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Section 1 1. INTRO

1. INTRODUCTION
The motivation for this paper comes from the segmentation problem in Computer Vision
which is the problem of subdividing an image into “meaningful” regions (“objects”).
During the early stages of image processing, one adopts a very simple criterion for
deciding what constitutes a meaningful region: a region is meaningful if it has relatively
uniform feature intensity. A mathematical formulation of the problem was proposed in
[10] in the form of an “energy functional” as follows:
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where

� �R2 is a connected, bounded, open subset, the “image” domain,
� is the feature intensity, � � � �R,
� � � is a curve segmenting �; it is the union of “object” boundaries,
� is the smoothed image which need not be continuous across �,
��� is the length of � and
�� � are the weights.

The task is to find � and � which minimize ������. The segmentation problem is
thus reduced to the problem of finding a piecewise smooth approximation of �. The
functional ������ has been studied extensively and a large body of results has been
obtained [2,5,6,11,12,13]. The purpose of this paper is to present a modification of this
formulation so as to remedy certain “pathologies” exhibited by the above functional. In
particular, consider the 1–dimensional version of the problem so that � is just an open
interval and � is a finite set of breakpoints. Assume that � is linear. Since the formulation
tries to produce an optimal, piecewise smooth and relatively “flat” approximation of �,
it will segment � into many small pieces if � is sufficiently small. One should expect
a region in a 2–dimensional image where the image gradient is high to be broken up
into small narrow strips. Another problem is that in a 2–dimensional image, the optimal
solution always rounds out corners and distorts T-junctions [11]. It is also possible that �
may have free ends which curl up into cusps with infinite cuvature at their tips [11]. There
is also sensitivity to the shape of a region. For example, consider the situation where
the image contains an object � in the shape of a dumbbell with a short narrow neck.
Suppose that within �, � is constant in the direction perpendicular to the neck and linear
in the other direction. If the neck of � is sufficiently narrow, it will be cost-effective to
segment � across the neck. However, if � is constant in the direction of the neck and
linear in the other direction, it will never be cost-effective to place a cut across the neck.

In order to avoid these problems, we consider the same functional with boundary
conditions:

�� � �� along � (2)
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where the superscripts � and � refer to the values of � and � on the two sides of �.
Immediately, we see that � may be assumed to be contained in the discontinuity locus
of �. It follows that the singularities such as corners and T-junctions are preserved and
that the continuous parts of � are not segmented. Moreover, it is shown in the paper
that if the discontinuity locus of � is the union of closed loops (that is, no free ends),
then so is the discontinuity locus of �. However, the new functional is quite useless in
its present form for application to computer vision. It is quite sensitive to noise since it
must agree with � along �. More importantly, if the image is even slightly blurred as it
is likely to be in practice, � will be empty since � is now continuous everywhere.

Our solution to these problems is twofold. First we impose the Dirichlet boundary
conditions only approximately by constructing a new functional which is in effect
an interpolation between the original functional and the one with Dirichlet boundary
conditions. Second, we introduce a model for blurred object boundaries in the functional
itself. The singular perturbation introduced by Ambrosio and Tortorelli [3,4] provides
means to do so. It amounts to replacing � by a continuous variable which may be viewed
either as a blurring of � or as the probability for the presence of a boundary at a given
point. The method of gradient descent applied to the resulting elliptic functional yields
a coupled system of two diffusion equations which may be implemented, for instance,
by the method of finite differences. Alternate possibilities for such coupled systems are
discussed in [14].

The next section contains the statements of the theorems. The main results are the approx-
imation theorems (in particular, Theorem 7) which are proved only for the 1–dimensional
case. The remaining sections are devoted to proving these theorems.

2. STATEMENTS OF THE THEOREMS

We begin with the general n–dimensional framework. Let � be a connected, bounded,
open subset of Rn with Lipschitz boundary. Let �� denote the n-dimensional Lebesgue
measure on Rn, and ���� denote the (n-1)-dimensional Hausdorff measure on Rn. Let
� and � vary in 	����, endowed with 	� topology. Let 
� denote the “jump” set of �
as defined in [1]. We make a further regularity assumption on � as follows:

Assumption on �: 
� is contained in a closed subset �� � � such that

(i) �������� � �
(ii) �	�� is a finite union of open sets {��} with Lipschitz boundary
(iii)
, ��

��
is continuous and may be extended continuously to ���, the boundary of ��.

