Wedge operation and torus symmetries

Suyoung Choi (Ajou Univ.)
schoi@ajou.ac.kr
(jointly with Hanchul Park (Ajou Univ.))

June 27th 2013

Joint International Meeting of the AMS and the Romanian Mathematical Society
Univ. of Alba Iulia, Alba Iulia, Romania

(1) Wedge operation

- Simplicial complex and Wedge operation
- Simplicial sphere
(2) Torus Symmetries
- Toric objects
- Main theorem
(3) Applications
- Generalized Bott manifolds
- Classification of toric manifolds of Picard number 3
- Projectivity of toric manifolds of Picard number 3
- Further applications and questions
(1) Wedge operation
- Simplicial complex and Wedge operation
- Simplicial sphere
(2) Torus Symmetries
- Toric objects
- Main theorem

Applications
 - Generalized Bott manifolds
 - Classification of toric manifolds of Picard number 3
 - Projectivity of toric manifolds of Picard number 3
 - Further applications and questions

Simple polytope

A (convex) polytope P is the convex hull of a finite set of points in \mathbb{R}^{n}. Let P be a convex polytope of $\operatorname{dim} n$.

- P is simple if each vertex is the intersection of exactly n facets.
- P is simplicial if every facet is an $(n-1)$-simplex.

both

simple

simplicial

neither

Note : simple polytope $\stackrel{\text { dual }}{\longleftrightarrow}$ simplicial polytope

Simplicial complex

A simplicial complex K (of dim. $n-1$) on a finite set V is a collection of subsets of V satisfying
(1) if $v \in V$, then $\{v\} \in K$,
(2) if $\sigma \in K$ and $\tau \subset \sigma$, then $\tau \in K$.
(3) $(\max \{|\sigma| \mid \sigma \in K\}=n)$

Note : The boundary of a simplicial polytope has a simplicial complex str.

A subset $\sigma \subset V$ is called a face of K if $\sigma \in K$.
A subset $\tau \subset V$ is called a non-face of K if $\tau \notin K$.
A non-face τ is minimal if any proper subset of τ is a face of K.
Note : K is determined by its minimal non-faces.

Wedge operation

Let K : simplicial complex on $V=[m]$ and $J=\left(j_{1}, \ldots, j_{m}\right) \in \mathbb{N}^{m}$.
Denote by $K(J)$ the simplicial complex on $j_{1}+\cdots+j_{m}$ vertices

$$
\{\underbrace{1_{1}, 1_{2}, \ldots, 1_{j_{1}}}, \underbrace{2_{1}, 2_{2}, \ldots, 2_{j_{2}}}, \ldots, \underbrace{m_{1}, \ldots, m_{j_{m}}}\}
$$

with minimal non-faces

$$
\{\underbrace{\left(i_{1}\right)_{1}, \ldots,\left(i_{1}\right)_{j_{i_{1}}}}, \underbrace{\left(i_{2}\right)_{1}, \ldots,\left(i_{2}\right)_{j_{i_{2}}}}, \ldots, \underbrace{\left(i_{k}\right)_{1}, \ldots,\left(i_{k}\right)_{j_{i_{k}}}}\}
$$

for each minimal non-face $\left\{i_{1}, \ldots, i_{k}\right\}$ of K.
The simplicial wedge operation or (simplicial) wedging of K at i is

$$
\text { wedge }_{i}(K)=K(1, \ldots, 1,2,1, \ldots, 1)
$$

Note : Let I be a 1 -simplex I with $\partial I=\left\{i_{1}, i_{2}\right\}$. Then, wedging is also defined as

$$
\operatorname{wedge}_{i}(K)=\left(I \star \operatorname{Lk}_{K}\{i\}\right) \cup(\partial I \star(K \backslash\{i\}))
$$

Example

K : the boundary complex of a pentagon.
Then the minimal non-faces of K are

$$
\{1,3\},\{1,4\},\{2,4\},\{2,5\} \text {, and }\{3,5\} \text {. }
$$

Hence, the minimal non-faces of wedge $_{1}(K)=K(2,1,1,1,1)$ are

$$
\left\{1_{1}, 1_{2}, 3\right\},\left\{1_{1}, 1_{2}, 4\right\},\{2,4\},\{2,5\} \text {, and }\{3,5\} .
$$

Example

As simple polytope...
$P \times[0, \infty) \subseteq \mathbb{R}^{n+1}$ and identify P with $P \times\{0\}$.
Pick a hyperplane H in \mathbb{R}^{n+1} s.t $H \cap P=F$ and $H \cap P \times[0, \infty) \neq \emptyset$. Then H cuts $P \times[0, \infty)$ into two parts to obtain the part wedge ${ }_{F}(P)$ containing P.

