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I. I�����������

Abstract
A system of coupled differential equations is formulated which learns priors

for modelling �preattentive� textures. Learning is driven by the feature residuals
computed from the observed values and the values calculated by the system from a
synthesized image which is generated by means of a reaction-diffusion equation.

An effective approach for modelling many problems in Computer Vision is provided
by variational calculus. In this approach, an energy functional is formulated con-
taining a linear combination of terms (also called potentials in the probabilistic
context), each of which is a nonlinear transformation of the output of a linear �lter
such as the gradient or the laplacian of the smoothed image intensity (see §2). Dif-
fusion equations are derived by gradient descent to �nd solutions minimizing the
energy functional. In this paper, this approach is employed for modelling textures.
The main problem is that of estimating the potentials and their coefficients in the
linear combination and is solved by applying the maximum likelihood principle.
Reaction-diffusion equations were studied by Turing for modelling pattern for-

mation and applied recently by Sherstinsky and Picard [1] to image processing.
However, it is not clear how to design these equations. Recently, Zhu and Mumford
[2] have introduced a new reaction-diffusion equation for synthesizing textures. It
is derived as the gradient �ow of an energy functional in which all the nonlinear
transformations are obtained from a single transformation involving just three pa-
rameters, its center, scale and its rate of growth. Surprisingly, the basic form of this
potential is qualitatively the same as some of the ad-hoc potentials already in use
such as the Blake-Zisserman [3] and the Perona-Malik potentials [4] and the poten-
tials used by Geman and Graffigne for stochastic modelling of textures [5]. It is also
similar to the �edge-strength� function encountered in the segmentation problem [6]
and the sigmoid function used in neural nets (see §3). A fundamental requirement
is that the potential must exhibit saturation for large values of the �lter output, a
phenomenon also observed in animal vision. The question is how to estimate the
center, the scale and the rate of growth of each potential. The approach of Zhu and
Mumford is to use the method of entropy minimax and employs the Gibbs sampler
of Geman and Geman [7] in the process to synthesize images. In the present paper,
a reaction-diffusion equation is formulated to replace the Gibbs sampler.
A brief description of the entropy minimax method of Zhu, Wu and Mumford

[8] is given in §2. The entropy minimax principle is a powerful principle �rst formu-
lated by Christensen [9],[10],[11] in the context of pattern recognition and statistical
inference. The problem is to model the probability distribution on the feature space
or the space of images. Since entropy is inversely related to the amount of infor-
mation in the model, its maximization ensures that the model contains no more
information than what is present in the observed sample. Minimization of entropy
is used to �nd the model that captures the maximum amount of information from
the sample.
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II. E����	
 M�����

To apply the entropy minimax principle, both Christensen and Zhu et al parti-
tion the feature space and approximate the probability distribution by a piecewise
constant function. The problem is thus reduced to a problem in parametric sta-
tistics, albeit with a greatly increased number of parameters. The principle of
maximum entropy is used to estimate the probability distribution corresponding to
a given partition. Christensen uses the principle of minimum entropy to �nd the op-
timum partitioning of each feature space which consumes most of the computational
effort. Zhu, Wu and Mumford propose the principle of minimum entropy to imple-
ment feature pursuit so that features are introduced in the order of their importance
and usually the �rst few features suffice to represent the sample adequately. The
minimum entropy principle works here even with fairly crude estimates of entropy
because it is used for feature pursuit rather than feature selection. If the features
are chosen in a wrong order because the entropy estimate is not accurate enough,
the only penalty is an increase in the computational burden, possibly by a large
amount. (The �rst experiment described in §5 illustrates this behavior.) Conse-
quently, the main computation in their formulation is in estimating the parameters
by the principle of maximum entropy which amounts to maximizing the log-likehood
function by gradient ascent. The computationally intensive part is concerned with
the synthesis of a sample image by the Gibbs sampler from the current estimates
of the parameters during each update.
In this paper the unknown potential of each feature is represented as a linear

combination of a large number of �xed potentials obtained by shifting and scaling
a smooth �mother� potential (§4). Again, the total number of parameters to be es-
timated is greatly increased. But since the potentials are now analytic functions, it
is possible to use gradient descent instead of the Gibbs sampler for synthesizing im-
ages. The result is a system of coupled differential equations, one for updating each
of the parameters and one for updating the synthesized image. However, the use
of reaction-diffusion equation for synthesizing images produces most likely images
rather than typical images. A justi�cation for the use of the maximum likelihood
principle in this context is given in §4. Illustrative examples given by Zhu and
Mumford in [2] indicate that such equations are capable of synthesizing blobs and
stripes. The objective of this paper is to investigate whether it is possible for a such
a system to learn and to generate more complex textures. Experiments described
in §5 lend support to the feasibility of this approach. A possible explanation for
the success of these experiments is that each individual �lter in the bank of �lters
produces a pattern of blobs or stripes and the system combines this collection of
blobs and stripes for generating more interesting textures.
A preliminary version of this paper appeared in [12].