Define a class of “piecewise ��–smooth” functions as
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where �
� denotes the closure of 
� in Rn. Let
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(4)
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We look for the minimizers of the functional
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in �	��
� ��.

In order to find approximate minimizers of ����, we consider the functional
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where � � �	��
�, � is a constant and
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Since we are dealing with piecewise continuous functions, the proper setting for the theory
is the space of Special Functions of Bounded Variation or ��� functions, introduced by
Ambrosio and may be briefly described as follows [1]. The space �� �
� is the space of
functions � � ���
� such that the distributional derivative �� is a vector-valued measure
of finite total variation. The space ��� �
� is the space of functions � � �� �
� such
that �� admits the following decomposition: � Borel sets � ,
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where �� denotes the direction normal to ��. Let

��� �
� �� �
�
� � ��� �
� � �� 	 ��� �� � �� ���� � ���� along ��

�
(9)

Definitions of the functionals ���� and �� ��� clearly extend to any � � ��� �
�. We
now extend these definitions to any � � ���
� by relaxation as follows [7]:
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(12)

3



The following theorem, summarizing the results in [1,8], forms a basis for the results
in this paper:

Theorem 1: Assume that 	���� ��. Then, � � ��� �
� and 	���� � ����. Moreover,
	���� has minimizers and any minimizer of 	���� belongs to �	��
�.

Analogously, we prove:

Theorem 2: Assume that 	������ ��. Then, � � ��� �
� �� and 	������ � ����.

Theorem 3: Let n=1. If 	�� ��� � �, then � � �	��
� and 	�� ��� � �� ���.

We have the following existence theorems:

Theorem 4:
(i) 	������ has a minimizer in ��� �
� ��
(ii) If n=1, then ���� has a minimizer in �	��
� ��.
(iii) If n=2, suppose that 
 is a rectangle. Let �� denote the set consisting of the points in
	�� which are not in �� or where 	�� is not ��. Similarly, define �� for any � � �	��
�.
Suppose that �� is a finite set. Then ���� has a minimizer in the set {� � �	��
� �� � ��
finite}. Moreover, if � is such a minimizer, then �� 	 ��.

Theorem 5: Let n=1. Then �� ��� has a minimizer in �	��
�.

We now construct a singular perturbation of �� ���. We recall the construction of
Ambrosio and Tortorelli. The basic ingredient is the representation of �� by a continuous
variable � as follows. Let

�	 �
�
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For a fixed, (n-1)-dimensional, closed, ��–smooth subset � in 
, let �	 minimize �	���
with the boundary condition � � � on � . Then, as � 
 �, �	 obviously tends to zero
everywhere in 
�� . The key point is that �	��	�
 �������. The values of �	 range
between 0 and 1. For sufficiently small values of �, �	 is essentially an exponentially
decaying function of distance from � . Thus �	 may be viewed as either a blurring
of �

�
(the characteristic function of �) with a nominal blurring radius equal to � or,

alternatively, as the probability for the presence of a boundary at a point. By replacing
�� everywhere in �� ��� appropriately, we get
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(14)

where �	 is a positive constant, depending on �, such that �	 is of order ����. The
infinitesimal �	 is introduced as in [4] to ensure ��–regularity of the minimizers of ��
	

and thus avoid certain purely technical complications; ��
	 still approximates �� if �	
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were set equal to 0. The existence of minimizers of ��
	 in 	��
�  	��
� follows
by reduction to the 1–dimensional case by the slicing technique and then applying the
standard compactness and lower semicontinuity theorems (see [3]).