P

wedge $_{F}(P)$

Simplicial sphere

Let K be a simplicial complex of dimension $n-1$.
(1) K : simplicial sphere if its geometric realization $|K| \cong S^{n-1}$.
(2) K : star-shaped if $\exists|K| \stackrel{e m b}{\hookrightarrow} \mathbb{R}^{n}$ and a point $p \in \mathbb{R}^{n}$ s.t. any ray from p intersects $|K|$ once and only once.
(3) K : polytopal if $\exists|K| \stackrel{\text { emb }}{\longrightarrow} \mathbb{R}^{n}$ which is the boundary of a simplicial n-polytope.
simplicial complexes \supsetneq simplicial spheres
\supsetneq star-shaped complexes \supsetneq polytopal complexes.

Proposition

(1) wedge ${ }_{v}(K)$ is a simplicial sphere if and only if so is K.
(2) wedge ${ }_{v}(K)$ is star-shaped if and only if so is K.
(3) wedge ${ }_{v}(K)$ is polytopal if and only if so is K.
(1) Wedge operation

- Simplicial complex and Wedge operation
- Simplicial sphere
(2) Torus Symmetries
- Toric objects
- Main theorem
(3) Applications
- Generalized Bott manifolds
- Classification of toric manifolds of Picard number 3
- Projectivity of toric manifolds of Picard number 3
- Further applications and questions

Torus manifolds

- M : connected smooth closed manifold of $\operatorname{dim} n$
- $T^{k}=\left(S^{1}\right)^{k}$: compact abelian Lie group of rank k
T^{k} acts on M effectively $\Longrightarrow \operatorname{dim} T^{k}+\operatorname{dim} T_{x}^{k} \leq \operatorname{dim} M$ for any $x \in M$. Hence, if $p \in M^{T^{k}}$, then $\operatorname{dim} T^{k}=\operatorname{dim} T_{p}^{k}=k$. Hence, $2 k \leq n$.

Hattori-Masuda ${ }^{1}$ introduce one interesting class of manifolds.

Definition

A $2 n$ dimensional connected smooth closed manifold M is called a torus manifold if T^{n} acts on M effectively with non-empty fixed point set.

[^0]
Toric variety

- $\mathbb{C}^{*}:=\mathbb{C}-O$
- a toric variety X : a normal complex algebraic variety with algebraic $\left(\mathbb{C}^{*}\right)^{n}$-action having a dense orbit

Example

$\left(\mathbb{C}^{*}\right)^{n} \curvearrowright \mathbb{C} P^{n}\left(=\mathbb{C}^{n+1}-O / \sim\right)$ defined by

$$
\left(t_{1}, \ldots, t_{n}\right) \cdot\left[z_{0}, z_{1}, \ldots, z_{n}\right]=\left[z_{0}, t_{1} z_{1}, \ldots, t_{n} z_{n}\right] .
$$

- a morphism $f: X \rightarrow X^{\prime}: \exists \rho:\left(\mathbb{C}^{*}\right)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{n^{\prime}}$ s.t. $f(t x)=\rho(t) f(x)$
- $C \subset \mathbb{R}^{n}$ is a cone if $\exists\left\{v_{i} \in \mathbb{Z}^{n}\right\}_{1 \leq i \leq k}$ s.t.

$$
C=\left\{\sum_{i=1}^{k} a_{i} v_{i} \mid a_{i} \geq 0 \forall i\right\} .
$$

- A fan Δ : collection of cones in \mathbb{R}^{n} s.t.
(1) $C \in \Delta \Longrightarrow$ faces of $C \in \Delta$
(2) $C_{1}, C_{2} \in \Delta \Longrightarrow C_{1} \cap C_{2}$ is a face of each of C_{1} and C_{2}.
- a morphism $\Delta \rightarrow \Delta^{\prime}$ is a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n^{\prime}}$ which maps $\mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n^{\prime}}$ and a cone into a cone.
Note : $\left.\Delta=\left(K_{\Delta}, \lambda(\Delta)\right):=\left\{v_{i} \in \mathbb{Z}^{n} \mid i=1, \ldots, m\right\}\right)$.

