# Braid cohomology，principal congruence subgroups and geometric representations 

Filippo Callegaro<br>Universitá di Pisa

joint work with<br>Fred Cohen（Univ．Rochester）<br>Mario Salvetti（Univ．Pisa）

Joint AMS－RMS Meeting
Alba Iulia，June 29th 2013

## The braid group

## Definition

The $n$-th braid group $B_{n}$ is the fundamental group of the space of unordered $n$-tuples of distinct points in $\mathbb{C}$.

$$
B_{n}:=\pi_{1}\left(\mathbb{C}^{n} \backslash \bigcup_{i<j}\left\{z_{i}=z_{j}\right\} / \mathfrak{S}_{n}\right)
$$

## The braid group

## Definition

The $n$-th braid group $B_{n}$ is the fundamental group of the space of unordered $n$-tuples of distinct points in $\mathbb{C}$.

$$
B_{n}:=\pi_{1}\left(\mathbb{C}^{n} \backslash \bigcup_{i<j}\left\{z_{i}=z_{j}\right\} / \mathfrak{S}_{n}\right)
$$



This is a braid on 4 strands.

## The standard presentation of the braid group

The braid group on $n+1$ strands has a presentation given by generators and relations:

## The standard presentation of the braid group

The braid group on $n+1$ strands has a presentation given by generators and relations:

$$
\left\langle\sigma_{1}, \ldots, \sigma_{n}\right|
$$



## The standard presentation of the braid group

The braid group on $n+1$ strands has a presentation given by generators and relations:

$$
\left.\left\langle\sigma_{1}, \ldots, \sigma_{n}\right| \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \quad \text { for } i=1, \ldots, n-1\right\rangle
$$

## The standard presentation of the braid group

The braid group on $n+1$ strands has a presentation given by generators and relations:

$$
\left\langle\begin{array}{c|cc}
\sigma_{1}, \ldots, \sigma_{n} & \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & \text { for } i=1, \ldots, n-1 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for }|i-j|>1
\end{array}\right\rangle .
$$

## The standard presentation of the braid group

The braid group on $n+1$ strands has a presentation given by generators and relations:

$$
\left\langle\begin{array}{c|cc}
\sigma_{1}, \ldots, \sigma_{n} & \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & \text { for } i=1, \ldots, n-1 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for }|i-j|>1
\end{array}\right\rangle
$$

The generator $\sigma_{i}$ corresponds to the twist


## Dehn twist

Let $S$ be an oriented surface and $a$ a simple closed curve in $S$. We call $D_{a}$ the Dehn twist along $a$.


If two simple curves $a, b$ do not intersect, the corresponding Dehn twists commute $D_{a} D_{b}=D_{b} D_{a}$. When they intersect in one point, the associated Dehn twists satisfy the braid relation
$D_{a} D_{b} D_{a}=D_{b} D_{a} D_{b}$.

## Dehn twist

Let $S$ be an oriented surface and $a$ a simple closed curve in $S$. We call $D_{a}$ the Dehn twist along $a$.


If two simple curves $a, b$ do not intersect, the corresponding Dehn twists commute $D_{a} D_{b}=D_{b} D_{a}$. When they intersect in one point, the associated Dehn twists satisfy the braid relation $D_{a} D_{b} D_{a}=D_{b} D_{a} D_{b}$.

## Dehn twist

Let $S$ be an oriented surface and $a$ a simple closed curve in $S$. We call $D_{a}$ the Dehn twist along $a$.


If two simple curves $a, b$ do not intersect, the corresponding
Dehn twists commute $D_{a} D_{b}=D_{b} D_{a}$.
point, the associated Dehn twists satisfy the braid relation

## Dehn twist

Let $S$ be an oriented surface and $a$ a simple closed curve in $S$. We call $D_{a}$ the Dehn twist along $a$.


If two simple curves $a, b$ do not intersect, the corresponding Dehn twists commute $D_{a} D_{b}=D_{b} D_{a}$. When they intersect in one point, the associated Dehn twists satisfy the braid relation $D_{a} D_{b} D_{a}=D_{b} D_{a} D_{b}$.

## The mapping class group

Let $S_{g, n}$ be an oriented surface of genus $g$, with $n$ boundary components.


## Definition

We call $M C C\left(S_{g, n}\right)$ the mapping class group of $S_{g, n}$, that is the group of isotopy classes of orientation preserving diffeomorphisms of $S_{g, n}$ that fix the boundary pointwise.

## The mapping class group

Let $S_{g, n}$ be an oriented surface of genus $g$, with $n$ boundary components.


## Definition

We call $M C G\left(S_{g, n}\right)$ the mapping class group of $S_{g, n}$, that is the group of isotopy classes of orientation preserving diffeomorphisms of $S_{g, n}$ that fix the boundary pointwise.

## Geometric representation

We can define standard geometric embeddings
$\phi: B_{2 g+1} \rightarrow M C G\left(S_{g, 1}\right)$ and $\phi: B_{2 g+2} \rightarrow M C G\left(S_{g, 2}\right)$ mapping the standard braid generators to Dehn twist
and hence there is an action on the $H_{1}$ of the surface that preserves the intersection form.

## Geometric representation

We can define standard geometric embeddings
$\phi: B_{2 g+1} \rightarrow M C G\left(S_{g, 1}\right)$ and $\phi: B_{2 g+2} \rightarrow M C G\left(S_{g, 2}\right)$ mapping the standard braid generators to Dehn twist

and hence there is an action on the $H_{1}$ of the surface that preserves the intersection form.

## Geometric representation

We can define standard geometric embeddings
$\phi: B_{2 g+1} \rightarrow M C G\left(S_{g, 1}\right)$ and $\phi: B_{2 g+2} \rightarrow M C G\left(S_{g, 2}\right)$ mapping the standard braid generators to Dehn twist

and hence there is an action on the $H_{1}$ of the surface that preserves the intersection form.

## Geometric representation

We can define standard geometric embeddings
$\phi: B_{2 g+1} \rightarrow \operatorname{MCG}\left(S_{g, 1}\right)$ and $\phi: B_{2 g+2} \rightarrow \operatorname{MCG}\left(S_{g, 2}\right)$ mapping the standard braid generators to Dehn twist

and hence there is an action on the $H_{1}$ of the surface that preserves the intersection form.

## Geometric representation

We can define standard geometric embeddings
$\phi: B_{2 g+1} \rightarrow M C G\left(S_{g, 1}\right)$ and $\phi: B_{2 g+2} \rightarrow M C G\left(S_{g, 2}\right)$ mapping the standard braid generators to Dehn twist

and hence there is an action on the $H_{1}$ of the surface that preserves the intersection form.

## Geometric representation

We can define standard geometric embeddings
$\phi: B_{2 g+1} \rightarrow \operatorname{MCG}\left(S_{g, 1}\right)$ and $\phi: B_{2 g+2} \rightarrow \operatorname{MCG}\left(S_{g, 2}\right)$ mapping the standard braid generators to Dehn twist

and hence there is an action on the $H_{1}$ of the surface that preserves the intersection form.

$$
\begin{gathered}
B_{2 g+1} \rightarrow \operatorname{Aut}\left(H_{1}\left(S_{g, 1} ; \mathbb{Z}\right),<\cdot, \cdot>\right)=\operatorname{Sp}_{2 g}(\mathbb{Z}) \\
B_{2 g+2} \rightarrow \operatorname{Aut}\left(H_{1}\left(S_{g, 2} ; \mathbb{Z}\right),<\cdot, \cdot>\right)=\operatorname{Sp}_{2 g+1}(\mathbb{Z})
\end{gathered}
$$

## Polynomial extension

The previous action naturally extends to the symmetric algebra with $\mathbb{Z}$-linear automorphisms that preserve the degree.
(and analogous for $B_{2 g+2}$ ). We are interested in the cohomology of braid groups with coefficients in this representation.

## Polynomial extension

The previous action naturally extends to the symmetric algebra with $\mathbb{Z}$-linear automorphisms that preserve the degree.

$$
H_{1}\left(S_{g, 1}, \mathbb{Z}\right)^{*}=<x_{1}, y_{1}, \ldots, x_{g}, y_{g}>
$$

(and analogous for $B_{2 g+2}$ ). We are interested in the cohomology of braid groups with coefficients in this representation.

## Polynomial extension

The previous action naturally extends to the symmetric algebra with $\mathbb{Z}$-linear automorphisms that preserve the degree.

$$
H_{1}\left(S_{g, 1}, \mathbb{Z}\right)^{*}=<x_{1}, y_{1}, \ldots, x_{g}, y_{g}>
$$

$$
M=\mathbb{Z}\left[x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right]
$$

(and analogous for $B_{2 g+2}$ ). We are interested in the cohomology of braid groups with coefficients in this representation.