In order to state the approximation theorems, we recall De Giorgi’s notion of
�–convergence [7]. Let � be a metric space, let � 	 � and let  � � � 
 ����� be a
family of functions indexed by ! " �. Then  � is said to �–converge to  � � 
 �����

as ! 
 �, if

�#� 
 #� ��� ��

���

 ��#�� �  �#�

�#� 
 #� ������
���

 ��#�� �  �#�
(15)

for all # � � . If the �–limit exists, it is unique and it is lower semicontinous. Note that
if �!�  � �  , then �� ���

���
 � exists and equals 	 , the relaxation of  . The important

property of �–convergence from the point of view of approximations is the following:
if {#�} is asymptotically minimizing, i.e.,

���
���


 ��#��� ��


�
 �

�
� � (16)

and if #�� 
 # for some sequence !� 
 �, then # minimizes  .

The approximation theorems are:

Theorem 6: Let n = 1.
(i) As � 
 �, �� �–converges to 	���.
(ii) As � 
 �, �� �–converges to 	�.

Theorem 7: Let n = 1. Let

��
� � ���
� �� � ���
� � � � � � ��

� �
� �
�
��� �� � ��
� � �� � � 	��
�

� (17)

Extend 	�� to ��
� by setting

	�� ��� �� �

	
	�� if � � �
� otherwise

(18)

Then as � 
 �, ��
	 �–converges to 	�� .

Theorem 8: Let n = 1. Let ��
� and � �
� be defined and 	��� extended to ��
� as
in Theorem 7. Assume that � � $� �� �� and � � ��
�
� 	��� for some positive % � �

�
.

Then as � � �, ���� �–converges to ����.

3. PROOF OF THEOREM 2

By Theorem 1, � � ��� ��� and ���� � �. We have to show that � satisfies
the boundary conditions. Let {��} be a sequence in ��� ��� 	� such that �� � �
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in 
�. Since ��� � �� and
�
��� � ���

�
��� � �

���L��� converges in measure [1] to�
�� � ��

�
�� � �

���L��, �� � �� . Let �� be a closed subset containing �� such that
���� has finitely many connected components, ��		, with Lipschitz boundary. Since
the embedding ���	� �� 


� ��	� is compact [9] for � � �, after replacing the sequence
�� by a subsequence, we may assume that �� � � in � 


� ��	��
�. If �� �

�
� �, then we

have continuous trace maps �	 � �


� ��	� � �


����
�

���	�. Therefore, �	���� � �	���
in 
����	��
�. It follows that along �� , the function

� �
������ � 	�

��� ����� � 	�
��������� � ���

��������� � 	�
��� ���� � 	�

�������� � ��
��� ���� � ����

(19)

Hence, �� � 	� ���� � ���� along ��.

4. PROOF OF THEOREM 3

Again, by Theorem 1, � � ���� ���� and ������ is empty since n=1. The main point
is to show that ��� ��� � �� ���. Let {��} be a sequence in ����� converging to
� in 
����. By passing to a subsequence, we may assume that ��� � �� weakly in

����, ���  � ��
� and

	
�
���

�� ���� � ��� ��� (20)

By Theorem 1, 	
� 
�
���

����� � ����. We have to show that

	
� 
�
���

�
���

�
�
��� � �

�

� � 	
�� 	�

�
�
�
��

�
�
��� ��� 	�� 	�

�
(21)

By Ambrosio’s semicontinuity theorem [1], for every open set � � �, �� �� �

	
� 
�
���

��� � �. Let � be the open interval ��� �� and let

��� � ����	� � � ��� � ��� � � � � ��� � �

�� � ��	� � � �� � �� � ��� � �
(22)

Let ���� � ���� ���	 be the set of points in ��� converging to a point � � ��. After passing
to a subsequence, we may assume that the convergence is monotonic. Define

 ���� �

��
�

���!��  ��� �

��
�

��!�

"� � �� �  �� " � ��  

(23)

Then  � �  in #������ for all $ � �

�
, "� and " are piecewise constant, "� � " ����

and %"� � %" weakly in measure [1].
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It follows that if we let

��������� ��	 � ��������� ��	 for & � � � ' (24)

then
����� � ���� ����� � ��� � ��	 � ��	�� for & � � � ' (25)