Toric manifold

Theorem (Fundamental theorem for toric varieties)

The category of toric varieties is equivalent to the category of fans.

$$
X \longleftrightarrow \Delta_{X}
$$

- X is compact $\Longleftrightarrow \Delta_{X}$ covers R^{n} (complete).
- X is non-singular \Longleftrightarrow every cone in Δ_{X} consists of unimodular rays (non-singular).
- X is projective $\Longleftrightarrow \Delta_{X}$ is "polytopal".

non-complete

singular

non-singular, polytopal

A compact non-singular toric variety is called a toric manifold.

Fan and polytope

Δ : a polytopal non-singular fan (X_{Δ} : a projective toric manifold)

- $S^{1} \subset \mathbb{C}^{*}:$ a unit circle
- $T^{n}:=\left(S^{1}\right)^{n} \subset\left(\mathbb{C}^{*}\right)^{n}:$ (compact real) torus of dimension n

Since $\left(\mathbb{C}^{*}\right)^{n}$ acts on X_{Δ}, T^{n} also acts on X_{Δ}, and X_{Δ} / T^{n} is a simple polytope.

Topological analogue of toric manifolds

A quasitoric manifold M of $\operatorname{dim} 2 n^{2}$:

- $M \curvearrowleft T^{n}$ locally standard, and
- $M / T^{n} \cong P^{n}$ simple polytope.
$\left\{\begin{array}{cc}\text { fixed point } & \longleftrightarrow \text { vertex } \\ \vdots & \vdots \\ \text { fixed by } S^{1} \subset T^{n} & \longleftrightarrow \text { facet }\end{array}\right.$
Fixed by $S^{1} \times 1 \subset T^{2}\left(0 ; z_{1} ; 0\right]{ }_{\left[0 ; z_{1} ; z_{2}\right]}^{\left[0 ; 0 ; z_{2}\right)}$

[^1]
Quasitoric manifolds

$P^{n}:$ simple polytope with m facets $\mathfrak{F}=\left\{F_{1}, \ldots, F_{m}\right\}$
$\lambda: \mathfrak{F} \rightarrow \operatorname{Hom}\left(S^{1}, T^{n}\right) \cong \mathbb{Z}^{n}$ characteristic function of dim n satisfying

$$
F_{i_{1}} \cap \cdots \cap F_{i_{n}} \neq \emptyset \Rightarrow\left\{\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{n}}\right)\right\} \text { is basis for } \mathbb{Z}^{n} .
$$

Theorem (Davis-Januskiewicz 1991)

All quasitoric manifolds can be indexed by $\left(P^{n}, \lambda\right)$.

Characteristic map

Definition

A characteristic map is a pair (K, λ) of K and $\lambda: V(K)=[m] \rightarrow \mathbb{Z}^{n}$ s.t.

- $\lambda(i)$ is primitive $\forall i \in V(K)$
- $\{\lambda(i) \mid i \in \sigma\}$ is linearly independent over $\mathbb{R} \forall \sigma \in K$.

Moreover,
(1) (K, λ) is called complete if K is star-shaped.
(2) (K, λ) is called non-singular if $\{\lambda(i) \mid i \in \sigma\}$ spans a unimodular submodule of \mathbb{Z}^{n} of rank $|\sigma| \forall \sigma \in K$.
(3) (K, λ) is called positive if $\operatorname{sign} \operatorname{det}\left(\lambda\left(i_{1}\right), \ldots, \lambda\left(i_{n}\right)\right)=o(\sigma)$ $\forall \sigma=\left(i_{1}, \ldots, i_{n}\right) \in K$, where o is the ori. of K as a simplicial mfd.
(4) (K, λ) is called fan-giving if $\exists \Delta$ s.t. $(K, \lambda)=\left(K_{\Delta}, \lambda(\Delta)\right)$.

Sometimes we call the map λ itself a characteristic map.