## Polynomial extension

The previous action naturally extends to the symmetric algebra with $\mathbb{Z}$-linear automorphisms that preserve the degree.

$$
\begin{gathered}
H_{1}\left(S_{g, 1}, \mathbb{Z}\right)^{*}=<x_{1}, y_{1}, \ldots, x_{g}, y_{g}> \\
M=\mathbb{Z}\left[x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right] \\
B_{2 g+1} \rightarrow A u t_{\mathbb{Z}}\left(\mathbb{Z}\left[x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right]\right)
\end{gathered}
$$

(and analogous for $B_{2 g+2}$ ). We are interested in the cohomology
of braid groups with coefficients in this representation.

## Polynomial extension

The previous action naturally extends to the symmetric algebra with $\mathbb{Z}$-linear automorphisms that preserve the degree.

$$
\begin{gathered}
H_{1}\left(S_{g, 1}, \mathbb{Z}\right)^{*}=<x_{1}, y_{1}, \ldots, x_{g}, y_{g}> \\
M=\mathbb{Z}\left[x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right] \\
B_{2 g+1} \rightarrow A u t_{\mathbb{Z}}\left(\mathbb{Z}\left[x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right]\right)
\end{gathered}
$$

(and analogous for $B_{2 g+2}$ ). We are interested in the cohomology of braid groups with coefficients in this representation.

## Another point of view (in a special case)

## Let $T^{2}$ be the 2-dimensional compact torus.

Definition
Diff $_{+}\left(T^{2}\right)$ is the group of orientation preserving
diffeomorphisms of the torus and Diff $_{0} T^{2}$ is the cornected component of the identity.

We have the exact sequence

$$
1 \rightarrow \text { Diff }_{0}\left(T^{2}\right) \rightarrow \text { Diff }_{+}\left(T^{2}\right) \rightarrow S L_{2}(\mathbb{Z}) \rightarrow 1
$$

that induces the fibration of classifying spaces
BDiffo $\left(T^{2}\right) \hookrightarrow$ BDiff $\left(T^{2}\right) \rightarrow$ BSL $_{2}(\mathbb{Z})$

## Another point of view (in a special case)

Let $T^{2}$ be the 2-dimensional compact torus.

## Definition

Diff $_{+}\left(T^{2}\right)$ is the group of orientation preserving diffeomorphisms of the torus and Diffo $T^{2}$ is the connected component of the identity.

We have the exact sequence

that induces the fibration of classifying spaces
$B D_{i f f}\left(T^{2}\right) \hookrightarrow B D$ iff $+\left(T^{2}\right) \rightarrow B S L_{2}(\mathbb{Z})$

## Another point of view (in a special case)

Let $T^{2}$ be the 2-dimensional compact torus.

## Definition

Diff $_{+}\left(T^{2}\right)$ is the group of orientation preserving diffeomorphisms of the torus and $\operatorname{Diff}_{0} T^{2}$ is the connected component of the identity.

We have the exact sequence

$$
1 \rightarrow \text { Diff }_{0}\left(T^{2}\right) \rightarrow \text { Diff }_{+}\left(T^{2}\right) \rightarrow S L_{2}(\mathbb{Z}) \rightarrow 1
$$

that induces the fibration of classifying spaces
BDiff $_{0}\left(T^{2}\right) \hookrightarrow$ BDiff $_{+}\left(T^{2}\right) \rightarrow$ BSL $_{2}(\mathbb{Z})$

## Another point of view (in a special case)

Let $T^{2}$ be the 2-dimensional compact torus.

## Definition

Diff $_{+}\left(T^{2}\right)$ is the group of orientation preserving diffeomorphisms of the torus and Diff $T^{2}$ is the connected component of the identity.

We have the exact sequence

$$
1 \rightarrow \text { Diff }_{0}\left(T^{2}\right) \rightarrow \text { Diff }_{+}\left(T^{2}\right) \rightarrow S L_{2}(\mathbb{Z}) \rightarrow 1
$$

that induces the fibration of classifying spaces

$$
\text { BDiff }_{0}\left(T^{2}\right) \hookrightarrow B D_{i f f_{+}}\left(T^{2}\right) \rightarrow B S L_{2}(\mathbb{Z})
$$

## Homotopy equivalences

## Theorem

The inclusion $T^{2} \hookrightarrow \operatorname{Diff}_{0}\left(T^{2}\right)$ is an homotopy equivalence.
As a consequence we have the homotopy equivalences
$B$ Diff $_{0}\left(T^{2}\right) \simeq B T^{2} \simeq\left(\mathbb{C P}^{\infty}\right)^{2}$
and the cohomology of this space is $M:=H^{*}\left(B D i f f_{0}\left(T^{2}\right) ; \mathbb{Z}\right)=\mathbb{Z}[x, y]$
where $x, y$ are generators in degree 2 . We call $M^{a}$ the homogeneous component of $M$ of degree $q$.

The group $S L_{2}(\mathbb{Z})$ acts on $\mathbb{Z}[x, y]$ extending the standard action

## Homotopy equivalences

## Theorem

The inclusion $T^{2} \hookrightarrow \operatorname{Diff}_{0}\left(T^{2}\right)$ is an homotopy equivalence.
As a consequence we have the homotopy equivalences

$$
B \operatorname{Diff}_{0}\left(T^{2}\right) \simeq B T^{2} \simeq\left(\mathbb{C P} \mathbb{P}^{\infty}\right)^{2}
$$

and the cohomology of this space is
where $x, y$ are generators in degree 2 . We call $M^{q}$ the
homogeneous component of $M$ of degree $q$.
The group $S L_{2}(\mathbb{Z})$ acts on $\mathbb{Z}[x, y]$ extending the standard action

## Homotopy equivalences

## Theorem

The inclusion $T^{2} \hookrightarrow \operatorname{Diff}_{0}\left(T^{2}\right)$ is an homotopy equivalence.
As a consequence we have the homotopy equivalences

$$
B \operatorname{Diff}_{0}\left(T^{2}\right) \simeq B T^{2} \simeq\left(\mathbb{C P}^{\infty}\right)^{2}
$$

and the cohomology of this space is

$$
M:=H^{*}\left(B D i f f_{0}\left(T^{2}\right) ; \mathbb{Z}\right)=\mathbb{Z}[x, y]
$$

where $x, y$ are generators in degree 2 . We call $M^{q}$ the
homogeneous component of $M$ of degree $q$.
The group $S L_{2}(\mathbb{Z})$ acts on $\mathbb{Z}[x, y]$ extending the standard action

## Homotopy equivalences

## Theorem

The inclusion $T^{2} \hookrightarrow$ Diff $_{0}\left(T^{2}\right)$ is an homotopy equivalence.
As a consequence we have the homotopy equivalences

$$
B D_{i f f_{0}}\left(T^{2}\right) \simeq B T^{2} \simeq\left(\mathbb{C P}^{\infty}\right)^{2}
$$

and the cohomology of this space is

$$
M:=H^{*}\left(B D i f f_{0}\left(T^{2}\right) ; \mathbb{Z}\right)=\mathbb{Z}[x, y]
$$

where $x, y$ are generators in degree 2 . We call $M^{q}$ the homogeneous component of $M$ of degree $q$.

The group $S L_{2}(\mathbb{Z})$ acts on $\mathbb{Z}[x, y]$ extending the standard action

## Homotopy equivalences

## Theorem

The inclusion $T^{2} \hookrightarrow$ Diff $_{0}\left(T^{2}\right)$ is an homotopy equivalence.
As a consequence we have the homotopy equivalences

$$
\text { BDiff }\left(T^{2}\right) \simeq B T^{2} \simeq\left(\mathbb{C P}^{\infty}\right)^{2}
$$

and the cohomology of this space is

$$
M:=H^{*}\left(\text { BDiffo }\left(T^{2}\right) ; \mathbb{Z}\right)=\mathbb{Z}[x, y]
$$

where $x, y$ are generators in degree 2 . We call $M^{q}$ the homogeneous component of $M$ of degree $q$.

The group $S L_{2}(\mathbb{Z})$ acts on $\mathbb{Z}[x, y]$ extending the standard action on $\langle x, y\rangle$.

## The spectral sequence

From the fibration DDiff $_{0}\left(T^{2}\right) \hookrightarrow$ BDiff $_{+}\left(T^{2}\right) \rightarrow B S L_{2}(\mathbb{Z})$ we get
the Serre spectral sequence


## Theorem

The groun $S L_{2}(\mathbb{Z})$ is isomorphic to the amalgamated product

Corollary
The spectral sequence above collapses if we tensor the coefficients by a ring $R$ such that 2 and 3 are invertible in $R$.