Let ��� � ����������� ��������� 	������� 	�������. We have to show that

	���
	��

��� � �������� ������ 	����� 	����� (26)

Suppose that ���� ��� �� ���
� � some ��. Now if ��� �� ���
� � ��, then
�������� � 	����� � ����� � 	���� where the sign on the right side is plus if
��� � � and minus if ��� � � . Then it is easily checked that

�������� ������ 	����� 	�����

�

�
��� ���
���

��� if � � �

��� ���
���

���� � ���� otherwise
(27)

Now suppose that there exists an integer �� such that �� � ��� ��� or ��� � �� . If � � �,
then we are done. If � �� �, then, say, ��� � ��. Hence, ��� �� ��. One checks that

��� ���
���

���� � ����

� ���
��
	�
�
� 
�����

��
�
�
	�� � 
�����

��
�
�
	�
�
� 
�����

��
�
�
	�� � 
�����

���
� ��������� ������� 
������ 
������

(28)

5. PROOFS OF THEOREMS 4 AND 5

For proving the first part of Theorem 4, let �� be a minimizing sequence in �� ��� 
�
converging to � in �����. Let � � �
���� and let 	�� � � � �� � ����. Then
	�� � �� ��� 
� and ��	��� � �����. Hence we may assume that ������� � �.
By Theorem 2, � � �� ��� 
� and ���� � ������ �����. Therefore � minimizes the
functional. If n=1, then � is automatically in ������ 
�. Theorem 5 is proved in the
same way. We now give a direct proof for part (iii) of Theorem 4. Let � � ������ 
�.
Suppose that there exists � � �� which is not in ��. Then, since �� must be �� at
� , � must be a terminal point of ��. By Theorem 1.7.3 in [9], there must exist � � 


such that with origin at ���� � �,

��
�

�������� ���������
�
�	 (29)
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along the branch of �� terminating at � . Here � is the arc-length along the branch.
Therefore,

��
�

��
����� 
��������
�
�	 (30)

But since �� is �� at � , there exists a positive � � � such that��
����� 
������ � 	 � 
 for 
 � � � � (31)

and hence

��
�

��
����� 
��������
�

�	 (32)

Therefore, � must be in �� as well. Hence, we need to consider only those functions
� � ������ 
� for which �� 
 ��. Since �� is finite, there are only finitely many
possibilities for ��. Hence the theorem follows from the theory of elliptic boundary
value problems [9].

6. PROOF OF THEOREM 6

(i) CASE: � � 	

Proposition 6.1 (lower inequality): For every � � �� ��� � �����,

	�	���� � ���

�
��� ���

��

�
 ��
 � � �
 � � in ������ �
 � ������

�
(33)

Proof: We may assume that the right hand side of the inequality is finite. Let {�
} be
a sequence in ������ converging to � in ����� such that �
 ��
 � � � � 	 and
���  � � . By Theorem 1, � � ������, �� � � and ���� � � . It remains to show
that � � ������ 
�. As in the proof of Theorem 3, let ��
�

� ���� �
�
�
 ��� be the set

of points, monotonically converging to � � ��. Suppose that �
�
�� � for all sufficiently

large � . We may assume that 
 is continuous at �
�
for all � . Then,

��
 ��
�
��� 
��
�

��� � ��
 ��
�
��� 
��
�

��� �
�

�
� 
 (34)

Hence,

���

��

�
 ��
�
�� � ���


��
�
 ��
�

�� �

�

���� if �
�

� �


���� if �
�
� �

(35)

Therefore, �
 ��
�
����
��
�

��� 
 as� �	. Since, by Ambrosio’s theorem [1],�
�

��
 ��
�
��� �
 ��
�

���� ������ ����� (36)
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there must exist � such that for all sufficiently large � , �
�
� � and such that

�
 ���� � ����� and �
 ���� � �����. Since

���
 ����� �
 ����� 
����� 
����� �
�

�
� 
 (37)

it is easy to check that � � �� and ����� � 
����.