Topological toric manifolds

Recall that a toric manifold admits an algebraic $\left(\mathbb{C}^{*}\right)^{n}$-action. A topological toric manifold is a closed smooth $2 n$-manifold M with an effective smooth $\left(\mathbb{C}^{*}\right)^{n}$-action with some condition. ${ }^{3}$

Theorem (Ishida-Fukukawa-Masuda 2013)

All topological toric manifolds can be indexed by (K, λ) as T^{n}-manifolds, where (K, λ) is non-singular complete.

Note :

- If (K, λ) is singular, $M(K, \lambda)$ is an orbifold.
- If K is polytopal, $M(K, \lambda)$ is a quasitoric manifold.
- If K is polytopal and (K, λ) is positive, $M(K, \lambda)$ admits a T^{n}-equivariant almost complex structure.
- If (K, λ) is fan-giving, $M(K, \lambda)$ is a toric manifold.

[^2]
Torus symmetries

Torus Manifold

Topological Toric Manifold

Quasitoric
Manifold

Examples

${ }^{5}$ T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, 1988.
${ }^{6}$ H. Ishida, Y. Fukukawa, M. Masuda, Topological toric manifolds, Moscow Math. J. 13 (2013)

Ewald and BBCG construction

Ewald found infinitely many non-projective toric manifolds.

Theorem (Ewald 1986)

$$
M(K, \lambda): \text { toric } \quad \Longrightarrow \quad \exists M\left(\text { wedge }_{v}(K), \lambda^{\prime}\right): \text { toric. }
$$

Furthermore, $M(K, \lambda)$ is projective $\Leftrightarrow M\left(\operatorname{wedge}_{v}(K), \lambda^{\prime}\right)$ is projective.

BBCG rediscovered the idea to produce infinitely many quasitoric mfds.

Theorem (Bahri-Bendersky-Cohen-Gitler 2010)

$M(K, \lambda)$: quasitoric $\Longrightarrow \exists M$ (wedge $\left.{ }_{v}(K), \lambda^{\prime}\right)$: quasitoric.

In fact, $M(K, \lambda)$ is toric $\Leftrightarrow M\left(\right.$ wedge $\left._{v}(K), \lambda^{\prime}\right)$ is toric.

[^3]
Question

To classify toric objects, it seems natural to classify K supporting a toric object first, and find all available λ on a fixed K.

It raises the following natural question.

Question

Find all available λ on wedge ${ }_{v}(K)$ when K supports a toric object in each category .

Equivalence

Let K : star-shaped simplicial sphere with $V(K)=[m]$ and $\lambda: V(K) \rightarrow \mathbb{Z}^{n}$ a characteristic function of $\operatorname{dim} n$.
Denote λ by an $n \times m$ matrix

$$
\lambda=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & m \\
\hline \lambda(1) & \lambda(2) & \lambda(3) & \lambda(4) & \cdots & \lambda(m)
\end{array}\right)
$$

Note : TFAE

- $M(K, \lambda)$ is D-J equivalent to $M\left(K, \lambda^{\prime}\right)$
- \exists weakly equivariant $f: M(K, \lambda) \rightarrow M\left(K, \lambda^{\prime}\right)$ s.t.

- λ^{\prime} can be obtained from λ by elementary row operations.

Projected characteristic map

Let K be a simplicial complex and $\sigma \in K$.
The link of σ is

$$
\operatorname{Lk}_{K} \sigma:=\{\tau \in K \mid \sigma \cup \tau \in K, \sigma \cap \tau=\varnothing\} .
$$

Note : $\operatorname{Lk}_{\text {wedge }_{v} K}\left\{v_{1}\right\} \cong K$

Let (K, λ) be a char. map of $\operatorname{dim} n$ and $\sigma \in K$.

