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Abstract
During the last decade, curve evolution has been applied to shape recovery,

shape analysis, image smoothing and image segmentation. Almost all of these
applications are based on curve evolution which minimizes the total length of the
curve. The curve moves with velocity proportional to the curvature and hence
corners are smoothed out very rapidly. However, many of the approaches to shape
analysis require corner-preserving presmoothing of shapes. To preserve corners, it
is necessary to consider cost functionals based on curvature rather than on total
length. Classically, such functionals have been applied to study bending of thin
elastic rods called elastica. In this paper, an implementable formulation based on
curvature is developed for smoothing curves while preserving corners.

Methods based on geometry-driven diffusion for processing images have undergone
a great deal of development [1]. In particular, methods based on curve evolution
have attracted a lot of attention. These methods have been applied to shape re-
covery and shape analysis as well as to image smoothing and image segmentation.
(See [2] for example and references given there.) Almost all applications of curve
evolution are based on minimizing the total length of the curve, sometimes with re-
spect to a specially designed metric, so that points on the curve move with velocity
proportional to curvature. Hence, the velocity is greatest at the corners and corners
of the shape are rapidly rounded out. However, many approaches to shape analysis
require corner-preserving presmoothing of the shape. There is no way to introduce
corners in the formulation because the length measure is not sensitive to corners.
The only way to introduce corners is to have a cost functional based on curvature.
Although such functionals have been proposed from time to time, they all suffer
from a lack of practical algorithms. In some cases, algorithms have been devised,
but only after imposing some form of severe restriction on the curve. The �snake�
formulation of Kass, Witkin, Terzopoulos [3] depends on parametrization and cor-
ners are not allowed. In [4], Pauwels, Fiddelaers and Van Gool derive an intrinsic
formulation only after imposing the condition that the length of the curve does not
change during its evolution. This has the effect of grossly distorting the shape if
the initial shape boundary is very noisy. A simple example of this is a square shape
whose 3 sides are perfectly straight while the fourth is very wiggly. Since the length
is preserved, as the wiggles are straightened out, the fourth side expands, distort-
ing the square into a trapezium. Curvature based functionals have also been used
in segmentation functionals to represent segmentation boundaries with corners [5].
However here too, algorithms for implementation are lacking. There is a discrete
curve simpli�cation algorithm due to L.J. Latecki and R. Lakaemper [6] which pro-
duces a hierarchical description of the vertices of the initial polygonal curve in terms
of their saliency. However, it is not applicable for obtaining a piecewise smooth ap-
proximation of the curve for use in later applications, for example, determining its
skeleton.
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In this paper, an implementable formulation is developed for smoothing curves
while preserving corners. The starting point is a functional which is the integral
of the square of the curvature of the evolving curve. Such a curve when evolving
while maintaining its total length is classically called an elastica and its theory goes
back to Euler [7]. To permit corners, the functional is augmented by a penalty for
corners, allowing smoothing to occur only between corners. In order to facilitate
implementation by gradient descent, the discrete corner term is then replaced by a
continuous variable called the �corner strength function� which may be thought of
as a distributed version of the corners. Next, the curve is embedded as a level curve
of a function de�ned over the plane and the functional is extended to the function by
integrating the individual functionals of all the level curves of the function. Finally,
the functional may be augmented by including a data �delity term. The �nal form
of the functional may be viewed as a segmentation functional and may be applied
to intensity images. A pair of diffusion equations are derived by gradient descent
which are implemented by a numerical method introduced by Osher and Sethian
[8].

The starting point is the functional

(1)

where is an evolving planar curve, is the curvature and is the arc-length. A
somewhat more general functional considered in [5] is

(2)

where is a constant. If the curvature term is omitted from the above functional, it
reduces to the usual functional of total length. If the length of curve is held constant
during the evolution, then is constant and hence, the constant may be
ignored. The �rst variation of the functional with respect to a small displacement
along the normals is easily derived:

(3)

where the superscript prime indicates differentiation with respect to the arc-length
. Here, normals are assumed to be outward and the curvature is de�ned so that it
is positive when is a circle. The stationary curves satisfy the equation

(4)

