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Braids and representations
Geometrical interpretation

Computations and relations

The braid group

Definition
The n-th braid group Bn is the
fundamental group of the space of
unordered n-tuples of distinct points in C.

Bn := π1

Cn \
⋃
i<j

{zi = zj}

/
Sn


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The braid group

Definition
The n-th braid group Bn is the
fundamental group of the space of
unordered n-tuples of distinct points in C.

Bn := π1

Cn \
⋃
i<j

{zi = zj}

/
Sn


This is a braid on 4

strands.
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The standard presentation of the braid group

The braid group on n + 1 strands has a presentation given by
generators and relations:〈

σ1, . . . , σn

∣∣∣∣

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 1
σiσj = σjσi for |i− j| > 1

〉
.

The generator σi corresponds to the twist
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Dehn twist

Let S be an oriented surface and a a simple closed curve in S.
We call Da the Dehn twist along a.

If two simple curves a, b do not intersect, the corresponding
Dehn twists commute DaDb = DbDa. When they intersect in one
point, the associated Dehn twists satisfy the braid relation
DaDbDa = DbDaDb.
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The mapping class group

Let Sg,n be an oriented surface of genus g, with n boundary
components.

Definition
We call MCG(Sg,n) the mapping class group of Sg,n, that is the
group of isotopy classes of orientation preserving
diffeomorphisms of Sg,n that fix the boundary pointwise.
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Geometric representation

We can define standard geometric embeddings
φ : B2g+1 → MCG(Sg,1) and φ : B2g+2 → MCG(Sg,2) mapping the
standard braid generators to Dehn twist

and hence there is an action on the H1 of the surface that
preserves the intersection form.

B2g+1 → Aut(H1(Sg,1;Z), < ·, · >) = Sp2g(Z)

B2g+2 → Aut(H1(Sg,2;Z), < ·, · >) = Sp2g+1(Z)
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Polynomial extension

The previous action naturally extends to the symmetric algebra
with Z-linear automorphisms that preserve the degree.

H1(Sg,1,Z)∗ =< x1, y1, . . . , xg, yg >

M = Z[x1, y1, . . . , xg, yg]

B2g+1 → AutZ(Z[x1, y1, . . . , xg, yg])

(and analogous for B2g+2). We are interested in the cohomology
of braid groups with coefficients in this representation.
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Another point of view (in a special case)

Let T2 be the 2-dimensional compact torus.

Definition

Diff+(T2) is the group of orientation preserving
diffeomorphisms of the torus and Diff0T2 is the connected
component of the identity.

We have the exact sequence

1→ Diff0(T2)→ Diff+(T2)→ SL2(Z)→ 1

that induces the fibration of classifying spaces

BDiff0(T2) ↪→ BDiff+(T2)→ BSL2(Z)
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Homotopy equivalences

Theorem

The inclusion T2 ↪→ Diff0(T2) is an homotopy equivalence.

As a consequence we have the homotopy equivalences

BDiff0(T2) ' BT2 ' (CP∞)2

and the cohomology of this space is

M := H∗(BDiff0(T2);Z) = Z[x, y]

where x, y are generators in degree 2. We call Mq the
homogeneous component of M of degree q.

The group SL2(Z) acts on Z[x, y] extending the standard action
on < x, y >.
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The spectral sequence

From the fibration BDiff0(T2) ↪→ BDiff+(T2)→ BSL2(Z) we get
the Serre spectral sequence

Ei,j
2 = Hi(SL2(Z); Mj)⇒ Hi+j(BDiff+(T2);Z)

Theorem
The group SL2(Z) is isomorphic to the amalgamated product

Z4 ∗Z2 Z6.

Corollary
The spectral sequence above collapses if we tensor the
coefficients by a ring R such that 2 and 3 are invertible in R.
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A central extension

There is an extension

1→ Z→ B3
ψ→ SL2(Z)→ 1.

defined by ψ : σ1 7→
(

1 0
−1 1

)
, ψ : σ2 7→

(
1 1
0 1

)
.

The kernel of ψ is the index 2 subgroup of the center of B3.
The map ψ induces an action of B3 on (CP∞)2. Define the Borel
constructions X := EB3 ×B3 (CP∞)2 that fits into the fibration

(CP∞)2 ↪→ X → BB3.

The associated Serre spectral sequence is give by

Ei,j
2 = Hi(B3; Mj)⇒ Hi+j(X;Z).
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Results

In ’88 Furusawa, Tezuka, Yagita computed the cohomology of
SL2(Z) with coefficients in the module Q[x, y] and Zp[x, y] for any
prime p.