## The spectral sequence

From the fibration BDiff $_{0}\left(T^{2}\right) \hookrightarrow$ BDiff $_{+}\left(T^{2}\right) \rightarrow B S L_{2}(\mathbb{Z})$ we get the Serre spectral sequence

$$
E_{2}^{i, j}=H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{j}\right) \Rightarrow H^{i+j}\left(\text { BDiff }_{+}\left(T^{2}\right) ; \mathbb{Z}\right)
$$

## Theorem

The groun $S L_{2}(\mathbb{Z})$ is isomorphic to the amalgamated product

Corollary
The spectra/ sequence above collapses if we tensor the
coefficients by a ring $R$ such that 2 and 3 are invertible in $R$.

## The spectral sequence

From the fibration BDiff $_{0}\left(T^{2}\right) \hookrightarrow$ BDiff $_{+}\left(T^{2}\right) \rightarrow B S L_{2}(\mathbb{Z})$ we get the Serre spectral sequence

$$
E_{2}^{i, j}=H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{j}\right) \Rightarrow H^{i+j}\left(\text { BDiff }_{+}\left(T^{2}\right) ; \mathbb{Z}\right)
$$

## Theorem

The group $S L_{2}(\mathbb{Z})$ is isomorphic to the amalgamated product

$$
\mathbb{Z}_{4} *_{\mathbb{Z}_{2}} \mathbb{Z}_{6}
$$

Corollary
The spectral sequence above collapses if we tensor the coefficients by a ring $R$ such that 2 and 3 are invertible in $R$.

## The spectral sequence

From the fibration BDiff $_{0}\left(T^{2}\right) \hookrightarrow$ BDiff $_{+}\left(T^{2}\right) \rightarrow B S L_{2}(\mathbb{Z})$ we get the Serre spectral sequence

$$
E_{2}^{i, j}=H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{j}\right) \Rightarrow H^{i+j}\left(\text { BDiff }_{+}\left(T^{2}\right) ; \mathbb{Z}\right)
$$

## Theorem

The group $S L_{2}(\mathbb{Z})$ is isomorphic to the amalgamated product

$$
\mathbb{Z}_{4} *_{\mathbb{Z}_{2}} \mathbb{Z}_{6}
$$

## Corollary

The spectral sequence above collapses if we tensor the coefficients by a ring $R$ such that 2 and 3 are invertible in $R$.

## A central extension

## There is an extension

$$
1 \rightarrow \mathbb{Z} \rightarrow B_{3} \xrightarrow{\psi} S L_{2}(\mathbb{Z}) \rightarrow 1 .
$$

defined by $\psi: \sigma_{1} \mapsto\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right), \quad \psi: \sigma_{2} \mapsto\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right)$.
The kernel of $\psi$ is the index 2 subgroup of the center of $B_{3}$.
The map $\psi$ induces an action of $B_{3}$ on $\left(\mathbb{C P}^{\infty}\right)^{2}$. Define the Borel constructions $X:=E B_{3} \times_{B_{3}}\left(\mathbb{C P}{ }^{\infty}\right)^{2}$ that fits into the fibration

$$
\left(\mathbb{C P}{ }^{\infty}\right)^{2} \hookrightarrow X \rightarrow B B_{3} .
$$

The associated Serre spectral sequence is give by


## A central extension

## There is an extension

$$
1 \rightarrow \mathbb{Z} \rightarrow B_{3} \xrightarrow{\psi} S L_{2}(\mathbb{Z}) \rightarrow 1 .
$$

defined by $\psi: \sigma_{1} \mapsto\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right), \quad \psi: \sigma_{2} \mapsto\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right)$.
The kernel of $\psi$ is the index 2 subgroup of the center of $B_{3}$.
The map $\psi$ induces an action of $B_{3}$ on $\left(\mathbb{C P}^{\infty}\right)^{2}$. Define the Borel constructions $X:=E B_{3} \times_{B_{3}}\left(\mathbb{C P}{ }^{\infty}\right)^{2}$ that fits into the fibration

$$
\left(\mathbb{C P}{ }^{\infty}\right)^{2} \hookrightarrow X \rightarrow \hat{B B_{3}} .
$$

The associated Serre spectral sequence is give by


## A central extension

There is an extension

$$
1 \rightarrow \mathbb{Z} \rightarrow B_{3} \xrightarrow{\psi} S L_{2}(\mathbb{Z}) \rightarrow 1 .
$$

defined by $\psi: \sigma_{1} \mapsto\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right), \quad \psi: \sigma_{2} \mapsto\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
The kernel of $\psi$ is the index 2 subgroup of the center of $B_{3}$. The map $\psi$ induces an action of $B_{3}$ on $\left(\mathbb{C P}^{\infty}\right)^{2}$. Define the Borel constructions $X:=E B_{3} \times_{B_{3}}\left(\mathbb{C P}^{\infty}\right)^{2}$ that fits into the fibration

$$
\left(\mathbb{C P}^{\infty}\right)^{2} \hookrightarrow X \rightarrow B B_{3} .
$$

The associated Serre spectral sequence is give by

## A central extension

There is an extension

$$
1 \rightarrow \mathbb{Z} \rightarrow B_{3} \xrightarrow{\psi} S L_{2}(\mathbb{Z}) \rightarrow 1 .
$$

defined by $\psi: \sigma_{1} \mapsto\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right), \quad \psi: \sigma_{2} \mapsto\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right)$.
The kernel of $\psi$ is the index 2 subgroup of the center of $B_{3}$. The map $\psi$ induces an action of $B_{3}$ on $\left(\mathbb{C P}^{\infty}\right)^{2}$. Define the Borel constructions $X:=E B_{3} \times_{B_{3}}\left(\mathbb{C P}^{\infty}\right)^{2}$ that fits into the fibration

$$
\left(\mathbb{C P}^{\infty}\right)^{2} \hookrightarrow X \rightarrow B B_{3} .
$$

The associated Serre spectral sequence is give by

$$
E_{2}^{i, j}=H^{i}\left(B_{3} ; M^{j}\right) \Rightarrow H^{i+j}(X ; \mathbb{Z})
$$

## Results

In '88 Furusawa, Tezuka, Yagita computed the cohomology of $S L_{2}(\mathbb{Z})$ with coefficients in the module $\mathbb{Q}[x, y]$ and $\mathbb{Z}_{p}[x, y]$ for any prime $p$.

We compute the cohomology of $S L_{2}(\mathbb{Z})$ and $B_{3}$ with coefficients in the module $M=\mathbb{Z}[x, y]$.

## Results

In '88 Furusawa, Tezuka, Yagita computed the cohomology of $S L_{2}(\mathbb{Z})$ with coefficients in the module $\mathbb{Q}[x, y]$ and $\mathbb{Z}_{p}[x, y]$ for any prime $p$.

We compute the cohomology of $S L_{2}(\mathbb{Z})$ and $B_{3}$ with coefficients in the module $M=\mathbb{Z}[x, y]$.

## Principal congruence subgroups

## Definition

The principal congruence subgroup of level $n, \Gamma(n) \subset S L_{2}(\mathbb{Z})$ is the kernel of the mod- $n$ reduction map

$$
S L_{2}(\mathbb{Z}) \rightarrow S L_{2}\left(\mathbb{Z}_{n}\right)
$$

and the group $B_{\Gamma(n)}$ is the subgroup of $B_{3}$ that is the counter-image of $\Gamma(n)$ with respect to the projection $B_{3} \rightarrow S L_{2}(\mathbb{Z})$.

## Principal congruence subgroups

## Definition

The principal congruence subgroup of level $n, \Gamma(n) \subset S L_{2}(\mathbb{Z})$ is the kernel of the mod- $n$ reduction map

$$
S L_{2}(\mathbb{Z}) \rightarrow S L_{2}\left(\mathbb{Z}_{n}\right)
$$

and the group $B_{\Gamma(n)}$ is the subgroup of $B_{3}$ that is the counter-image of $\Gamma(n)$ with respect to the projection $\psi: B_{3} \rightarrow S L_{2}(\mathbb{Z})$.

## Principal congruence subgroups - II

The group $S L_{2}\left(\mathbb{Z}_{2}\right)$ is the symmetric group $\Sigma_{3}$ on three elements. The group $B_{\Gamma(2)} \subset B_{3}$ is the kernel of the map $B_{3} \rightarrow \Sigma_{3}$ and hence is the pure braid group $P_{3}$ on three strands.

By the Kurosh subgroup Theorem, $\Gamma(2)=F_{2} \times \mathbb{Z}_{2}$.
For $n>2$ the group $\Gamma(n)$ is a free, finitely generated.
We compute the cohomology with coefficients in the module $M=\mathbb{Z}[x, y]$ also for the subgroups $\Gamma(n)$ and $B_{\Gamma(n)}$.