Definition

A characteristic map $\left(\operatorname{Lk}_{K} \sigma, \operatorname{Proj}_{\sigma} \lambda\right)$, called the projected characteristic map, is defined by the map

$$
\left(\operatorname{Proj}_{\sigma} \lambda\right)(v)=[\lambda(v)] \in \mathbb{Z}^{n} /\langle\lambda(w) \mid w \in \sigma\rangle \cong \mathbb{Z}^{n-|\sigma|}
$$

Example

$$
\begin{aligned}
& \text { (} \left.\operatorname{Proj}_{w} \lambda\right)(v)=[\lambda(v)] \in \mathbb{Z}^{n} /\langle\lambda(w)\rangle \cong \mathbb{Z}^{n-1} \\
& \operatorname{Proj}_{1_{1}} \lambda=\left(\begin{array}{ccccccc}
1_{2} & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & -1 & -1 & 0 \\
0 & 1 & 1 & 0 & -1
\end{array}\right) \\
& \operatorname{Proj}_{1_{2}} \lambda=\left(\begin{array}{ccccccc}
1_{1} & 1_{2} & 2 & 3 & 4 & 5 \\
0 & 1 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 & -1 \\
1 & -1 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \left.\hline \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 1 & 0 & -1 \\
1_{1}
\end{array}\right)
\end{aligned}
$$

Main theorem

K : star-shaped simplicial sphere

Theorem

Let (wedge $\left.{ }_{v}(K), \lambda\right)$ a characteristic map, and v_{1}, v_{2} the two new vertices of wedge ${ }_{v}(K)$ created from the wedging at $v \in V(K)$.
Then λ is uniquely determined up to D-J equivalence by $\operatorname{Proj}_{v_{1}} \lambda$ and $\operatorname{Proj}_{v_{2}} \lambda$.

Theorem

(1) λ is non-singular \Longleftrightarrow both $\operatorname{Proj}_{v_{1}} \lambda$ and $\operatorname{Proj}_{v_{2}} \lambda$ are non-singular.
(2) λ is positive \Longleftrightarrow both $\operatorname{Proj}_{v_{1}} \lambda$ and $\operatorname{Proj}_{v_{2}} \lambda$ are positive.
(3) λ is fan-giving \Longleftrightarrow both $\operatorname{Proj}_{v_{1}} \lambda$ and $\operatorname{Proj}_{v_{2}} \lambda$ are fan-giving.

Main theorem

Roughly speaking..

- If one knows every topological toric manifold over K, then we know every topological toric manifold over a wedge of K.
- If one knows every quasitoric manifold over P, then we know every quasitoric manifold over a wedge of P.
- If one knows every toric manifold over K, then we know every toric manifold over a wedge of K.

Revisit Ewald and BBCG construction

For given (K, λ),

$$
\lambda=\left(\begin{array}{c|ccc}
v & & & \\
\hline 1 & a_{2} & \cdots & a_{m} \\
\hline 0 & & & \\
\vdots & & A & \\
0 & & &
\end{array}\right),
$$

put λ^{\prime} (called the canonical extension) on wedge ${ }_{v}(K)$ by

$$
\lambda^{\prime}=\left(\begin{array}{cc|ccc}
v_{1} & v_{2} & & & \\
\hline 1 & -1 & 0 & \cdots & 0 \\
0 & 1 & a_{2} & \cdots & a_{m} \\
\hline 0 & 0 & & & \\
\vdots & \vdots & & A & \\
0 & 0 & & &
\end{array}\right) .
$$

Then, $\operatorname{Proj}_{v_{1}} \lambda=\operatorname{Proj}_{v_{2}} \lambda$ which are chr. maps for K. Hence, by our theorems, it implies the results by Ewald and BBCG.
(1) Wedge operation

- Simplicial complex and Wedge operation
- Simplicial sphere

Torus Symmetries

- Toric objects
- Main theorem
(3) Applications
- Generalized Bott manifolds
- Classification of toric manifolds of Picard number 3
- Projectivity of toric manifolds of Picard number 3
- Further applications and questions

Interesting class of simplicial spheres

It is natural to consider a class of (star-shaped) simplicial spheres which is closed under wedging.

Observe that
(1) $K=$ boundary of $\Delta^{n_{1}} \times \Delta^{n_{2}} \times \cdots \times \Delta^{n_{\ell}}$

$$
\begin{aligned}
\Longrightarrow K=\partial \Delta^{n_{1}} & \cdots \star \partial \Delta^{n_{\ell}} \\
& \Longrightarrow \quad \operatorname{wedge}_{v}(K)=\partial \Delta^{n_{1}+1} \star \partial \Delta^{n_{2}} \star \cdots \star \partial \Delta^{n_{\ell}}
\end{aligned}
$$

(2) Define Pic $K=|V(K)|-\operatorname{dim} K+1=m-n$. Then, Pic K is invariant under wedging.