There are in�nitely many solutions of this equation which have been described by
Mumford [9]. However, it follows from a theorem of Wen [10] that if the stationary
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curve is a simple, closed, smooth curve, it must be a circle of radius . In fact
it represents the unique minimum of the functional. The two examples of elastica
(stationary curves) in [9] have singular points and thus have in�nite energy.
The gradient descent equation for is

(5)

The evolution of is markedly different from that of a curve evolving to minimize
its length. Consider the special case in which the initial curve is a perfect circle.
Then the motion of the curve is circularly symmetric and the evolution equation
reduces to

(6)

where is the instantaneous radius. Therefore, if , the circle expands and if
, it contracts towards its steady state of the circle of radius . In particular,

if , the curve will expand forever, but at a steadily slower rate. This is a
decidedly different behavior from the evolution which minimizes the total length
of the curve. In that case, as the curve shrinks, its evolution accelerates and the
curve disappears in a �nite amount of time. One has to introduce a stopping term
to obtain a non-trivial steady state.
When is not a circle, the �term is negative where the curvature is maximum

and thus has the effect of pushing the curve inward. The opposite happens where
the curvature is minimum. Thus the effect of the term is to make more circular.
After the small-scale features are smoothed out, the evolution is very slow and the
curve may be thought to be practically in a steady state.
The next step is to introduce corners. Following the example of segmentation

functionals, the obvious functional to consider is

(7)

where is a discrete set of points and denotes the cardinality of . As men-
tioned before, it is not possible to apply straight�forward gradient descent to this
functional due to the presence of the discrete variable . Therefore we replace the
discrete corners by a continuous �corner strength function� as follows:

(8)

where function , de�ned over the plane, varies between 0 and 1. The higher the
curvature, the higher the value of At the corners of , its value equals 1. The
strategy for determining is discussed in the next section. The modi�ed evolution
equation now reads

(9)

where and indicates the direction normal to the curve.
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It is impractical to implement evolution of in the form of Eq. (9). Instead, we
follow Osher and Sethian [8] and obtain evolution of as a level curve of an evolving
function . We let all the level curves of evolve simultaneously in accordance with
Eq. (9). The corresponding functional for is easily obtained by means of the
coarea formula. Let be de�ned over a domain . Then the total energy of all the
level curves combined is

(10)

(11)

where is the curvature of the level curves of , given by the formula

(12)

The coarea formula is also useful for deriving the �rst variation. With
,

(13)

(14)

(15)

(16)

(17)

where we have used the fact that
Functional (11) may be generalized further by adding a penalty for the corner

strength function making its computation intrinsic. Morever, a data �delity term
may be added to ensure existence of nontrivial steady states. These terms may
be carried over from the segmentation functional based on length-minimizing curve
evolution [2]. Let the initial curve be a level curve of a function The �nal form
of the functional is

(18)

Preliminary considerations suggest that as , converges to the
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(19)

where is the locus of discontinuity of , is the jump in across , is the
locus of the corners of the level curves of and is its length. Note that if the
curvature term is omitted from Functional (18), it reduces to the functional given
in [2]. It is interesting that like the weak plate model of Blake and Zisserman, func-
tional incorporates jumps and creases. However, the Blake-Zisserman
model includes all creases, not just the loci of the corners of the level curves. But
it is not possible to track evolution of the level curves of in the Blake and Zis-
serman model, nor is it possible to implement it by a system of diffusion equations
since its elliptic approximation like the Ambrosio-Tortorelli approximation of the
Mumford-Shah functional is not known.
With the �rst variation of the �rst term in the integrand already given by Eq.

(17), the gradient descent equations with respect to and are now straight-
forward to write down:

(20)

where , and for any function on its second derivative
with respect to the arc-length along the level curves of is given by the formula

(21)

The gradient descent with respect to is given by

(22)

Parameters and have the dimension of length. Level curves of move in accor-
dance with Eq. (9) augmented by a constant velocity component induced by the
data �delity term. As in [2], the corner strength function is a nonlinear smoothing
of

(23)

In the derivation above, the penalty for the corner strength function
was introduced after the formulation for surfaces was derived. In order to obtain
closer correspondence between Eqs. (7) and (8) one could introduce the penalty for
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corners in Eq. (8) itself and then derive the formulation for surfaces. Modi�ed Eq.
(8) takes the form

(24)

where The corresponding functional for surfaces is

(25)