What follows is a brief summary of the entropy minimax formulation of Zhu, Wu
and Mumford. Details may be found in [8]. In practice, the method amounts to
an application of the maximum likelihood principle and feature pursuit based on
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residuals. Start with the Gibbs form of probability distribution:

(1)

where is an image, is a linear transform of , is a nonlinear function,
is the image domain and is the partition function. Of course, is the

corresponding energy functional. The problem is to estimate the potential functions
. Consider one of the �s and to simplify the notation, denote it by ,

omitting the superscript. Divide the domain of into bins. Let denote the
characteristic function of the bin:

if bin
otherwise

(2)

Let denote the coordinate of the center of the bin. Let denote the area of
the image domain. Then,

(3)

where and is the normalized frequency:

(4)

bin

The approximate probability distribution function

(5)

now depends only on the parameters . The normalized frequency
depends only on and not on .
The same form for the probability distribution function is derived in [8] by

applying the principle of maximum entropy as follows. The problem is cast as that
of maximizing the entropy

(6)
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with respect to , subject to the constraints

(7)

where denotes the expected value of the feature with repsect to and is
the observed mean value of the feature. Then application of the method of Lagrange
multipliers shows that the probability distribution function must have form (1).
The entropy is maximized indirectly with respect to the parameters by ap-

plying the maximum likelihood principle as follows. By applying gradient ascent to
the log-likelihood function, we get

(8)

where denotes the set of current values of the parameters . Since the log-
likelihood function here is convex, there is a unique maximizing and hence a
unique satisfying Eq. (7). Therefore the maximizing the likelihood function
also solves the constrained entropy maximization problem.
It is not feasible to compute the expected values in Eq. (7). However, they may

be estimated using the ergodicity theorem of Geman and Geman [7]: Synthesize a
typical image from the distribution and use as an estimate for

. The main computation is now that of and the transforms .
Computation of the Gibbs sampler is made managable by keeping the number of
allowed pixel values and hence the number of local characteristics that must be
computed low.
In order to reduce the number of features used and thereby the number of image

transforms to be calculated, feature pursuit is used. At each stage of the feature
pursuit, optimum value of is found for the current set of chosen features. The next
feature chosen should be the one which maximizes the reduction in entropy which is
equivalent to minimizing the Kullback-Leibler distance (that is, the relative entropy)
from the true probability distribution. However, it is hard to estimate entropies.
Since the purpose of the gradient ascent Eq. (8) is to drive down the residual on
the right hand side to zero, a heuristic strategy is to select at each step the feature
with the largest residual vector. In essence, we use the residuals to indicate the
distance of from the true probability distribution. Let denote the set of
features already selected. Let denote the set of values obtained by setting
equal to its maximum likelihood estimate if the feature belongs to and zero
otherwise. Initially, is empty and consists of uniform noise. De�ne

(9)

Choose such that is maximum over the complement of the set . The use
of the �norm in Eq. (9) instead of the �norm or higher norms is recommended
by Zhu et al as it gave the best results in their analysis of natural scenes.
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Zhu and Mumford derive their reaction-diffusion equation using potentials of the
form:

(10)

They arrive at this form by �tting curves to the piecewise constant potentials they
found empirically by analyzing a large number of natural scenes. The potential is
symmetric about and asymptotically reaches a constant value monotonically.
Introduction of the shift parameter is new and necessary because there is no
reason why a particular feature should behave symmetrically with respect to the
origin. To understand the behavior of such potentials, consider the segmentation
functional:

(11)

where is the segmenting curve, is its length and . First look
at the GNC algorithm of Blake and Zisserman ( ). They replace the �rst
two terms in functional (11) by a function of which is a smoothed version
of a truncated parabola and thus has essentially the same shape as given by Eq.
(10) (see [13]). The Blake-Zisserman potential is symmetric about the origin. For
small values of , it behaves like and the behavior is governed by
diffusion. Parameter plays the role of . As , the potential
saturates, monotonically approaching the constant value . The ratio is the
scale parameter corresponding to in (10). It marks the transition region between
diffusion and saturation. The diffusion equation of Perona and Malik may also be
derived from a similar potential [13]. The trouble of course is that these approximate
functionals have zero in�mum and the corresponding gradient descent equations
are unstable. Recently, Braides and Dal Maso have regularized the Blake and
Zisserman functional by replacing in the functional by its average value
over a neighborhood and show that the regularized functional, suitably normalized,
converges to the segmentation functional (11) as the averaging radius tends to zero
[14].
The form (10) is closely related also to the edge-strength function implicit in the

approximation of functional (11) formulated by Ambrosio and Tortorelli [15]:

(12)

which is valid also for the case . The edge-strength function which minimizes
is a smoothing of

(13)
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which is identical in form to the potential (10) with zero shift.
The exponent determines the type of diffusion which occurs when the gradient

is small. The gradient �ow for minimizing the �norm of the gradient is governed
by where is the second derivative in the direction of and
in the direction orthogonal to it. When , the diffusion is isotropic, governed
by the laplacian. In the limiting case when , smoothing occurs by curvature�
dependent evolution of the level curves of and the gradient �ow of functional (12)
develops shocks [6]. As , the �ow in the limit is purely in the direction of
the gradient and has been analyzed by Jensen [16]. Potential (10) assumes (double)
sigmoidal shape used in neural nets as and becomes a purely thresholding
function in the limit. The scaling parameter may now be thought of as a threshold
for the feature in the sense of neural nets.
Potentials of the same kind in the form of edge-strength functions are also em-

ployed in the newly developed faster methods for segmenting images, notably, the
method of curve evolution, which is intimately related to the segmentation func-
tionals (11) and (12), (see [6]), and a more recent graph-theoretic method proposed
by Shi and Malik [17]. The two methods are in fact closely related; the latter may
be interpreted as an approximation of the former [18]. In both approaches, the
increased speed of computation is achieved basically by delinking determination of
the edge-strength function from boundary detection. The edge-strength function is
calculated in advance of boundary detection by means of ad-hoc potentials similar
to the basic potential (10). The object boundaries are now determined one closed
curve at a time.
A very important consequence of the saturation of potentials is that the func-

tional

(14)

has not only an in�mum, but also a supremum. Hence, the weights may be
allowed to be negative, a possibility very effectively exploited by Zhu and Mumford
in [2] for synthesizing textures and removing clutter. For an illustration, consider
the case of a single potential. Denote the corresponding �lter by so that the
integrand in Eq. (14) is . The gradient �ow is given by the equation

(15)

where When , accentuates the feature values near the
center and the �ow is a diffusion �ow. If , instead of diffusion we get
sharpening of features, a reactive behavior; in the steady state, feature values are
near saturation rendering the steady state insensitive to the value of . Consider for
example the case where smooths the image by convolving it with a Gaussian with
standard deviation equal to and then computes the laplacian of the smoothed
image. The initial image consists of uniform noise. Fig.1 shows two examples. The
frame on the left shows the result with and . Smearing
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Figure 1: Synthesized textures using Eq. (15). Left frame: Diffusive behavior,
Right Frame: Reactive behavior.

due to diffusion is clearly seen. In contrast, the result depicted in the frame on
the right corresponds to the case with and . The
absolute values of the laplacian are driven towards satuaration, with positive values
dominating since the center is positive, producing a pattern of black blobs. Since
the saturation acts like thresholding, the image is nearly piecewise constant and the
boundaries of the blobs are sharp.

As already discussed in the introduction, a way to estimate directly the parameters
in the reaction�diffusion equation is to represent each unknown potential as a linear
combination of �xed smooth potentials. We create such a set of potentials by
shifting and scaling the �mother� potential

(16)

Function is �universal� in the following sense. Let denote the set of functions
of the form

(17)

Then, for each , the restriction of to the interval is dense
in the set of continuous functions on with respect to the uniform
norm. This follows from a result of Leshno, Lin, Pinkus and Schoken [19] which
asserts that if is continuous almost everwhere and bounded on every compact
set, then it is universal if and only if it is not a polynomial. Thus, for the purpose
of approximating the potentials by elements in , any universal function will
suffice. The choice (16) is suggested by the results of Zhu and Mumford and by the
form of the potentials encountered in segmentation functionals.
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It has been pointed out by a reviewer that similar equations have been used by Anderson and
Langer [20] using the absolute value function for all in place of and disregarding the shift
and scaling parameters.

Let . De�ne

(18)

where are integers, and . For a �xed , range of is covered
by potentials and the potentials get narrower and narrower as increases.
The situation is analogous to the multiscale representation of a function by wavelets
except that our basis potentials are not orthogonal.
The unknown potential may be approximated as

(19)

In view of the universality of it is expected that with a sufficiently large set
of �xed potentials, a single value of will suffice for approximating the unknown
potentials. Hence, was set equal to 2 in all the experiments. Note that the main
effect of is on the type of diffusion.
The probability distribution is now given by

(20)

where

(21)

where

Quantities may be thought of as a set of nonlinear features derived from the

original linear �lters. The equations for gradient ascent to estimate may be
derived as before, but the synthesized image is computed by applying gradient
descent to the energy functional . We get a system of coupled differential
equations :

(22)

where is the linear transform.