## Principal congruence subgroups - II

The group $S L_{2}\left(\mathbb{Z}_{2}\right)$ is the symmetric group $\Sigma_{3}$ on three elements. The group $B_{\Gamma(2)} \subset B_{3}$ is the kernel of the map $B_{3} \rightarrow \Sigma_{3}$ and hence is the pure braid group $P_{3}$ on three strands.

By the Kurosh subgroup Theorem, $\Gamma(2)=F_{2} \times \mathbb{Z}_{2}$. For $n>2$ the group $\Gamma(n)$ is a free, finitely generated.

We compute the cohomology with coefficients in the module $M=\mathbb{Z}[x, y]$ also for the subarouns $\Gamma(n)$ and $B_{\Gamma(n)}$

## Principal congruence subgroups - II

The group $S L_{2}\left(\mathbb{Z}_{2}\right)$ is the symmetric group $\Sigma_{3}$ on three elements. The group $B_{\Gamma(2)} \subset B_{3}$ is the kernel of the map $B_{3} \rightarrow \Sigma_{3}$ and hence is the pure braid group $P_{3}$ on three strands.

By the Kurosh subgroup Theorem, $\Gamma(2)=F_{2} \times \mathbb{Z}_{2}$. For $n>2$ the group $\Gamma(n)$ is a free, finitely generated.

We compute the cohomology with coefficients in the module $M=\mathbb{Z}[x, y]$ also for the subgroups $\Gamma(n)$ and $B_{\Gamma(n)}$.

## Modular forms

Let $k$ be a positive integer and $f$ an holomorphic form on the upper half-plane $\mathbb{H} \cup\{\infty\}$.

Definition
The function $f$ is an cusp integral modular form of weight $k$ (w.r. to $S L_{2}(\mathbb{Z})$ ) if
and $f(\infty)=0$.
Definition
We call $\mathcal{M}_{k}^{0}$ the space of cusp modular forms of weight $k$.

## Modular forms

Let $k$ be a positive integer and $f$ an holomorphic form on the upper half-plane $\mathbb{H} \cup\{\infty\}$.

## Definition

The function $f$ is an cusp integral modular form of weight $k$ (w.r. to $S L_{2}(\mathbb{Z})$ ) if

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z) \quad \forall k\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z})
$$

and $f(\infty)=0$.
Definition
We call $\mathcal{M}_{k}^{0}$ the space of cusp modular forms of weight $k$.

## Modular forms

Let $k$ be a positive integer and $f$ an holomorphic form on the upper half-plane $\mathbb{H} \cup\{\infty\}$.

## Definition

The function $f$ is an cusp integral modular form of weight $k$ (w.r. to $S L_{2}(\mathbb{Z})$ ) if

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z) \quad \forall k\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z})
$$

and $f(\infty)=0$.

## Definition

We call $\mathcal{M}_{k}^{0}$ the space of cusp modular forms of weight $k$.

## Eicher-Shimura isomorphism

## Theorem

For $k$ odd the group $H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{2 k} \otimes \mathbb{R}\right)$ is always trivial.
For $k$ even we have:

$$
H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{2 k} \otimes \mathbb{R}\right)=\left\{\begin{array}{cl}
\mathcal{M}_{k+2}^{0} \oplus \mathbb{R} & \text { if } i=1 \text { and } k \geq 1 \\
0 & \text { if } i>0 \text { or } i=0 \text { and } k>0 \\
\mathbb{R} & \text { if } i=k=0 .
\end{array}\right.
$$

## Eicher-Shimura isomorphism

## Theorem

For $k$ odd the group $H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{2 k} \otimes \mathbb{R}\right)$ is always trivial.
For $k$ even we have:

$$
H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{2 k} \otimes \mathbb{R}\right)=\left\{\begin{array}{cl}
\mathcal{M}_{k+2}^{0} \oplus \mathbb{R} & \text { if } i=1 \text { and } k \geq 1 \\
0 & \text { if } i>0 \text { or } i=0 \text { and } k>0 \\
\mathbb{R} & \text { if } i=k=0
\end{array}\right.
$$

Recall that $M$ is trivial in odd dimension.

## Divided polynomial algebra

## Definition (Divided polynomial algebra)

Let $\Delta[x]$ be the sub- $\mathbb{Z}$-module of $\mathbb{Q}[x]$ generated by the elements $x_{n}:=\frac{x^{n}}{n!}$, for $n \in \mathbb{N}$. For any ring $R$ we define $\Delta_{R}[x]:=\Delta[x] \otimes_{\mathbb{Z}} R$.

The module $\Delta[x]$ is closed by multiplication and the product satisfy the relation $x_{i} x_{j}=\binom{i+j}{i} x_{i+j}$. We define in $\Delta[x]$ the ideal $I_{p}:=\left(p^{v_{p}(n)+1} x_{n}\right.$, for $\left.n \in \mathbb{N}\right)$ where $v_{p}$ is the $p$-adic additive valuation.

Definition ( $p$-local divided polynomial algebra)

## Divided polynomial algebra

## Definition (Divided polynomial algebra)

Let $\Delta[x]$ be the sub- $\mathbb{Z}$-module of $\mathbb{Q}[x]$ generated by the elements $x_{n}:=\frac{x^{n}}{n!}$, for $n \in \mathbb{N}$. For any ring $R$ we define $\Delta_{R}[x]:=\Delta[x] \otimes_{\mathbb{Z}} R$.

The module $\Delta[x]$ is closed by multiplication and the product satisfy the relation $x_{i} x_{j}=\binom{i+j}{i} x_{i+j}$. We define in $\Delta[x]$ the ideal $I_{p}:=\left(p^{v_{p}(n)+1} x_{n}\right.$, for $\left.n \in \mathbb{N}\right)$ where $v_{p}$ is the $p$-adic additive valuation.

Definition(n-local divided polynomial algebra)

## Divided polynomial algebra

## Definition (Divided polynomial algebra)

Let $\Delta[x]$ be the sub- $\mathbb{Z}$-module of $\mathbb{Q}[x]$ generated by the elements $x_{n}:=\frac{x^{n}}{n!}$, for $n \in \mathbb{N}$. For any ring $R$ we define $\Delta_{R}[x]:=\Delta[x] \otimes_{\mathbb{Z}} R$.

The module $\Delta[x]$ is closed by multiplication and the product satisfy the relation $x_{i} x_{j}=\binom{i+j}{i} x_{i+j}$. We define in $\Delta[x]$ the ideal $I_{p}:=\left(p^{v_{p}(n)+1} x_{n}\right.$, for $\left.n \in \mathbb{N}\right)$ where $v_{p}$ is the $p$-adic additive valuation.

Definition ( $p$-local divided polynomial algebra)

## Divided polynomial algebra

## Definition (Divided polynomial algebra)

Let $\Delta[x]$ be the sub- $\mathbb{Z}$-module of $\mathbb{Q}[x]$ generated by the elements $x_{n}:=\frac{x^{n}}{n!}$, for $n \in \mathbb{N}$. For any ring $R$ we define $\Delta_{R}[x]:=\Delta[x] \otimes_{\mathbb{Z}} R$.

The module $\Delta[x]$ is closed by multiplication and the product satisfy the relation $x_{i} x_{j}=\binom{i+j}{i} x_{i+j}$. We define in $\Delta[x]$ the ideal $I_{p}:=\left(p^{v_{p}(n)+1} x_{n}\right.$, for $\left.n \in \mathbb{N}\right)$ where $v_{p}$ is the $p$-adic additive valuation.
Definition ( $p$-local divided polynomial algebra)

$$
\Delta_{p}[x]:=\Delta[x] / I_{p}
$$

## Divided polynomials and torsion

The element $x_{p^{n}}$ generate in $\Delta_{p}[x]$ a submodule isomorphic to $\mathbb{Z}_{p^{n+1}}$.

## Definition

We define also $\Delta^{+}[x]$ as the submodule of elements with zero
constant term.
In more variables we define $\Delta_{p}[x, y]:=\Delta_{p}[x] \otimes \Delta_{p}[y]$.

## Theorem

## Divided polynomials and torsion

The element $x_{p^{n}}$ generate in $\Delta_{p}[x]$ a submodule isomorphic to $\mathbb{Z}_{p^{n+1}}$.

## Definition

We define also $\Delta^{+}[x]$ as the submodule of elements with zero constant term.

## In more variables we define

Theorem

## Divided polynomials and torsion

The element $x_{p^{n}}$ generate in $\Delta_{p}[x]$ a submodule isomorphic to $\mathbb{Z}_{p^{n+1}}$.

## Definition

We define also $\Delta^{+}[x]$ as the submodule of elements with zero constant term.
In more variables we define $\Delta_{p}[x, y]:=\Delta_{p}[x] \otimes \Delta_{p}[y]$.
Theorem

## Divided polynomials and torsion

The element $x_{p^{n}}$ generate in $\Delta_{p}[x]$ a submodule isomorphic to $\mathbb{Z}_{p^{n+1}}$.