We are interested in $\left\{\partial \Delta^{n_{1}} \star \cdots \star \partial \Delta^{n_{\ell}}\right\}$ and $\{K \mid \operatorname{Pic} K \leq 3\}$.

Generalized Bott manifolds

generalized Bott tower

$$
B_{n} \xrightarrow{\pi_{n}} B_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_{2}} B_{1} \xrightarrow{\pi_{1}} B_{0}=\{\text { a point }\},
$$

where each $\pi_{i}: B_{i}=P\left(\mathbb{C} \oplus \xi_{i}\right) \rightarrow B_{i-1}$ and ξ_{i} is the Whitney sum of n_{i} complex line bundles over B_{i-1} for $i=1, \ldots, \ell$.

We call each B_{n} a generalized Bott manifold.

A generalized Bott manifold is a projective toric manifold over $\partial \Delta^{n_{1}} \star \cdots \star \partial \Delta^{n_{\ell}}$.

Toric objects over $\partial \Delta^{n_{1}} \star \cdots \star \partial \Delta^{n_{c}}$

Note : one knows all toric objects over a cross-polytope $\left(=\partial \Delta^{1} \star \cdots \star \partial \Delta^{1}\right)^{9}$.

Corollary

We classify all toric objects over $\partial \Delta^{n_{1}} \star \cdots \star \partial \Delta^{n_{\ell}}$. In particular, any toric manifold over $\partial \Delta^{n_{1}} \star \cdots \star \partial \Delta^{n_{\ell}}$ is a generalized Bott manifold.

The above corollary covers works by Batyrev ${ }^{10}$, Dobrinskaya ${ }^{11}$, and C-Masuda-Suh ${ }^{12}$.

[^4]
Toric manifolds of small Picard number

We focus our interests in toric manifolds with small Pic K.

Pic K	K	toric manifold	projective?
1	$\partial \Delta^{n}$	$\mathbb{C} P^{n}$	Yes
2	$\partial \Delta^{k} \star \partial \Delta^{n-k}$	$\mathbb{C} P^{k}$-bundle over $\mathbb{C} P^{n-k}$	Yes
3	$?$	$?$	$?$
4	$?$	$?$	No

- X : toric manifold of Picard number 3
- $\Delta=(K, \lambda)$: corresponding fan (\Rightarrow fan-giving non-singular)

We observe that K is obtained by a sequence of wedgings from either the octahedron $=\partial \Delta^{1} \star \partial \Delta^{1} \star \partial \Delta^{1}$ or the pentagon P_{5}. ${ }^{13}$

[^5]
Toric manifolds of small Picard number 3

- from $\partial \Delta^{1} \star \partial \Delta^{1} \star \partial \Delta^{1}: X$ is a generalized Bott manifold.
- from P_{5} :

Up to rotational symmetry of P_{5} and basis change of \mathbb{Z}^{2}, any fan-giving non-singular chr. map is described by

$$
\lambda_{d}:=\left(\begin{array}{ccccc}
1 & 0 & -1 & -1 & d \\
0 & 1 & 1 & 0 & -1
\end{array}\right)
$$

for an arbitrary $d \in \mathbb{Z}$.

Corollary

We classify all toric manifolds of Picard number 3.

Note : It reproves the result of Batyrev ${ }^{14}$.
${ }^{14}$ V. V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. (2) 43 (1991)

Example

P_{5} : pentagon on $\{1,2,3,4,5\}$
Consider wedge ${ }_{3} P_{5}$ and assume that $\operatorname{Proj}_{3_{1}}(\lambda)=\lambda_{d}$.

$$
\lambda=\left(\begin{array}{cccccc}
1 & 2 & 3_{1} & 3_{2} & 4 & 5 \\
\hline 1 & 0 & 0 & -1 & -1 & d \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & n_{3} & n_{4} & n_{5}
\end{array}\right)
$$

Now consider $\operatorname{Proj}_{3_{2}}(\lambda)$.

