2 \longrightarrow \underbrace{5 \atop 1} 2 \xrightarrow{4} \underbrace{12 \atop 1} 2 \xrightarrow{2} 2 \xrightarrow{11} Lk_{wedge_{1}(K)}\{1_{2}\}$$

Let (K, λ) be a char. map of dim n and $\sigma \in K$.

Definition

A characteristic map $(Lk_K \sigma, Proj_{\sigma} \lambda)$, called the projected characteristic map, is defined by the map

$$(\operatorname{Proj}_{\sigma} \lambda)(v) = [\lambda(v)] \in \mathbb{Z}^n / \langle \lambda(w) \mid w \in \sigma \rangle \cong \mathbb{Z}^{n-|\sigma|}.$$

K : star-shaped simplicial sphere

Theorem

Let $(\text{wedge}_{v}(K), \lambda)$ a characteristic map, and v_1, v_2 the two new vertices of $\text{wedge}_{v}(K)$ created from the wedging at $v \in V(K)$. Then λ is uniquely determined up to D-J equivalence by $\text{Proj}_{v_1} \lambda$ and $\text{Proj}_{v_2} \lambda$.

Theorem

- **()** λ is non-singular \iff both $\operatorname{Proj}_{\nu_1} \lambda$ and $\operatorname{Proj}_{\nu_2} \lambda$ are non-singular.
- 2 λ is positive \iff both $\operatorname{Proj}_{v_1} \lambda$ and $\operatorname{Proj}_{v_2} \lambda$ are positive.
- **3** λ is fan-giving \iff both $\operatorname{Proj}_{\nu_1} \lambda$ and $\operatorname{Proj}_{\nu_2} \lambda$ are fan-giving.

Roughly speaking ..

- If one knows every topological toric manifold over *K*, then we know every topological toric manifold over a wedge of *K*.
- If one knows every quasitoric manifold over *P*, then we know every quasitoric manifold over a wedge of *P*.
- If one knows every toric manifold over *K*, then we know every toric manifold over a wedge of *K*.

Revisit Ewald and BBCG construction

For given (K, λ) ,

put λ' (called the canonical extension) on wedge_v(*K*) by

$$\lambda' = \begin{pmatrix} \frac{v_1 & v_2}{1 & -1 & 0 & \cdots & 0} \\ 0 & 1 & a_2 & \cdots & a_m \\ \hline 0 & 0 & & & \\ \vdots & \vdots & A & \\ 0 & 0 & & & \end{pmatrix}$$

Then, $\operatorname{Proj}_{\nu_1} \lambda = \operatorname{Proj}_{\nu_2} \lambda$ which are chr. maps for *K*. Hence, by our theorems, it implies the results by Ewald and BBCG.

Suyoung Choi

Wedge operation and torus symmetries

Wedge operation

- Simplicial complex and Wedge operation
- Simplicial sphere

2 Torus Symmetries

- Toric objects
- Main theorem

Applications

- Generalized Bott manifolds
- Classification of toric manifolds of Picard number 3
- Projectivity of toric manifolds of Picard number 3
- Further applications and questions

Interesting class of simplicial spheres

It is natural to consider a class of (star-shaped) simplicial spheres which is closed under wedging.

Observe that

$$I = boundary of \Delta^{n_1} \times \Delta^{n_2} \times \cdots \times \Delta^{n_\ell}$$

$$\implies K = \partial \Delta^{n_1} \star \dots \star \partial \Delta^{n_\ell}$$
$$\implies \text{wedge}_{\nu}(K) = \partial \Delta^{n_1+1} \star \partial \Delta^{n_2} \star \dots \star \partial \Delta^{n_\ell}$$

2 Define $\operatorname{Pic} K = |V(K)| - \dim K + 1 = m - n$. Then, $\operatorname{Pic} K$ is invariant under wedging.

We are interested in $\{\partial \Delta^{n_1} \star \cdots \star \partial \Delta^{n_\ell}\}$ and $\{K \mid \text{Pic } K \leq 3\}$.

generalized Bott tower

$$B_n \xrightarrow{\pi_n} B_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_2} B_1 \xrightarrow{\pi_1} B_0 = \{a \text{ point}\},\$$

where each $\pi_i \colon B_i = P(\mathbb{C} \oplus \xi_i) \to B_{i-1}$ and ξ_i is the Whitney sum of n_i complex line bundles over B_{i-1} for $i = 1, ..., \ell$.

We call each B_n a generalized Bott manifold.

A generalized Bott manifold is a projective toric manifold over $\partial \Delta^{n_1} \star \cdots \star \partial \Delta^{n_\ell}$.

<u>Note</u> : one knows all toric objects over a cross-polytope (= $\partial \Delta^1 \star \cdots \star \partial \Delta^1$)⁹.

Corollary

We classify all toric objects over $\partial \Delta^{n_1} \star \cdots \star \partial \Delta^{n_\ell}$. In particular, any toric manifold over $\partial \Delta^{n_1} \star \cdots \star \partial \Delta^{n_\ell}$ is a generalized Bott manifold.