We compute the cohomology of SL2(Z) and B3 with coefficients
in the module M = Z[x, y].
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Principal congruence subgroups

Definition
The principal congruence subgroup of level n, Γ(n) ⊂ SL2(Z) is
the kernel of the mod-n reduction map

SL2(Z)→ SL2(Zn)

and the group BΓ(n) is the subgroup of B3 that is the
counter-image of Γ(n) with respect to the projection
ψ : B3 → SL2(Z).
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Principal congruence subgroups - II

The group SL2(Z2) is the symmetric group Σ3 on three
elements. The group BΓ(2) ⊂ B3 is the kernel of the map
B3 → Σ3 and hence is the pure braid group P3 on three strands.

By the Kurosh subgroup Theorem, Γ(2) = F2 × Z2.
For n > 2 the group Γ(n) is a free, finitely generated.

We compute the cohomology with coefficients in the module
M = Z[x, y] also for the subgroups Γ(n) and BΓ(n).
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elements. The group BΓ(2) ⊂ B3 is the kernel of the map
B3 → Σ3 and hence is the pure braid group P3 on three strands.

By the Kurosh subgroup Theorem, Γ(2) = F2 × Z2.
For n > 2 the group Γ(n) is a free, finitely generated.

We compute the cohomology with coefficients in the module
M = Z[x, y] also for the subgroups Γ(n) and BΓ(n).
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Modular forms

Let k be a positive integer and f an holomorphic form on the
upper half-plane H ∪ {∞}.

Definition
The function f is an cusp integral modular form of weight k (w.r.
to SL2(Z)) if

f
(

az + b
cz + d

)
= (cz + d)kf (z) ∀k

(
a b
c d

)
∈ SL2(Z).

and f (∞) = 0.

Definition

We callM0
k the space of cusp modular forms of weight k.
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Eicher-Shimura isomorphism

Theorem

For k odd the group Hi(SL2(Z); M2k ⊗ R) is always trivial.
For k even we have:

Hi(SL2(Z); M2k⊗R) =


M0

k+2 ⊕ R if i = 1 and k ≥ 1
0 if i > 0 or i = 0 and k > 0
R if i = k = 0.

Recall that M is trivial in odd dimension.
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Divided polynomial algebra

Definition (Divided polynomial algebra)

Let ∆[x] be the sub-Z-module of Q[x] generated by the
elements xn := xn

n! , for n ∈ N. For any ring R we define
∆R[x] := ∆[x]⊗Z R.

The module ∆[x] is closed by multiplication and the product

satisfy the relation xixj =

(
i + j

i

)
xi+j. We define in ∆[x] the

ideal Ip := (pvp(n)+1xn, for n ∈ N) where vp is the p-adic additive
valuation.

Definition (p-local divided polynomial algebra)

∆p[x] := ∆[x]/Ip.
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Divided polynomials and torsion

The element xpn generate in ∆p[x] a submodule isomorphic to
Zpn+1 .

Definition
We define also ∆+[x] as the submodule of elements with zero
constant term.
In more variables we define ∆p[x, y] := ∆p[x]⊗∆p[y].

Theorem

∆+
p [x] = ∆+

Z(p)
[x]/(px).
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Cohomology of SL2(Z)

Theorem (-, Cohen, Salvetti)

H1(SL2(Z); M)(p) = ∆+
p [Pp,Qp]

where degPp = 2(p + 1) and degQp = 2p(p− 1).

Theorem (-, C, S)

For i > 1 the cohomology Hi(SL2(Z); Mq) is 2-periodic in i. The
free part is trivial and only 2, 4 and 3 torsion appear.
H2i(SL2(Z); M8q) contains one submodule isomorphic to Z4. All
the others groups are direct sum of modules isomorphic to Z2
and Z3.
Poincaré series for 2 and 3 torsion are computed.
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Cohomology of B3

Theorem (-, C, S)

H1(B3; M)(p) = H1(SL2(Z); M)(p);

H1(B3; Mq⊗Q) = H2(B3; Mq⊗Q) = H1(SL2(Z); Mq⊗Q) for q > 0;
H2(B3; M)(p) = H1(SL2(Z); M)(p) for any prime p ≥ 5.

Theorem (-, C, S)

H2(B3; M)(2) = ∆+
2 [P2,Q2]⊕ Z2[Q2]/ ∼

with Q
n
2

n! ∼ 2Qn
2;

H2(B3; M)(3) = ∆+
3 [P3,Q3]⊕ Z3[Q3]/ ∼

with Q
n
3

n! ∼ 3Qn
3 and P3

Qn
3

n! ∼ 0.
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Cohomology of Γ(2)

The Γ(n)-invariants in M can be easily computer with a
generalization of Dickson invariant theory.