$$
\lambda \sim\left(\begin{array}{cccccc}
1 & 2 & 3_{1} & 3_{2} & 4 & 5 \\
\hline-n_{3} & 0 & -1 & 0 & n_{3}-n_{4} & -n_{5}-d n_{3} \\
n+3+1 & 1 & 1 & 0 & n_{4}-n_{3}-1 & -1+n_{5}+d n_{3}+d \\
n_{3}+1 & 0 & 1 & -1 & n_{4}-n_{3}-1 & n_{5}+d n_{3}+d
\end{array}\right)
$$

Hence,

$$
\operatorname{Proj}_{3_{2}}(\lambda)=\left(\begin{array}{ccccc}
1 & 2 & 3_{1} & 4 & 5 \\
\hline-n_{3} & 0 & -1 & n_{3}-n_{4} & -n_{5}-d n_{3} \\
n_{3}+1 & 1 & 1 & n_{4}-n_{3}-1 & -1+n_{5}+d n_{3}+d
\end{array}\right)
$$

$\therefore n_{3}=-1, n_{5}=0,(1-d) n_{4}=0$.

Hence, all toric manifolds over wedge ${ }_{3} P_{5}$ whose $\operatorname{Proj}_{3_{1}} \lambda=\lambda_{d}$ are of the form, for $d, e \in \mathbb{Z}$,

$$
\left(\begin{array}{cccccc}
1 & 2 & 3_{1} & 3_{2} & 4 & 5 \\
\hline 1 & 0 & 0 & -1 & -1 & d \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 & 0 & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cccccc}
1 & 2 & 3_{1} & 3_{2} & 4 & 5 \\
\hline 1 & 0 & 0 & -1 & -1 & 1 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 & e & 0
\end{array}\right) .
$$

By consideration of rotation, one can find all toric manifolds over wedge ${ }_{3} P_{5}$.

Classification

$m-n$	complex	toric manifold	projective?
1	$n-$ simplex $\partial \Delta^{n}$	$\mathbb{C} P^{n}$	Yes
2	$\partial \Delta^{k} \star \partial \Delta^{n-k}$	gen. Bott manifold	Yes
3	$\partial \Delta^{n_{1}} \star \partial \Delta^{n_{2}} \star \partial \Delta^{n_{3}}$	gen. Bott manifold	Yes
	$P_{5}\left(a_{1}, \ldots, a_{5}\right)$	Done	$?$
4	$?$	$?$	No

Table: Classification complete for Picard number 3.

Projectivity

Unfortunately, our theorem does not hold in the category of projective toric manifolds in general.

Example

Let $P_{[7]}$ be the cyclic 4-polytope with 7 vertices. Define (wedge ${ }_{1} P_{[7]}, \lambda$) by the matrix

$$
\lambda=\left(\begin{array}{cccccccc}
1_{1} & 1_{2} & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline-16 & 16 & -1 & 0 & 0 & 0 & 0 & 1 \\
-33 & 83 & -6 & 0 & 0 & 0 & 1 & 0 \\
-37 & 127 & -10 & 0 & 0 & 1 & 0 & 0 \\
-33 & 123 & -10 & 0 & 1 & 0 & 0 & 0 \\
-13 & 63 & -6 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

which is fan-giving and singular. Then $M\left(\right.$ wedge $\left._{1} P_{[7]}, \lambda\right)$ is not projective although its projections are projective.

Figure : A Shephard diagram for non-projective one over wedge ${ }_{1} P_{[7]}$.

Projectivity

However, our theorem holds in the projective category with some assumptions.

Theorem

Assume Pic $K=3$. Let (wedge $\left._{v}(K), \lambda\right)$ be a fan-giving non-singular characteristic map. Then

```
M(wedge 
    b both M (K, Proj}\mp@subsup{v}{\mp@subsup{v}{1}{}}{}\lambda)\mathrm{ and M(K, Proj}\mp@subsup{v}{\mp@subsup{v}{2}{}}{}\lambda)\mathrm{ are projective.
```

Note : all toric manifolds over a pentagon are projective.

Corollary

All toric manifolds of Pic 3 are projective.
The above result greatly improves the proof by Kleinschmidt-Stumfels ${ }^{15}$.
${ }^{15}$ P. Kleinschmidt, B. Sturmfels, Smooth toric varieties with small picard number are projective, Topology 30 (1991)

Real analogues

- M : a toric variety of complex dimension n.