The above corollary covers works by Batyrev ¹⁰, Dobrinskaya ¹¹, and C-Masuda-Suh ¹².

⁹M. Masuda, P. E. Panov, Semifree circle actions, Bott towers and quasitoric manifolds, Sb. Math. 199 (2008)

¹⁰V. V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. (2) 43 (1991)

¹¹N. E. Dobrinskaya, Classification problem for quasitoric manifolds over a given simple polytope, Funct. Anal. and Appl. 35 (2001)

¹²S. Choi, M. Masuda, and D. Y. Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010)

Toric manifolds of small Picard number

We focus our interests in toric manifolds with small Pic K.

Pic K	K	toric manifold	projective?
1	$\partial \Delta^n$	$\mathbb{C}P^n$	Yes
2	$\partial \Delta^k \star \partial \Delta^{n-k}$	$\mathbb{C}P^k$ -bundle over $\mathbb{C}P^{n-k}$	Yes
3	?	?	?
4	?	?	No

- X : toric manifold of Picard number 3
- $\Delta = (K, \lambda)$: corresponding fan (\Rightarrow fan-giving non-singular)

We observe that *K* is obtained by a sequence of wedgings from either the octahedron = $\partial \Delta^1 \star \partial \Delta^1 \star \partial \Delta^1$ or the pentagon *P*₅. ¹³

¹³ J. Gretenkort, P. Kleinschmidt, B. Sturmfels, On the existence of certain smooth toric varieties, Biscrete Comput. Geom. 5 (1990)

Toric manifolds of small Picard number 3

from ∂Δ¹ ★ ∂Δ¹ ★ ∂Δ¹ : X is a generalized Bott manifold.
from P₅:

Up to rotational symmetry of P_5 and basis change of \mathbb{Z}^2 , any fan-giving non-singular chr. map is described by

$$\lambda_d := \begin{pmatrix} 1 & 0 & -1 & -1 & d \\ 0 & 1 & 1 & 0 & -1 \end{pmatrix}$$

for an arbitrary $d \in \mathbb{Z}$.

Corollary

We classify all toric manifolds of Picard number 3.

<u>Note</u> : It reproves the result of Batyrev¹⁴.

¹⁴V. V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. (2) 43 (1991)

Example

 P_5 : pentagon on $\{1, 2, 3, 4, 5\}$

Consider wedge₃ P_5 and assume that $\operatorname{Proj}_{3_1}(\lambda) = \lambda_d$.

$$\lambda = \begin{pmatrix} 1 & 2 & 3_1 & 3_2 & 4 & 5 \\ \hline 1 & 0 & 0 & -1 & -1 & d \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & n_3 & n_4 & n_5 \end{pmatrix}$$

Now consider $\operatorname{Proj}_{3_2}(\lambda)$.

$$\lambda \sim \begin{pmatrix} 1 & 2 & 3_1 & 3_2 & 4 & 5 \\ \hline -n_3 & 0 & -1 & 0 & n_3 - n_4 & -n_5 - dn_3 \\ n+3+1 & 1 & 1 & 0 & n_4 - n_3 - 1 & -1 + n_5 + dn_3 + d \\ n_3+1 & 0 & 1 & -1 & n_4 - n_3 - 1 & n_5 + dn_3 + d \end{pmatrix}$$

Hence,

$$\operatorname{Proj}_{3_2}(\lambda) = \begin{pmatrix} 1 & 2 & 3_1 & 4 & 5\\ \hline -n_3 & 0 & -1 & n_3 - n_4 & -n_5 - dn_3\\ n_3 + 1 & 1 & 1 & n_4 - n_3 - 1 & -1 + n_5 + dn_3 + d \end{pmatrix}$$

 $\therefore n_3 = -1, n_5 = 0, (1 - d)n_4 = 0.$

Hence, all toric manifolds over wedge₃ P_5 whose $\operatorname{Proj}_{3_1} \lambda = \lambda_d$ are of the form, for $d, e \in \mathbb{Z}$,

$$\begin{pmatrix} 1 & 2 & 3_1 & 3_2 & 4 & 5\\ \hline 1 & 0 & 0 & -1 & -1 & d\\ 0 & 1 & 0 & 1 & 0 & -1\\ 0 & 0 & 1 & -1 & 0 & 0 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 1 & 2 & 3_1 & 3_2 & 4 & 5\\ \hline 1 & 0 & 0 & -1 & -1 & 1\\ 0 & 1 & 0 & 1 & 0 & -1\\ 0 & 0 & 1 & -1 & e & 0 \end{pmatrix}$$

By consideration of rotation, one can find all toric manifolds over $wedge_3 P_5$.