8



′ ′

′ ′

[ ]

	� � � � �

�

�

√

�
�

| | �

�
�

x
T

y
T

x
T

y
T

x
T

y
T

2 2

1
2

2
2 2

1
2

2
2 2

V. E	��������

[ ]

	� � � � �
	� � � � �

⊥

�

� ′

� ′

′ ′

� � � � � �

( )
( ) ( )

( )

4

2 2
+

2

+

2

+

�
m,k �

m,k syn
�
m,k obs

�

m,k

U I, I

U I,

d�

dt
v I v I

F

LG T
T

x

T

y

T
e

T / , , , , , ,

G T, �
T

e
x

T

G T, �
T

e
x

T

x x � y � y x � y � T , , , , , �
, , , , , G , G ,

� m , , , ,
k m/ k

�
( �)

� � �

( �)

� �

= ( ) ( )

�

( ) =
4

+ 1 ( ) ( )

= 2 2 1 2 3 4 5 6

cos ( ) =
1

cos
2

sin ( ) =
1

sin
2

= cos + sin = sin + cos = 2 4 6 8 10 12 =
0 30 60 90 120 150 sin(2 ) sin(2 0)

= 1 2 4 8 16
2

0
255

128 128
79 142

These equations are degenerate in the direction of the current vector in the
sense that the in�mum of with respect to is invariant with respect to
scaling of the and hence must be normalized. The scaling of corresponds
to setting the temperature in simulated annealing. As the temperature tends to
zero, the annealing method converges to the most likely image. The probability
distribution in the limit is uniform over the set of the minima of and zero
elsewhere [7]. Thus, as the temperature tends to zero, the probability mass becomes
more and more concentrated around the global minima and the most likely images
become also typical images. In this sense, the use of the maximum likelihood
principle here is consistent.
Normalization of may be done by restricting to the Euclidean length of one.

The �rst equation in (22) may then be replaced by

(23)

where the right hand side is the component of the residuals orthogonal to .
Again, feature pursuit may be used as described in §2.

The following choices were made for the three experiments described below.
The �lter bank { } is a subset of the �lter bank used by Zhu, Wu and Mum-

ford, consisting of 73 linear �lters:

(24)

where and Gabor �lters

(25)

where , , , and
. The �lters were omitted because is

identically zero at the lattice points.
The set of potentials consisted of 35 potentials with and

. The full range of centers was not used since the centers of the unknown
potentials should be near the mean values of the corresponding features.
The observed images were normalized so that the pixel values ranged from to
. The uniform noise was sampled from this range of values. The input images

and the synthesized images are pixels in size except the last input image
is pixels in size. The range of values of each feature was computed by
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combining the range obtained from the observed image with the range obtained
from the image consisting of uniform noise.
The size of the time step was empirically chosen as follows. After the �rst

feature was chosen, was set equal to the residuals with respect to that feature,
with the length adjusted to one. The time step was then chosen so that the �rst
update vector had length equal to and this value of the time step was
maintained during all the subsequent updates. After each new feature was chosen,
was updated 10 times. Each time was updated, was computed using the

second update equation in (22). The time step for updating was set such
that during the �rst update of the uniform noise, the maximum change in the pixel
values was equal to 2. The image was updated 60 times before introducing the next
feature. Note that it is not crucial to drive down the residuals to zero before a new
feature is introduced. It is sufficient to make the residuals small enough compared
to the residuals of the new feature. In order to avoid boundary effects, toroidal
topology was assumed.
In the �rst experiment, the system was given the synthetic image shown in Fig.

1b as the image to be learned. The system selected six �lters in the following
order: , , , , , . Fig. 2a shows the
uniform noise with which the system begins. The synthesized images after 1, 4 and
6 �lters were selected are shown in Figs. 2b, 2c and 2d respectively. Interestingly,
although the input image was synthesized with a single �lter using Eq. (15),
the system (22) chose instead as its �rst �lter. The values of of the two
�lters are very close with the latter having a slightly higher value.
The second test image shown in Figure 3a depicts animal fur. Figure 3b shows

the result after the system had selected 8 �lters in the following order: ,
, , , , , and .

The last experiment is shown in Figure 4. Figure 4a is the input image showing
cheetah skin. Figure 4b shows the image synthesized by the system after it chose
13 �lters in the following order: , , ,

, , , , , , ,
and .

It is not possible to give meaningful estimates of the running times for the
system. Since the objective of the work described in this paper was to test the
feasibility of this approach, the experiments were carried out without any kind of
numerical optimization on an old workstation . Each experiment was allowed to
run for many hours to test the numerical stability of the system even though the
images looked acceptable earlier on.
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