## Definition

We define also $\Delta^{+}[x]$ as the submodule of elements with zero constant term.
In more variables we define $\Delta_{p}[x, y]:=\Delta_{p}[x] \otimes \Delta_{p}[y]$.

## Theorem

$$
\Delta_{p}^{+}[x]=\Delta_{\mathbb{Z}_{(p)}}^{+}[x] /(p x)
$$

## Cohomology of $S L_{2}(\mathbb{Z})$

## Theorem (-, Cohen, Salvetti)

$H^{1}\left(S L_{2}(\mathbb{Z}) ; M\right)_{(p)}=\Delta_{p}^{+}\left[\mathcal{P}_{p}, \mathcal{Q}_{p}\right]$
where $\operatorname{deg} \mathcal{P}_{p}=2(p+1)$ and $\operatorname{deg} \mathcal{Q}_{p}=2 p(p-1)$.

## Theorem (-, C, S)

For $i>1$ the cohomology $H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{q}\right)$ is 2 -periodic in i. The
free part is trivial and only 2, 4 and 3 torsion appear.
$H^{2 i}\left(S L_{2}(\mathbb{Z}) ; M^{8 q}\right)$ contains one submodule isomorphic to $\mathbb{Z}_{4}$. All the others groups are direct sum of modules isomorphic to $\mathbb{Z}_{2}$ and $\mathbb{Z}_{3}$.
Poincaré series for 2 and 3 torsion are computed.

## Cohomology of $S L_{2}(\mathbb{Z})$

## Theorem (-, Cohen, Salvetti)

$H^{1}\left(S L_{2}(\mathbb{Z}) ; M\right)_{(p)}=\Delta_{p}^{+}\left[\mathcal{P}_{p}, \mathcal{Q}_{p}\right]$
where $\operatorname{deg} \mathcal{P}_{p}=2(p+1)$ and $\operatorname{deg} \mathcal{Q}_{p}=2 p(p-1)$.

## Theorem (-, C, S)

For $i>1$ the cohomology $H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{q}\right)$ is 2-periodic in $i$. The free part is trivial and only 2, 4 and 3 torsion appear.
the others groups are direct sum of modules isomorphic to $\mathbb{Z}_{2}$
and $\mathbb{Z}_{3}$.
Poincaré series for 2 and 3 torsion are computed.

## Cohomology of $S L_{2}(\mathbb{Z})$

## Theorem (-, Cohen, Salvetti)

$H^{1}\left(S L_{2}(\mathbb{Z}) ; M\right)_{(p)}=\Delta_{p}^{+}\left[\mathcal{P}_{p}, \mathcal{Q}_{p}\right]$
where $\operatorname{deg} \mathcal{P}_{p}=2(p+1)$ and $\operatorname{deg} \mathcal{Q}_{p}=2 p(p-1)$.

## Theorem (-, C, S)

For $i>1$ the cohomology $H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{q}\right)$ is 2-periodic in $i$. The free part is trivial and only 2, 4 and 3 torsion appear. $H^{2 i}\left(S L_{2}(\mathbb{Z}) ; M^{8 q}\right)$ contains one submodule isomorphic to $\mathbb{Z}_{4}$. All the others groups are direct sum of modules isomorphic to $\mathbb{Z}_{2}$ and $\mathbb{Z}_{3}$.
Poincaré series for 2 and 3 torsion are computed.

## Cohomology of $S L_{2}(\mathbb{Z})$

## Theorem (-, Cohen, Salvetti)

$H^{1}\left(S L_{2}(\mathbb{Z}) ; M\right)_{(p)}=\Delta_{p}^{+}\left[\mathcal{P}_{p}, \mathcal{Q}_{p}\right]$
where $\operatorname{deg} \mathcal{P}_{p}=2(p+1)$ and $\operatorname{deg} \mathcal{Q}_{p}=2 p(p-1)$.

## Theorem (-, C, S)

For $i>1$ the cohomology $H^{i}\left(S L_{2}(\mathbb{Z}) ; M^{q}\right)$ is 2-periodic in $i$. The free part is trivial and only 2, 4 and 3 torsion appear. $H^{2 i}\left(S L_{2}(\mathbb{Z}) ; M^{8 q}\right)$ contains one submodule isomorphic to $\mathbb{Z}_{4}$. All the others groups are direct sum of modules isomorphic to $\mathbb{Z}_{2}$ and $\mathbb{Z}_{3}$.
Poincaré series for 2 and 3 torsion are computed.

## Cohomology of $B_{3}$

$$
\begin{aligned}
& \text { Theorem }(-, \mathrm{C}, \mathrm{~S}) \\
& H^{1}\left(B_{3} ; M\right)_{(p)}=H^{1}\left(S L_{2}(\mathbb{Z}) ; M\right)_{(p)} ; \\
& H^{1}\left(B_{3} ; M^{q} \otimes \mathbb{Q}\right)=H^{2}\left(B_{3} ; M^{q} \otimes \mathbb{Q}\right)=H^{1}\left(S L_{2}(\mathbb{Z}) ; M^{q} \otimes \mathbb{Q}\right) \text { for } q>0 ; \\
& H^{2}\left(B_{3} ; M\right)_{(p)}=H^{1}\left(S L_{2}(\mathbb{Z}) ; M\right)_{(p)} \text { for any prime } p \geq 5
\end{aligned}
$$

Theorem (-, C, S)

with $\frac{\mathcal{Q}_{2}^{n}}{n T} \sim 2 \overline{\mathcal{Q}}_{2}^{n}$;
$H^{2}\left(B_{3} ; M\right)_{(3)}=\Delta_{3}^{+}\left[\mathcal{P}_{3}, \mathcal{Q}_{3}\right] \oplus \mathbb{Z}_{3}\left[\overline{\mathcal{Q}}_{3}\right] / \sim$ with $\frac{\mathcal{Q}_{3}^{n}}{n!} \sim 3 \overline{\mathcal{Q}}_{3}^{n}$ and $\mathcal{P}_{3} \frac{\mathcal{Q}_{3}^{n}}{n!} \sim 0$.

## Cohomology of $B_{3}$

$$
\begin{aligned}
& \text { Theorem }(-, \mathrm{C}, \mathrm{~S}) \\
& H^{1}\left(B_{3} ; M\right)_{(p)}=H^{1}\left(S L_{2}(\mathbb{Z}) ; M\right)_{(p)} ; \\
& H^{1}\left(B_{3} ; M^{q} \otimes \mathbb{Q}\right)=H^{2}\left(B_{3} ; M^{q} \otimes \mathbb{Q}\right)=H^{1}\left(S L_{2}(\mathbb{Z}) ; M^{q} \otimes \mathbb{Q}\right) \text { for } q>0 \\
& H^{2}\left(B_{3} ; M\right)_{(p)}=H^{1}\left(S L_{2}(\mathbb{Z}) ; M\right)_{(p)} \text { for any prime } p \geq 5
\end{aligned}
$$

## Theorem (-, C, S)

$$
H^{2}\left(B_{3} ; M\right)_{(2)}=\Delta_{2}^{+}\left[\mathcal{P}_{2}, \mathcal{Q}_{2}\right] \oplus \mathbb{Z}_{2}\left[\overline{\mathcal{Q}}_{2}\right] / \sim
$$

$$
\text { with } \frac{\mathcal{Q}_{2}^{n}}{n!} \sim 2 \overline{\mathcal{Q}}_{2}^{n}
$$

with $\frac{\mathcal{Q}_{3}^{n}}{n!} \sim 3 \overline{\mathcal{Q}}_{3}^{n}$ and $\mathcal{P}_{3} \frac{\mathcal{Q}_{3}^{n}}{n!} \sim 0$.

## Cohomology of $B_{3}$

## Theorem (-, C, S)

$H^{1}\left(B_{3} ; M\right)_{(p)}=H^{1}\left(S L_{2}(\mathbb{Z}) ; M\right)_{(p)} ;$
$H^{1}\left(B_{3} ; M^{q} \otimes \mathbb{Q}\right)=H^{2}\left(B_{3} ; M^{q} \otimes \mathbb{Q}\right)=H^{1}\left(S L_{2}(\mathbb{Z}) ; M^{q} \otimes \mathbb{Q}\right)$ for $q>0$; $H^{2}\left(B_{3} ; M\right)_{(p)}=H^{1}\left(S L_{2}(\mathbb{Z}) ; M\right)_{(p)}$ for any prime $p \geq 5$.