Then, \exists a canonical involution ι on M, and M^{ι} form a real subvariety of real dimension n, called a real toric variety

- Similarly, "real" versions of topol. toric and quasitoric manifolds are real topological toric manifolds and small covers, resp.

Such real analogues of toric objects can be described as a \mathbb{Z}_{2}-version of (K, λ), that is, $\lambda: V(K) \rightarrow \mathbb{Z}_{2}^{n}$.

Theorem

λ is uniquely determined by $\operatorname{Proj}_{v_{1}} \lambda$ and $\operatorname{Proj}_{v_{2}} \lambda$. Furthermore, λ is non-singular if and only if so are $\operatorname{Proj}_{v_{1}} \lambda$ and $\operatorname{Proj}_{v_{2}} \lambda$.

Corollaries

We have the following corollaries.
(1) We have all classification of toric objects over K with Pic $K=3$.
(2) The number of real toric over $P_{5}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ is

$$
2^{a_{1}+a_{4}-1}+2^{a_{2}+a_{5}-1}+2^{a_{3}+a_{1}-1}+2^{a_{4}+a_{2}-1}+2^{a_{5}+a_{3}-1}-5 .
$$

(3) The number of small cover over $P_{[7]}(J)$ is 2 for any J.
(4) The lifting problem holds for $\operatorname{Pic} K \leq 3$. That is, any small cover is realized as fixed points of the conjugation of a quasitoric manifold if Pic $K \leq 3$. Indeed, all small covers over $P_{5}(J)$ are real toric.
(5) By applying the Suciu-Trevisan formula, we compute rational Betti numbers of toric objects over $P_{5}(J)$.

Further questions

(1) Does our theorem hold in the projective non-singular category?
(2) Classify and study (real) toric objects over K with Pic $K=4$. (The only thing what we have to do is to characterize all (star-shaped, polytopal) seed simplicial spheres of Picard number 4. It means that if K supports toric objects, then $K=S(J)$ for some seed S and $J \in \mathbb{N}^{m}$.)

Question (Cohomological rigidity problem)

M, N : toric manifolds

$$
M \stackrel{\text { diff }}{\cong} N \quad \stackrel{?}{\Longleftrightarrow} \quad H^{*}(M) \cong H^{*}(N)
$$

(3) Classify toric objects over K with Pic $K=3$ topologically. Note : The answer to the problem for Pic $K \leq 2$ is affirmative. ${ }^{16}$
${ }^{16}$ S. Choi, M. Masuda, D. Y. Suh, Topological classification of generalized Bott towers, Trans. Amer. Math. Soc. 362 (2010)

The end of the talk

Thank you!

Mulţumesc

[^0]: ${ }^{1}$ A. Hattori and M. Masuda, Theory of multi-fans, Osaka J. Math. 40 (2003)

[^1]: ${ }^{2}$ M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991)

[^2]: ${ }^{3}$ H. Ishida, Y. Fukukawa, M. Masuda, Topological toric manifolds, Moscow Math. J. 13 (2013)
 ${ }^{4}$ A. A. Kustarev, Equivariant almost complex structures on quasitoric manifolds, Uspekhi Mat. Nauk 64 (2009)

[^3]: ${ }^{7}$ G. Ewald, Spherical complexes and nonprojective toric varieties, Discrete Comput. Geom. 1 (1986)
 ${ }^{8}$ A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, Operations on polyhedral products and a new topological construction of infinite families of toric manifolds, arXiv:1011.0094 (2010)

[^4]: ${ }^{9}$ M. Masuda, P. E. Panov, Semifree circle actions, Bott towers and quasitoric manifolds, Sb. Math. 199 (2008)
 ${ }^{10}$ V. V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. (2) 43 (1991)
 ${ }^{11}$ N. E. Dobrinskaya, Classification problem for quasitoric manifolds over a given simple polytope, Funct. Anal. and Appl. 35 (2001)
 ${ }^{12}$ S. Choi, M. Masuda, and D. Y. Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010)

[^5]: ${ }^{13}$ J. Gretenkort, P. Kleinschmidt, B. Sturmfels, On the existence of certain smooth toric varieties, Biscrete Comput. Geom. 5 (1990)

