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ABSTRACT. In 718 A.D., Ch’it’an Hsi-ta (Gautama Siddhartha),
an Indian astronomer who was appointed an“astronomer royal”
in the T’ang court compiled a compendium of omens and divina-
tions, called K’aiytian Chan-ching, analogous to Varahamihira’s
Brhatsamhita. The 104th volume of this work, Chiu-chih li (Nine
Upholders Calendrical System) on astronomy was entirely based on
the Indian astronomy of the 7th century which in turn was based
on the geometric astronomy of the Greeks. A few years later, the
emperor asked I-hsing ( Yizing in pinyin), a buddhist monk, an as-
tronomer and a mathematician, to overhaul the traditional Chinese
astronomy. He submitted an astronomical system, called Ta-yen li
(Grand Expansion Calendrical System, Dayan li in pinyin) in 727
A.D. Only Ta-yen li was officially adopted.

In the 13th century, a Persian astronomer submitted to Khubi-
lai Khan an astronomical system, Myriad Year Calendrical System,
based on the geometric Islamic astronomy. This too was not of-
ficially adopted. Instead, Khubilai Khan ordered a major reform
of the traditional Chinese system. The result was Shou-shih i
(Granting the Seasons Calendrical System) which held sway over
the Chinese astronomy until the arrival of the Jesuits in the 17th
century.

An analysis of the motion of the Sun and and the lunar paral-
lax in Ta-yen li and Shou-shih li shows how little impact foreign
imports had on Chinese astronomy. Geometric methods began to
make inroads in Chinese astronomy only after the arrival of the
Jesuits in the 17th century.

1. INTRODUCTION

Recorded Chinese mathematical astronomy comes down to us mostly
as a part of official dynastic histories. The exceptions are translations of
foreign sources such as Buddhist, Islamic and European texts; however
these too were handbooks such as Indian karana or Islamic zij. These
astronomical records, called lifa (calendar methods), consist of tables
of constants and numerical algorithms for calendric computations. An
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apt translation of lifa that is used is “astronomical computistics”. A
typical chapter in a lifa begins by listing the constants used in the
chapter. These may be astronomical constants or merely definitions of
units used. This is followed by instructions for numerical computation.
Here is an example from Ta-yen li, VI.15 [Angl1979]:

For the yin phase:
Ecliptic Difference: 1275
Ecliptic Limit: 3524
Possible Ecliptic Limit: 3659
For the yang phase:
Ecliptic Limat: 135
Possible Ecliptic Limit: 97

For the yin phase, subtract while for the yang phase, add the Differ-
ence Accumulation for the day in the entry for the day in the entry qui
during which the eclipse occurred at conjunction. The result in each
case is the true Ecliptic Difference and the true Ecliptic Limit. ...

In this case, Ecliptic Difference is the shift in the lunar node along
the ecliptic due to the lunar parallax at the winter solstice as observed
in Yang Ch’eng. Its value is stated as a known fact. Ta-yen li abounds
in tables listing equations of the center for the sun and the moon,
gnomon shadows, motions of the planets and so on. The whole system
is designed not as a treatise on astronomy, but as an instruction manual
to be used by the computists in the astronomy bureau.

Since the predictions of celestial phenomena were solely the em-
peror’s prerogative, the lifas were compiled only by royal astronomers.
Failed predictions had the potential for undermining the authority of
the emperor and hence, frequent revisions were made over time to im-
prove the accuracy. According to Sivin [Sivin2009], there were some
200 systems proposed through history about a quarter of them were of-
ficially adopted. Underlying this tradition of repeated revisions was the
Chinese belief that nature was inherently irregular, not bound by math-
ematical laws and frequent revisions were inevitable. Sivin [Sivin1995]
quotes I-hsing defending mathematical astronomy in the face of this
indeterminacy:

“If the anomalies in the celestial positions [of the moon] actually fluc-
tuated with time, providing rebukes [to the ruler] that the regularities of
astronomical constants cannot encompass, and substituting for reqular-
ity a mutability [that derives] from the inaccessible [fine structure of the



ABSENCE OF GEOMETRIC MODELS IN MEDIEVAL CHINESE ASTRONOMY 3

cosmos/, this would be a matter beyond even [the ability of] Sages to
assess. It can hardly lie within the scope of mathematical astronomy”

More than 5 centuries later, Shou-shih li [Sivin2009] has this to say
in its introduction:

“Later generations carried on this tradition, through T’ ang and Sung,
until dozens of experts had appeared who improved the epoch and the
techniques. But surely it was not that [they were so frequent merely/
because the reformers wanted to differ [from their predecessors]. It
would seem, rather, that some irreqularities are inherent in the celestial
motions, but an astronomical system must use set methods. Thus with
the passing of time discrepancies are inevitable. Once they appear,
correcting them s unavoidable.”