## Theorem (-, C, S)

$$
H^{2}\left(B_{3} ; M\right)_{(2)}=\Delta_{2}^{+}\left[\mathcal{P}_{2}, \mathcal{Q}_{2}\right] \oplus \mathbb{Z}_{2}\left[\overline{\mathcal{Q}}_{2}\right] / \sim
$$

with $\frac{Q_{2}^{n}}{n!} \sim 2 \overline{\mathcal{Q}}_{2}^{n}$;
$H^{2}\left(B_{3} ; M\right)_{(3)}=\Delta_{3}^{+}\left[\mathcal{P}_{3}, \mathcal{Q}_{3}\right] \oplus \mathbb{Z}_{3}\left[\overline{\mathcal{Q}}_{3}\right] / \sim$
with $\frac{\mathcal{Q}_{3}^{n}}{n!} \sim 3 \overline{\mathcal{Q}}_{3}^{n}$ and $\mathcal{P}_{3} \frac{\mathcal{Q}_{3}^{n}}{n!} \sim 0$.

## Cohomology of $\Gamma(2)$

The $\Gamma(n)$-invariants in $M$ can be easily computer with a generalization of Dickson invariant theory.

```
Theorem (-, C, S)
Let F}\mp@subsup{F}{2}{}\mathrm{ be the subgroup of }S\mp@subsup{L}{2}{}(\mathbb{Z})\mathrm{ freely generated by }\mp@subsup{s}{1}{2},\mp@subsup{s}{2}{2}\mathrm{ . The
following isomorphisms hold.
For even n H}\mp@subsup{H}{}{1}(\Gamma(2);M\mp@subsup{M}{n}{})=\mp@subsup{H}{}{1}(\mp@subsup{F}{2}{};\mp@subsup{M}{n}{}
and for i>0 H
H}\mp@subsup{}{2i+1}{(\Gamma}(\Gamma);\mp@subsup{M}{n}{})=\mp@subsup{H}{}{1}(\mp@subsup{F}{2}{};\mp@subsup{M}{n}{})\otimes\mp@subsup{\mathbb{Z}}{2}{
For odd n and for i>0
H}\mp@subsup{H}{}{2i-1}(\Gamma(2);\mp@subsup{M}{n}{})=\mp@subsup{H}{}{0}(\mp@subsup{F}{2}{};\mp@subsup{M}{n}{}\otimes\mp@subsup{\mathbb{Z}}{2}{})=\mp@subsup{M}{n}{}\otimes\mp@subsup{\mathbb{Z}}{2}{}
H
Moreover for any n we have
H
```


## Cohomology of $\Gamma(2)$

The $\Gamma(n)$-invariants in $M$ can be easily computer with a generalization of Dickson invariant theory.

## Theorem (-, C, S)

Let $F_{2}$ be the subgroup of $S L_{2}(\mathbb{Z})$ freely generated by $s_{1}^{2}, s_{2}^{2}$. The following isomorphisms hold.
For even $n H^{1}\left(\Gamma(2) ; M_{n}\right)=H^{1}\left(F_{2} ; M_{n}\right)$, and for $i>0 H^{2 i}\left(\Gamma(2) ; M_{n}\right)=H^{0}\left(F_{2} ; M_{n} \otimes \mathbb{Z}_{2}\right)=M_{n} \otimes \mathbb{Z}_{2}$, $H^{2 i+1}\left(\Gamma(2) ; M_{n}\right)=H^{1}\left(F_{2} ; M_{n}\right) \otimes \mathbb{Z}_{2}$.

## Cohomology of $\Gamma(2)$

The $\Gamma(n)$-invariants in $M$ can be easily computer with a generalization of Dickson invariant theory.

## Theorem (-, C, S)

Let $F_{2}$ be the subgroup of $S L_{2}(\mathbb{Z})$ freely generated by $s_{1}^{2}, s_{2}^{2}$. The following isomorphisms hold.
For even $n H^{1}\left(\Gamma(2) ; M_{n}\right)=H^{1}\left(F_{2} ; M_{n}\right)$, and for $i>0 H^{2 i}\left(\Gamma(2) ; M_{n}\right)=H^{0}\left(F_{2} ; M_{n} \otimes \mathbb{Z}_{2}\right)=M_{n} \otimes \mathbb{Z}_{2}$, $H^{2 i+1}\left(\Gamma(2) ; M_{n}\right)=H^{1}\left(F_{2} ; M_{n}\right) \otimes \mathbb{Z}_{2}$.
For odd $n$ and for $i>0$

$$
\begin{aligned}
& H^{2 i-1}\left(\Gamma(2) ; M_{n}\right)=H^{0}\left(F_{2} ; M_{n} \otimes \mathbb{Z}_{2}\right)=M_{n} \otimes \mathbb{Z}_{2} \\
& H^{2 i}\left(\Gamma(2) ; M_{n}\right)=H^{1}\left(F_{2} ; M_{n}\right) \otimes \mathbb{Z}_{2}=H^{1}\left(F_{2} ; M_{n} \otimes \mathbb{Z}_{2}\right)
\end{aligned}
$$

Moreover for any $n$ we have

## Cohomology of $\Gamma(2)$

The $\Gamma(n)$-invariants in $M$ can be easily computer with a generalization of Dickson invariant theory.

## Theorem (-, C, S)

Let $F_{2}$ be the subgroup of $S L_{2}(\mathbb{Z})$ freely generated by $s_{1}^{2}, s_{2}^{2}$. The following isomorphisms hold.
For even $n H^{1}\left(\Gamma(2) ; M_{n}\right)=H^{1}\left(F_{2} ; M_{n}\right)$,
and for $i>0 H^{2 i}\left(\Gamma(2) ; M_{n}\right)=H^{0}\left(F_{2} ; M_{n} \otimes \mathbb{Z}_{2}\right)=M_{n} \otimes \mathbb{Z}_{2}$, $H^{2 i+1}\left(\Gamma(2) ; M_{n}\right)=H^{1}\left(F_{2} ; M_{n}\right) \otimes \mathbb{Z}_{2}$.
For odd $n$ and for $i>0$
$H^{2 i-1}\left(\Gamma(2) ; M_{n}\right)=H^{0}\left(F_{2} ; M_{n} \otimes \mathbb{Z}_{2}\right)=M_{n} \otimes \mathbb{Z}_{2}$,
$H^{2 i}\left(\Gamma(2) ; M_{n}\right)=H^{1}\left(F_{2} ; M_{n}\right) \otimes \mathbb{Z}_{2}=H^{1}\left(F_{2} ; M_{n} \otimes \mathbb{Z}_{2}\right)$.
Moreover for any $n$ we have
$H^{1}\left(F_{2} ; M_{n} \otimes \mathbb{Z}_{2}\right)=\left(M_{n} \oplus M_{n}\right) \otimes \mathbb{Z}_{2}$.

## Cohomology of $\Gamma(n)$

Schreier index formula allows to compute the rank of $H^{*}\left(\Gamma(m) ; M_{n} \otimes \mathbb{Q}\right)$.
[Details]
Theorem ( $-, \mathrm{C}, \mathrm{S}$ )
Let $p$ be a prime number and $m>1$ an integer.
If $p \nmid m$
the $p$-torsion component of $H^{1}\left(\Gamma(m) ; M_{n}\right)$ is given by:
$H^{1}\left(\Gamma(m) ; M_{n}\right)_{(p)}=H^{1}\left(S L_{2}(\mathbb{Z}) ; M_{n}\right)_{(p)}=\Delta_{p}^{+}\left[\mathcal{P}_{p}, \mathcal{Q}_{p}\right]_{\operatorname{deg}=n}$
If $p \mid m$, suppose $p^{a} \mid m, p^{a+1} \nmid m$. Then we have
$H^{1}\left(\Gamma(m) ; M_{>0}\right)_{(p)} \simeq \Delta_{p^{a}}^{+}[x, y]$ where $x, y$ have degree 1 .

## Cohomology of $\Gamma(n)$

Schreier index formula allows to compute the rank of $H^{*}\left(\Gamma(m) ; M_{n} \otimes \mathbb{Q}\right)$.
[Details]
Theorem (-, C, S)
Let $p$ be a prime number and $m>1$ an integer. If $p \nmid m$
the $p$-torsion component of $H^{1}\left(\Gamma(m) ; M_{n}\right)$ is given by: $H^{1}\left(\Gamma(m) ; M_{n}\right)_{(p)}=H^{1}\left(S L_{2}(\mathbb{Z}) ; M_{n}\right)_{(p)}=\Delta_{p}^{+}\left[\mathcal{P}_{p}, \mathcal{Q}_{p}\right]_{\operatorname{deg}=n}$.