Proposition 6.2 (upper inequality): For every � � �� ���, there exists a sequence
{�
} in ������ converging to � such that

��� ��

��

�
 ��
 � � 	�	���� (38)

Proof: We may assume that 	�	���� �	. Hence, � � ������ 
�. Set �
 � ���� .

(ii) CASE: � � 


The lower inequality follow from Ambrosio’s theorem [1]. For the upper inequality, set
�
 � ���� as before.

7. PROOF OF THEOREM 7

Proposition 7.1 (lower inequality): Let n=1. Then, for every ��� �� �  ���,

	�
 ��� �� � ���

�
��� ���
���

�
������ ��� � ���� ���� ��� �� in ������ ���� ��� � ! ���

�
(39)

Proof: If � �� 
, then both sides of the inequality would be infinite. Therefore,
we may assume that the � � 
 and the right hand side of the inequality is finite.
Let ���� ��� � ��� 
� in ����� such that �
������ ��� � � � 	. By Theorem 1,
� � �� ��� and ���� � ��� ���

���
�������� ��� �	. Hence, � � ������. Therefore, it

is enough to show that for every positive � � �, there exists " � 
 such that
��� � "� � � "� � � � ��� are disjoint open sets in �, and �� � ��,

��� ���
���

���
��

��� � 
�
�

	
#
�������� � ���#



� ��� ���

�
������ ������ 
����� 
����

�
(40)

Ambrosio and Tortorelli [3,4] prove that since

�

$
�

�

�

�
�


#
�������� � ���#

�
�� �

�
�

����������� � �

�

�
�

�������������� (41)

there exists a finite set % 
 � such that (i) �� 
 % and (ii) for any compact set & 
 ��% ,

��� ��
���

���
�
��� � � (42)
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Therefore, after passing to a subsequence if necessary, we can find " � 
 such that
��� � "� � � "� � � � ��� are disjoint open sets in � and

(i) ������ � � �# if � �� �� � "� � � "� �� � ��

(ii) �� � ��, �� � "� � � "� � �� �

�
��� if � � ��
� otherwise

(iii)�� � ��, �� � "� � � "� � % � ���

For any ' � �, let

����� � ���
����


��

������
��� � '

�

����� � ���
����


��

������
��� � '

� (43)

Now,
���
���

��
�������

��� � � (44)

because otherwise � would be absolutely continuous at �. Hence, ����� � �
�
��� and the

sequences {�����} and {�����} have a unique accumulation point at �. Fix ' such that
� � ' � �. After extracting a subsequence if necessary, we may assume that the
sequences {�����}, {�����}, {��

���
}, {��

���
} converge to � monotonically. Define ���� over

�� � "� � � "� as follows:

������� �

�
����� if � �

�
� � "� �����

�
��
�
�����

�
otherwise

(45)

Since

���
��

�
�����

��
�� �

������
���

�
���
��
�� � �

�������
������

���

�
���
��
�� � ���

�
�� � �

�������
(46)

as � � �, ���� � � in ������ � �	 � � �� for any positive 
 � �
� where

���� �

�
���� if � � �� � �	 ��

����� if � � ��	 � � ��
(47)

Let � � ���
�
���

���	 �����

�
. Let � � � such that � � ����. There exists a positive

�� such that for all � � ��,������ � �
��
�����������

�
�

���
(48)
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and ������ � �
��
�����������

�
������ � �

��
�����������

� 	���
����������� � 
� (49)

Let

�� �

�
������ ���� if ����� � �

������ ���� if ����� � �
(50)

By continuity of � and  in �� � �	 � � ������, we may choose �� such that 	� � ��,������� ���� ��
�� � �

���
	� �

�
��
���
	 �����

	
(51)

Then 	� � ������	 �
�

���� and 	� � ��,������ � �� � �
��
�����

�
�������� � �

��
� 	

�
���� � �

�
��� � � ��� �� � �

��
�����

� ��
������� � �

���� ��
����  � ��

��
� �

(52)