.

m - n	complex	toric manifold	projective?
1	<i>n</i> -simplex $\partial \Delta^n$	$\mathbb{C}P^n$	Yes
2	$\partial \Delta^k \star \partial \Delta^{n-k}$	gen. Bott manifold	Yes
3	$\partial \Delta^{n_1} \star \partial \Delta^{n_2} \star \partial \Delta^{n_3}$	gen. Bott manifold	Yes
	$P_5(a_1,\ldots,a_5)$	Done	?
4	?	?	No

Table : Classification complete for Picard number 3.

Projectivity

Unfortunately, our theorem does not hold in the category of projective toric manifolds in general.

Example

Let $P_{[7]}$ be the cyclic 4-polytope with 7 vertices. Define $(\text{wedge}_1 P_{[7]}, \lambda)$ by the matrix

$$\lambda = \begin{pmatrix} 1_1 & 1_2 & 2 & 3 & 4 & 5 & 6 & 7 \\ -16 & 16 & -1 & 0 & 0 & 0 & 0 & 1 \\ -33 & 83 & -6 & 0 & 0 & 0 & 1 & 0 \\ -37 & 127 & -10 & 0 & 0 & 1 & 0 & 0 \\ -33 & 123 & -10 & 0 & 1 & 0 & 0 & 0 \\ -13 & 63 & -6 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

which is fan-giving and singular. Then $M(\text{wedge}_1 P_{[7]}, \lambda)$ is not projective although its projections are projective.

Figure : A Shephard diagram for non-projective one over $wedge_1 P_{[7]}$.

Wedge operation and torus symmetries

Projectivity

However, our theorem holds in the projective category with some assumptions.

Theorem

Assume Pic K = 3. Let $(wedge_{\nu}(K), \lambda)$ be a fan-giving non-singular characteristic map. Then

 $\begin{array}{l} M(\mathrm{wedge}_{\nu}(K),\lambda) \text{ is projective} \\ \Longleftrightarrow \quad both \ M(K,\mathrm{Proj}_{\nu_1}\ \lambda) \ and \ M(K,\mathrm{Proj}_{\nu_2}\ \lambda) \ are \ projective. \end{array}$

Note : all toric manifolds over a pentagon are projective.

Corollary

All toric manifolds of Pic 3 are projective.

The above result greatly improves the proof by Kleinschmidt-Stumfels¹⁵.

¹⁵P. Kleinschmidt, B. Sturmfels, Smooth toric varieties with small picard number are projective, Topology 30 (1991)

- *M*: a toric variety of complex dimension *n*.
 Then, ∃ a canonical involution *ι* on *M*, and *M^ι* form a real subvariety of real dimension *n*, called a real toric variety
- Similarly, "real" versions of topol. toric and quasitoric manifolds are real topological toric manifolds and small covers, resp.

Such real analogues of toric objects can be described as a \mathbb{Z}_2 -version of (K, λ) , that is, $\lambda : V(K) \to \mathbb{Z}_2^n$.

Theorem

 λ is uniquely determined by $\operatorname{Proj}_{\nu_1} \lambda$ and $\operatorname{Proj}_{\nu_2} \lambda$. Furthermore, λ is non-singular if and only if so are $\operatorname{Proj}_{\nu_1} \lambda$ and $\operatorname{Proj}_{\nu_2} \lambda$.

Corollaries

We have the following corollaries.

- We have all classification of toric objects over K with Pic K = 3.
- 2 The number of real toric over $P_5(a_1, a_2, a_3, a_4, a_5)$ is

$$2^{a_1+a_4-1}+2^{a_2+a_5-1}+2^{a_3+a_1-1}+2^{a_4+a_2-1}+2^{a_5+a_3-1}-5.$$

- Solution The number of small cover over $P_{[7]}(J)$ is 2 for any J.
- The lifting problem holds for Pic $K \le 3$. That is, any small cover is realized as fixed points of the conjugation of a quasitoric manifold if Pic $K \le 3$. Indeed, all small covers over $P_5(J)$ are real toric.
- Solution By applying the Suciu-Trevisan formula, we compute rational Betti numbers of toric objects over $P_5(J)$.

Further questions

- Does our theorem hold in the projective non-singular category?
- 2 Classify and study (real) toric objects over *K* with Pic K = 4. (The only thing what we have to do is to characterize all (star-shaped, polytopal) seed simplicial spheres of Picard number 4. It means that if *K* supports toric objects, then K = S(J) for some seed *S* and $J \in \mathbb{N}^{m}$.)

Question (Cohomological rigidity problem)

M,*N* : toric manifolds

$$M \stackrel{diff}{\cong} N \quad \Longleftrightarrow \quad H^*(M) \cong H^*(N)$$

Classify toric objects over *K* with Pic K = 3 topologically. <u>Note</u> : The answer to the problem for Pic $K \le 2$ is affirmative.¹⁶

. .

¹⁶S. Choi, M. Masuda, D. Y. Suh, Topological classification of generalized Bott towers, Trans. Amer. Math. Soc. 362 (2010)

Thank you!

Mulţumesc / 갑사찹니다

Wedge operation and torus symmetries

27 June 2013 45 / 45