## Cohomology of $\Gamma(n)$

Schreier index formula allows to compute the rank of $H^{*}\left(\Gamma(m) ; M_{n} \otimes \mathbb{Q}\right)$.
[Details]
Theorem (-, C, S)
Let $p$ be a prime number and $m>1$ an integer. If $p \nmid m$
the $p$-torsion component of $H^{1}\left(\Gamma(m) ; M_{n}\right)$ is given by: $H^{1}\left(\Gamma(m) ; M_{n}\right)_{(p)}=H^{1}\left(S L_{2}(\mathbb{Z}) ; M_{n}\right)_{(p)}=\Delta_{p}^{+}\left[\mathcal{P}_{p}, \mathcal{Q}_{p}\right]_{\operatorname{deg}=n}$.
If $p \mid m$, suppose $p^{a} \mid m, p^{a+1} \nmid m$. Then we have $H^{1}\left(\Gamma(m) ; M_{>0}\right)_{(p)} \simeq \Delta_{p^{a}}^{+}[x, y]$ where $x, y$ have degree 1 .

## Cohomology of $B_{\Gamma(n)}$

## Theorem (-, C, S) <br> $$
H^{0}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}, H^{1}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}^{3}, H^{2}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}^{2}
$$ <br> $$
\text { Let } n>0 ; \text { for even } n ; H^{0}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{0}\left(\Gamma(2) ; M_{n}\right)
$$ <br> $$
H^{1}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{2}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{1}\left(\Gamma(2) ; M_{n}\right)
$$ <br> $$
\text { for odd } n ; H^{0}\left(B_{\Gamma(2)} ; M_{n}\right)=0,
$$ <br> $$
H^{1}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{1}\left(\Gamma(2) ; M_{n}\right)=M_{n} \otimes \mathbb{Z}_{2}
$$ <br> $$
H^{2}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{2}\left(\Gamma(2) ; M_{n}\right)=\left(M_{n} \oplus M_{n}\right) \otimes \mathbb{Z}_{2}
$$ <br> $$
\text { for any } m>2 \text {, for any } n \text { : }
$$ <br> $$
H^{*}\left(B_{\Gamma(m)} ; M_{n}\right)=H^{*}\left(\Gamma(m) ; M_{n}\right) \otimes H^{*}(\mathbb{Z} ; \mathbb{Z})
$$

## Cohomology of $B_{\Gamma(n)}$

## Theorem (-, C, S) <br> $H^{0}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}, H^{1}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}^{3}, H^{2}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}^{2}$ <br> Let $n>0$; for even $n ; H^{0}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{0}\left(\Gamma(2) ; M_{n}\right)$, <br> $$
H^{1}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{2}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{1}\left(\Gamma(2) ; M_{n}\right)
$$

## Cohomology of $B_{\Gamma(n)}$

## Theorem (-, C, S)

$$
H^{0}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}, H^{1}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}^{3}, H^{2}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}^{2}
$$

$$
\text { Let } n>0 ; \text { for even } n ; H^{0}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{0}\left(\Gamma(2) ; M_{n}\right),
$$

$$
H^{1}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{2}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{1}\left(\Gamma(2) ; M_{n}\right)
$$

$$
\text { for odd } n ; H^{0}\left(B_{\Gamma(2)} ; M_{n}\right)=0
$$

$$
H^{1}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{1}\left(\Gamma(2) ; M_{n}\right)=M_{n} \otimes \mathbb{Z}_{2}
$$

$$
H^{2}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{2}\left(\Gamma(2) ; M_{n}\right)=\left(M_{n} \oplus M_{n}\right) \otimes \mathbb{Z}_{2}
$$

## Cohomology of $B_{\Gamma(n)}$

## Theorem (-, C, S)

$$
H^{0}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}, H^{1}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}^{3}, H^{2}\left(B_{\Gamma(2)} ; M_{0}\right)=\mathbb{Z}^{2}
$$

Let $n>0$; for even $n ; H^{0}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{0}\left(\Gamma(2) ; M_{n}\right)$,
$H^{1}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{2}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{1}\left(\Gamma(2) ; M_{n}\right)$
for odd $n ; H^{0}\left(B_{\Gamma(2)} ; M_{n}\right)=0$,
$H^{1}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{1}\left(\Gamma(2) ; M_{n}\right)=M_{n} \otimes \mathbb{Z}_{2}$,
$H^{2}\left(B_{\Gamma(2)} ; M_{n}\right)=H^{2}\left(\Gamma(2) ; M_{n}\right)=\left(M_{n} \oplus M_{n}\right) \otimes \mathbb{Z}_{2}$
for any $m>2$, for any $n$ :
$H^{*}\left(B_{\Gamma(m)} ; M_{n}\right)=H^{*}\left(\Gamma(m) ; M_{n}\right) \otimes H^{*}(\mathbb{Z} ; \mathbb{Z})$.

## Methods

- $S L_{2}(\mathbb{Z})=\mathbb{Z}_{4} *_{\mathbb{Z}_{2}} \mathbb{Z}_{6}$;
- Dickson's invariant theory for $S L_{2}(\mathbb{Z})$;
- explicit computations for $H^{*}(G ; M), G=\mathbb{Z}_{2}, \mathbb{Z}_{4}, \mathbb{Z}_{6}$;
- study of the spectral sequence for $\mathbb{Z} \rightarrow B_{3} \rightarrow S L_{2}(\mathbb{Z})$;
- study of the maps of spectral sequences induced by $\mathbb{Z}_{4} \hookrightarrow S L_{2}(\mathbb{Z})$ and $\mathbb{Z}_{6} \hookrightarrow S L_{2}(\mathbb{Z})$;
- Bockstein homomorphisms.


## Methods

- $S L_{2}(\mathbb{Z})=\mathbb{Z}_{4} *_{\mathbb{Z}_{2}} \mathbb{Z}_{6}$;
- Dickson's invariant theory for $S L_{2}(\mathbb{Z})$;
- explicit computations for $H^{*}(G ; M), G=\mathbb{Z}_{2}, \mathbb{Z}_{4}, \mathbb{Z}_{6}$;
- study of the spectral sequence for $\mathbb{Z} \rightarrow B_{3} \rightarrow S L_{2}(\mathbb{Z})$;
- study of the maps of spectral sequences induced by $\mathbb{Z}_{4} \hookrightarrow S L_{2}(\mathbb{Z})$ and $\mathbb{Z}_{6} \hookrightarrow S L_{2}(\mathbb{Z}) ;$
- Bockstein homomorphisms.


## Methods

- $S L_{2}(\mathbb{Z})=\mathbb{Z}_{4} *_{\mathbb{Z}_{2}} \mathbb{Z}_{6}$;
- Dickson's invariant theory for $S L_{2}(\mathbb{Z})$;
- explicit computations for $H^{*}(G ; M), G=\mathbb{Z}_{2}, \mathbb{Z}_{4}, \mathbb{Z}_{6}$;
- study of the spectral sequence for $\mathbb{Z} \rightarrow B_{3} \rightarrow S L_{2}(\mathbb{Z})$
- study of the maps of spectral sequences induced by $\mathbb{Z}_{4} \hookrightarrow S L_{2}(\mathbb{Z})$ and $\mathbb{Z}_{6} \hookrightarrow S L_{2}(\mathbb{Z})$;
- Bockstein homomorphisms.


## Methods

- $S L_{2}(\mathbb{Z})=\mathbb{Z}_{4} *_{\mathbb{Z}_{2}} \mathbb{Z}_{6}$;
- Dickson's invariant theory for $S L_{2}(\mathbb{Z})$;
- explicit computations for $H^{*}(G ; M), G=\mathbb{Z}_{2}, \mathbb{Z}_{4}, \mathbb{Z}_{6}$;
- study of the spectral sequence for $\mathbb{Z} \rightarrow B_{3} \rightarrow S L_{2}(\mathbb{Z})$;
- study of the maps of spectral sequences induced by $\mathbb{Z}_{4} \hookrightarrow S L_{2}(\mathbb{Z})$ and $\mathbb{Z}_{6} \hookrightarrow S L_{2}(\mathbb{Z})$
- Bockstein homomorphisms.


## Methods

- $S L_{2}(\mathbb{Z})=\mathbb{Z}_{4} *_{\mathbb{Z}_{2}} \mathbb{Z}_{6}$;
- Dickson's invariant theory for $S L_{2}(\mathbb{Z})$;
- explicit computations for $H^{*}(G ; M), G=\mathbb{Z}_{2}, \mathbb{Z}_{4}, \mathbb{Z}_{6}$;
- study of the spectral sequence for $\mathbb{Z} \rightarrow B_{3} \rightarrow S L_{2}(\mathbb{Z})$;
- study of the maps of spectral sequences induced by $\mathbb{Z}_{4} \hookrightarrow S L_{2}(\mathbb{Z})$ and $\mathbb{Z}_{6} \hookrightarrow S L_{2}(\mathbb{Z}) ;$
- Bockstein homomorphisms.