Theorem (-, C, S)

Let F2 be the subgroup of SL2(Z) freely generated by s2
1, s

2
2. The

following isomorphisms hold.
For even n H1(Γ(2); Mn) = H1(F2; Mn),
and for i > 0 H2i(Γ(2); Mn) = H0(F2; Mn ⊗ Z2) = Mn ⊗ Z2,
H2i+1(Γ(2); Mn) = H1(F2; Mn)⊗ Z2.
For odd n and for i > 0
H2i−1(Γ(2); Mn) = H0(F2; Mn ⊗ Z2) = Mn ⊗ Z2,
H2i(Γ(2); Mn) = H1(F2; Mn)⊗ Z2 = H1(F2; Mn ⊗ Z2).
Moreover for any n we have
H1(F2; Mn ⊗ Z2) = (Mn ⊕Mn)⊗ Z2.
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Cohomology of Γ(n)

Schreier index formula allows to compute the rank of
H∗(Γ(m); Mn ⊗Q). [Details]

Theorem (-, C, S)
Let p be a prime number and m > 1 an integer.
If p - m
the p-torsion component of H1(Γ(m); Mn) is given by:
H1(Γ(m); Mn)(p) = H1(SL2(Z); Mn)(p) = ∆+

p [Pp,Qp]deg=n.

If p | m , suppose pa | m, pa+1 - m. Then we have
H1(Γ(m); M>0)(p) ' ∆+

pa [x, y] where x, y have degree 1.
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Cohomology of BΓ(n)

Theorem (-, C, S)

H0(BΓ(2); M0) = Z, H1(BΓ(2); M0) = Z3, H2(BΓ(2); M0) = Z2

Let n > 0; for even n; H0(BΓ(2); Mn) = H0(Γ(2); Mn),

H1(BΓ(2); Mn) = H2(BΓ(2); Mn) = H1(Γ(2); Mn)

for odd n; H0(BΓ(2); Mn) = 0,
H1(BΓ(2); Mn) = H1(Γ(2); Mn) = Mn ⊗ Z2,

H2(BΓ(2); Mn) = H2(Γ(2); Mn) = (Mn ⊕Mn)⊗ Z2
for any m > 2, for any n :
H∗(BΓ(m); Mn) = H∗(Γ(m); Mn)⊗ H∗(Z;Z).
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Methods

SL2(Z) = Z4 ∗Z2 Z6;

Dickson’s invariant theory for SL2(Z);

explicit computations for H∗(G; M), G = Z2,Z4,Z6;

study of the spectral sequence for Z→ B3 → SL2(Z);

study of the maps of spectral sequences induced by
Z4 ↪→ SL2(Z) and Z6 ↪→ SL2(Z);

Bockstein homomorphisms.
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And now something completely different...

In ’79 Cohen, Moore and Neisendorfer constructed a family of
maps

Ω2S2n+1 αn−→ S2n−1

such that the composition Ω2S2n+1 αn−→ S2n−1 E→ Ω2S2n+1 with the
double suspension gives, up to homotopy, the pr power map, for
any prime p ≥ 3, and r ≥ 1.
The existence of the map αn, for r = 1, was used to show that
p2n annihilates the p-torsion in π∗(S2n+1).
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Anick fibration

Cohen, Moore and Neisendorfer conjectured the existence of a
p-local fibration

S2n−1 → Tpr (2n + 1)→ ΩS2n+1.

with connecting map Ω2S2n+1 αn−→ S2n−1.
In ’93 Anick constructed such a fibration sequence for p > 3. In
2007 Gary and Theriault gave a construction that is valid also
for p = 3.

Theorem
The reduced cohomology of the space Tp(2n + 1) is given by:

Hi
(Tp(2n + 1);Z(p)) =

{
Z/pr if i = 2npr−1k, p - k;
0 otherwise.
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A surprising relation

Theorem (-,C, S)
Let p ≥ 5 be a prime.
a) H∗(EB3 ×B3 (CP∞)2;Z)(p) = H∗(S1 × BDiff+(T2);Z)(p)

b) The p-torsion component in the cohomology group
H∗(EB3 ×B3 (CP∞)2;Z) is isomorphic to the reduced
cohomology of the space

Σ2(Tp(2p+3)×Tp(2p2−2p+1))∨Σ(Tp(2p+3)∨Tp(2p2−2p+1)).

Question
Is there any topological explanation for the isomorphism above?
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Theorem

The group H0(Γ(m); Mn) is isomorphic to M0 for n = 0 and is
trivial for n > 0.

Theorem
Let m > 2 be an integer that factors as m = pa1

1 · · · p
ak
k . The

cardinality of SL2(Zm) is given by d =
∏

i p(ai−1)3
i pi(p2

i − 1) and if
we define i = d

p1(p2
1−1)

then Γ(m) is a free group of rank

r =

{
i/2 + 1 if p1 = 2
i(p1(p2

1 − 1)− 1) + 1 if p1 > 2

The rank of the group H1(Γ(m); Mn ⊗Q) is r, for n = 0 and
(r − 1)(n + 1) for n > 0.
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