But now, the gradient descent equations are more complicated. A likely candidate
for the limit functional as is

(26)

In the examples below, the constant was set equal to zero and each time step
during diffusion was equal to 0.02.
The �rst �gure illustrates the effect of the corner strength function on the

smoothing process. The successive stages of diffusion according to Eq. (20) with
(thus turning off the �delity term and the corner-strength function)

for all time are shown except in the last frame at the bottom right. Frames
from left to right and top to bottom correspond to times t = 0, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024. At time t=0, each level curve is a square. As expected, the
small inner squares are rounded out rapidly which then expand outward. The outer
bigger squares have their corners rounded out, but once the curvature is fairly large,
(say for example, radius of curvature pixels), the diffusion is extremely slow.
The last frame (bottom-right) shows the corner strength function when the

same image is allowed to diffuse according to Eqs. (20) and (22) with the corner
term function included (maximum value of is equal to about 0.90). Hardly any
smoothing takes place. The corner strength function concentrated near the corners
prevents diffusion at the corners and there is no diffusion elsewhere because the
curvature is zero there.
Examples of smoothing of shape boundaries are shown in the second �gure. The

corresponding times from left to right are t=0, 60, 600. Each noisy shape boundary
was embedded in a surface by means of the signed distance transform. To keep the
corner strength function concentrated near the corners, was set equal to 4 pixels.
The results were not sensitive to the value of which was also set equal to 4 pixels.
The really important parameter is . If it is set too low, values of will be near
zero and the corners will be smoothed out. If the parameter is set too high, will
have values near one everywhere along the boundary because of the high curvature
induced by the noise and the diffusion will be very slow. As a compromise, was set
automatically internally during the diffusion so that the maximum value of was
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Figure 1: Diffusion according to Eqs. (20) and (22)
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Geometry-driven diffusion in computer vision

IEEE Conference on Computer Vision and Pattern
Recognition,

Figure 2: Smoothing of shapes according to Eqs. (20) and (22)

maintained near 0.90. The examples clearly show the effectiveness of the method in
smoothing out small-scale noise while preserving corners and large-scale features.
It is not practical to use the method to smooth large-scale features because the

diffusion is very slow when the curvature is small. To obtain a smoother shape
while preserving corners, a two-step procedure may be followed. Apply Eqs. (20)
and (22) as the �rst step in order to smooth out small�scale noise and save the
corner strength function. Once the shape has practically reached a steady state,
apply the length-minimizing curve evolution in the presence of the corner function
as the second step; that is, let it evolve according to the gradient descent equation

(27)

keeping �xed at values reached during the �rst stage. The result is a rapid
smoothing of the curve away from the corners.

[1] B. M. ter Romeny (Ed.), , Kluwer,
1994.

[2] J. Shah, A common framework for curve evolution, segmentation and
anisotropic diffusion,

1996.

8



V. B����
���

1

73(3)

79

70(3)

Int�l.
J. Comput. Vision

Fifth International
Conference on Computer Vision

Third Int. Conf. on Comp.
Vision

Computer Vision and Image Understanding

J. Comp. Physics

Algebraic Geometry and its
Applications,

Duke Math. Journal

[3] M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models,
, 1988, 321-331

[4] E.J. Pauwels, P. Fiddelaers and L.J. Van Gool, Shape-extraction for curves us-
ing geometry-driven diffusion and functional optimization,

, 1995.

[5] M. Nitzberg and D. Mumford: �The 2.1D Sketch�,
, 1990.

[6] L.J. Latecki and R. Lakaemper: �Convexity rule for shape decomposition based
on discrete contour evolution�,

, March 1999, 441-454.

[7] L. Euler: �Methodus inveniendi lineas curvas maximi minimive proprietate
gaudentes�, Lausanne, 1744.

[8] S. Osher and J. Sethian, Fronts propagating with curvature dependent speed:
Algorithms based on the Hamilton-Jacobi formulation,
1988, 12-49.

[9] D. Mumford, Elastica and computer vision�, in
Ed. C.L. Bajaj, Springer-Verlag, 1993.

[10] Y. Wen: �L2-�ow of curve straightening in the plane�,
,1993, 683-698.

Jayant Shah is a professor of Mathematics at Northeastern University, Boston, MA.

9