## Methods

- $S L_{2}(\mathbb{Z})=\mathbb{Z}_{4} *_{\mathbb{Z}_{2}} \mathbb{Z}_{6}$;
- Dickson's invariant theory for $S L_{2}(\mathbb{Z})$;
- explicit computations for $H^{*}(G ; M), G=\mathbb{Z}_{2}, \mathbb{Z}_{4}, \mathbb{Z}_{6}$;
- study of the spectral sequence for $\mathbb{Z} \rightarrow B_{3} \rightarrow S L_{2}(\mathbb{Z})$;
- study of the maps of spectral sequences induced by $\mathbb{Z}_{4} \hookrightarrow S L_{2}(\mathbb{Z})$ and $\mathbb{Z}_{6} \hookrightarrow S L_{2}(\mathbb{Z}) ;$
- Bockstein homomorphisms.


## And now something completely different...

In '79 Cohen, Moore and Neisendorfer constructed a family of maps

$$
\Omega^{2} S^{2 n+1} \xrightarrow{\alpha_{n}} S^{2 n-1}
$$

such that the composition $\Omega^{2} S^{2 n+1} \xrightarrow{\alpha_{n}} S^{2 n-1} \xrightarrow{E} \Omega^{2} S^{2 n+1}$ with the double suspension gives, up to homotopy, the $p^{r}$ power map, for any prime $p \geq 3$, and $r \geq 1$.


## And now something completely different...

In '79 Cohen, Moore and Neisendorfer constructed a family of maps

$$
\Omega^{2} S^{2 n+1} \xrightarrow{\alpha_{n}} S^{2 n-1}
$$

such that the composition $\Omega^{2} S^{2 n+1} \xrightarrow{\alpha_{n}} S^{2 n-1} \xrightarrow{E} \Omega^{2} S^{2 n+1}$ with the double suspension gives, up to homotopy, the $p^{r}$ power map, for any prime $p \geq 3$, and $r \geq 1$.
The existence of the map $\alpha_{n}$, for $r=1$, was used to show that $p^{2 n}$ annihilates the $p$-torsion in $\pi_{*}\left(S^{2 n+1}\right)$.

## Anick fibration

Cohen, Moore and Neisendorfer conjectured the existence of a p-local fibration

$$
S^{2 n-1} \rightarrow T_{p^{r}}(2 n+1) \rightarrow \Omega S^{2 n+1}
$$

with connecting map $\Omega^{2} S^{2 n+1} \xrightarrow{\alpha_{n}} S^{2 n-1}$.
In '93 Anick constructed such a fibration sequence for $p>3$. In 2007 Gary and Theriault gave a construction that is valid also for $p=3$.

Theorem
The reduced cohomology of the space $T_{p}(2 n+1)$ is given by:


## Anick fibration

Cohen, Moore and Neisendorfer conjectured the existence of a p-local fibration

$$
S^{2 n-1} \rightarrow T_{p^{r}}(2 n+1) \rightarrow \Omega S^{2 n+1}
$$

with connecting map $\Omega^{2} S^{2 n+1} \xrightarrow{\alpha_{n}} S^{2 n-1}$.
In '93 Anick constructed such a fibration sequence for $p>3$. In 2007 Gary and Theriault gave a construction that is valid also for $p=3$.

Theorem
The reduced cohomology of the space $T_{p}(2 n+1)$ is given by:

## Anick fibration

Cohen, Moore and Neisendorfer conjectured the existence of a p-local fibration

$$
S^{2 n-1} \rightarrow T_{p^{r}}(2 n+1) \rightarrow \Omega S^{2 n+1}
$$

with connecting map $\Omega^{2} S^{2 n+1} \xrightarrow{\alpha_{n}} S^{2 n-1}$.
In '93 Anick constructed such a fibration sequence for $p>3$. In 2007 Gary and Theriault gave a construction that is valid also for $p=3$.

## Theorem

The reduced cohomology of the space $T_{p}(2 n+1)$ is given by:

$$
\bar{H}^{i}\left(T_{p}(2 n+1) ; \mathbb{Z}_{(p)}\right)= \begin{cases}\mathbb{Z} / p^{r} & \text { if } i=2 n p^{r-1} k, p \nmid k ; \\ 0 & \text { otherwise. }\end{cases}
$$

## A surprising relation

$$
\begin{aligned}
& \text { Theorem (-,C, S) } \\
& \text { Let } p \geq 5 \text { be a prime. } \\
& \text { a) } H^{*}\left(E B_{3} \times_{B_{3}}\left(\mathbb{C P}^{\infty}\right)^{2} ; \mathbb{Z}\right)_{(p)}=H^{*}\left(S^{1} \times \text { BDiff }_{+}\left(T^{2}\right) ; \mathbb{Z}\right)_{(p)} \\
& \text { b) The } p \text {-torsion component in the cohomology group } \\
& H^{*}\left(E B_{3} \times \times_{3}(\mathbb{C P})^{2} ; \mathbb{Z}\right) \text { is isomorphic to the reduced } \\
& \text { cohomology of the space }
\end{aligned}
$$

## A surprising relation

## Theorem (-,C, S)

Let $p \geq 5$ be a prime.
a) $H^{*}\left(E B_{3} \times_{B_{3}}(\mathbb{C P})^{\infty} ; \mathbb{Z}\right)_{(p)}=H^{*}\left(S^{1} \times \text { Diff }_{+}\left(T^{2}\right) ; \mathbb{Z}\right)_{(p)}$
b) The $p$-torsion component in the cohomology group $H^{*}\left(E B_{3} \times_{B_{3}}(\mathbb{C P})^{\infty} ; \mathbb{Z}\right)$ is isomorphic to the reduced cohomology of the space
$\Sigma^{2}\left(T_{p}(2 p+3) \times T_{p}\left(2 p^{2}-2 p+1\right)\right)$

## A surprising relation

## Theorem (-,C, S)

Let $p \geq 5$ be a prime.
a) $H^{*}\left(E B_{3} \times_{B_{3}}(\mathbb{C P})^{\infty} ; \mathbb{Z}\right)_{(p)}=H^{*}\left(S^{1} \times \text { Diff }_{+}\left(T^{2}\right) ; \mathbb{Z}\right)_{(p)}$
b) The $p$-torsion component in the cohomology group $H^{*}\left(E B_{3} \times_{B_{3}}(\mathbb{C P})^{\infty} ; \mathbb{Z}\right)$ is isomorphic to the reduced cohomology of the space
$\Sigma^{2}\left(T_{p}(2 p+3) \times T_{p}\left(2 p^{2}-2 p+1\right)\right) \vee \Sigma\left(T_{p}(2 p+3) \vee T_{p}\left(2 p^{2}-2 p+1\right)\right)$.

## A surprising relation

## Theorem (-,C, S)

Let $p \geq 5$ be a prime.
a) $H^{*}\left(E B_{3} \times_{B_{3}}\left(\mathbb{C P}^{\infty}\right)^{2} ; \mathbb{Z}\right)_{(p)}=H^{*}\left(S^{1} \times \text { Diff }_{+}\left(T^{2}\right) ; \mathbb{Z}\right)_{(p)}$
b) The $p$-torsion component in the cohomology group $H^{*}\left(E B_{3} \times_{B_{3}}(\mathbb{C P})^{\infty} ; \mathbb{Z}\right)$ is isomorphic to the reduced cohomology of the space
$\Sigma^{2}\left(T_{p}(2 p+3) \times T_{p}\left(2 p^{2}-2 p+1\right)\right) \vee \Sigma\left(T_{p}(2 p+3) \vee T_{p}\left(2 p^{2}-2 p+1\right)\right)$.

## Question

Is there any topological explanation for the isomorphism above?

Thank you for your attention!

## Theorem

The group $H^{0}\left(\Gamma(m) ; M_{n}\right)$ is isomorphic to $M_{0}$ for $n=0$ and is trivial for $n>0$.

## Theorem

Let $m>2$ be an integer that factors as $m=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$. The cardinality of $S L_{2}\left(\mathbb{Z}_{m}\right)$ is given by $d=\prod_{i} p_{i}^{\left(a_{i}-1\right) 3} p_{i}\left(p_{i}^{2}-1\right)$ and if we define $i=\frac{d}{p_{1}\left(p_{1}^{2}-1\right)}$ then $\Gamma(m)$ is a free group of rank

$$
r= \begin{cases}i / 2+1 & \text { if } p_{1}=2 \\ i\left(p_{1}\left(p_{1}^{2}-1\right)-1\right)+1 & \text { if } p_{1}>2\end{cases}
$$

The rank of the group $H^{1}\left(\Gamma(m) ; M_{n} \otimes \mathbb{Q}\right)$ is $r$, for $n=0$ and $(r-1)(n+1)$ for $n>0$.
[Back]