Therefore, 	� � ��,

������
���

��� � �
�



�
�
���
��

�
���

�

�
��



������
�
�

���

��� � ��


�
�
���
��

�
���

�

�
��



��
��
�� � �

� ������
�
�

���



�
�
���
��

�
���

�

�
��



��
��
�� � �

� ������
�
�

���

�
���
��
��



��
��
�� � �

�
�� � ��

(53)

Similarly, defining �� by replacing �� by �� and ����� by ����� in the definition of ��,
we get

����
�����

��� � ��


�
�
���
��

�
���

�

�
�� 


��
��
�� � �

�
�� � �� (54)
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Since � is arbitrary,

����
���

��� � ��


�
�
���
��

�
���

�

�
�� 


��
��
��

�
�
��
���

�� � �� (55)

Now let � � �.

Proposition 7.2 (upper semicontinuity): Let n=1. Then, for every ��	 �� � ����, there
exists a sequence ����	 ���� in � ��� converging to ��	 �� in ����� such that

�� ���
���

�������	 ��� � ��� ��	 �� (56)

Proof: We may assume that ��� ��	 �� � �. Hence, �  �	 � � ������ and
��� ��	 �� � �� ���. We adopt the construction of Ambrosio and Tortorelli [4]. For
each �, fix

�� � ��
�
��

�� � ������

�� � �� � ��
(57)

Let
����� � ���	�
���� for �� � � � �� � �� (58)

Note that ����� � ��� � ��. We may assume that for each � � ��,

�� � ��� � ���� � � ��� � ���� � �� � ���

�� � ��� � ���� � � ��� � ���� � �� � ��� or �
(59)

For � � ��, let �� � �
�
	����� 	����� 
����� 
����

�
. For each � � ��, choose a

sequence of points ���� as follows:

�� �

���
��
� if �� �

�
	����� 
����

��
�
�
	����� 
����

��
� � ��� � ��� if �� �

�
	����� 
����

��
�
�
	����� 
����

��
� � ��� � ��� if �� �

�
	����� 
����

��
�
�
	����� 
����

�� (60)

Let

����� �

��
�

� if ��� ��� � �� for some ��
������ ���� if �� � ��� ��� � �� � �� for some ��
�� otherwise

(61)

Finally, define continuous functions 	� as follows:

If ��� ��� � �� � �� for some ��� let

	���� �

��
�
	���� � �� � ��� if �� � �� � �� � � � �� � �� for some ��
	���� � �� � ��� if �� � �� � � � �� � �� � �� for some ��
linear in ��� � ��� �� � ��� ���

If ��� ���  �� � �� for every ��� let 	���� � 	���

(62)
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It is now straightforward to check that (see [3,4])

��� 	
�
���

�
�

��
	��
���

�� � ���
� � ��

	
�

�

��
�	� � 
�� �

�

�



�
�
���
��

�
���

�

��
�� � ��	�

(63)
In particular,

��� 	
�
���

������
��������



�
�
���
��

�
���

�

�
�� � ��� 	
�

���

���������
�����



�
�
���
��

�
���

�

�
�� � � (64)

By construction, for any �  �, there exists �� such that �� � ��,

�	����� 
������� � � if � � ��� ��� � ��

	����� 
����� � �� � �� if �� � ��� ��� � �� � ��
(65)

Hence,

��� 	
�
���

���������
��������

�	� � 
�
�



�
�
���
��

�
���

�

��
�� � ��� (66)

Since �	� � 
����� � ����, the proposition follows.

8. PROOF OF THEOREM 8

Lower Inequality: As in the proof of Proposition 7.1, let �	�� ��� 	 �	� �� in �� such
that ��	��	�� ��� � � � 
. By Proposition 7.1, for each fixed � ,

�� �	� �� � ��� ���
���

��	��	�� ��� � � (67)

By letting � 	 
, we see that � � � for every point in ��. Hence, �� � �� and
	 � ������ 
�.

Upper Inequality: Use the construction given in the proof of Proposition 7.2, noting
that ��� 	 � and � 	����� 
����� � �

�
���� � ���


� � �
�
�
 ��
�� �

�
.
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