Against this background, Indian astronomy was introduced in China
along with Buddhism, beginning in the first century A.D. [Ohashi2008].
A number of Indian texts were translated into Chinese [Gupta2011].
Initially, the Indian astronomy in China was the Vedic astronomy, but
by the time of the T’ang dynasty, the classical astronomy of Indian
siddhantas was introduced. Of great importance is the compendium,
K’aiyiian Chan-ching, of Ch’it’an Hsi-ta (Gautama Siddhartha), on
omens and divinations, completed in 712 A.D. Ch’it’an Hsi-ta was
an Indian astronomer who was appointed an “astronomer royal” in
the T’ang court. The 104th chapter of K’aiyian Chan-ching, entitled
Chiu-chih li (Nine-Upholders Calendrical System), is about astronomy
[Yabuutil979]. (Chiu-chih is a literal translation of the Sanskrit word
navagraha, i.e. nine planets.) It is entirely based on the Indian as-
tronomy of the 7th century. In particular, it has a table of sines which
is used throughout. It is written purely as a computational manual,
with no mention of cosmology, geometric or otherwise. It considers
the lunar parallax for the first time in China, but omits discussion of
the planets. Chiu-chih li was not officially adopted. In fact, K aiyian
Chan-ching was lost until a copy was found around 1600, hidden away
in a Buddha statue.

Soon after, the emperor assigned the task of calendar reform to a
reluctant I-hsing in 721. I-hsing was a Buddhist monk, a tantric mas-
ter. He was well-versed in Sanskrit and translated Sanskrit texts. He
was also a skilled mathematician and an astronomer. He designed and
constructed a mechanical astronomical clock and an ecliptic-mounted
armillary sphere. He carried out detailed astronomical observations.
He is famous for his great meridian survey. His culminating achieve-
ment was his calendar reform, Ta-yen li, (Grand Expansion Calendrical
System) completed in 727 A.D. and officially adopted. (See [Ho2000]
for a brief biography of I-hsing.) The issue is to what extent [-hsing



4 JAYANT SHAH

and the Chinese astronomy after him were influenced by the Indian
astronomy. The Ta-yen li refers to the method of solar eclipse predic-
tion transmitted by Chumolo (Kumara), a reference to one of the three
schools of Indian astronomy in China mentioned by Yabuuti, the other
two being Kasyapa and Gautama. Yabuuti [Yabuutil963] also reports
mentions of Kumara and Kasyapa in Chinese astronomical texts before
Ta-yen li. Then there is the plagiarizism controversy. An Indian as-
tronomer, Ch’it’an Chuan lodged a complaint with the emperor that
I-hsing had plagiarized the Chiu-chih li, but the methods were not com-
plete. Now while the Indian system uses the ecliptic coordinate system
and divides the celestial perimeter into 360 degrees, I-hsing follows the
Chinese tradition. He employs the equatorial coordinate system. The
distance along the ecliptic is measured in units of tu which is the dis-
tance travelled by the mean sun in a day. The distance from the ecliptic
is measured along the meridians passing through the equatorial pole.
The ecliptic pole is entirely absent. Noticing the incompatible coor-
dinate systems, Duan Yao-Yong and Li Wen-Lin [Duan2011] conclude
that Ta-yen li did not use Indian trigonometry. In this paper, we look
at the issue more closely and compare the computations of the solar
inequality and the lunar parallax in the two works to conclude that
I-hsing rejected the Indian system and developed his system entirely
within the traditional Chinese paradigm.

Such a rejection was repeated when Islamic astronomy arrived after
the Mongol conquests in Central Asia and Iran. A persian astronomer,
Jamal al-Din built seven astronomical instruments for Khubilai Khan
in 1267 and submitted to the emperor an astronomical system, the
Myriad Year Calendrical System, based on the division of the sky into
360 degrees. In 1273, he was appointed to the post of Acting Direc-
tor of the Palace Library. Yet, Jamal's system was not adopted. In-
stead, Khubilai Khan commissioned Chinese astronomers to undertake
a major reform of the traditional astronomy. The result was Shou-
shih li (Granting-the-Seasons Calendrical System) completed in 1280.
It was Shou-shih li which was promulgated as the official lifa and not
the Myriad Year system. According to Sivin [Sivin2009], there was a
strict social segregation under Khubilai Khan and there was not much
mixing between the Muslim and Chinese astronomers. Khubilai found
it politically more expedient to promote the traditional Shou-shih li
rather than a strange foreign system. After all, Mongols themselves
were foreigners trying to establish the legitimacy of their rule. It is
known that a large number of scientific books in “western” (meaning
Islamic) languages were available in China. Unfortunately, the only
information about the activities of the Islamic astronomers available
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to us is mostly what is gleaned from the records of the Ming dynasty
which overthrew the Yiian dynasty; the most important among these
is Hui-hui li (Islamic li) [Dalen2002].

Shou-shih li held sway over the Chinese astronomy well into the
17th century when the European astronomy began to make inroads
into China. It was the most sophisticated and ambitious reform of
Chinese astronomy. We therefore include a comparison of Ta-yen [
and Shou-shih li to trace the consistency of the Chinese tradition.

2. SOLAR INEQUALITY

Let A and X be the mean and true longitude of the sun. Let I denote
the equation of the center. Then, ignoring the terms involving higher
orders of the eccentricity e of the earth’s orbit,

(2.1) I=XN—X=2esin(A—\y)

where \g is the longitude of the sun’s apogee. Although the traditional
Chinese astronomy did not have explicit concept of perigee and apogee,
the perigee and apogee of the solar orbit were implicitly assumed to
coincide with the winter and summer solstices respectively.

In Ta-yen li, a day is divided into 3040 day parts and each day part
is divided into 24 fractional parts. A tropical year is assumed to be
1110343 day parts. Therefore, 1 tu equals % = 0.9856414°. The
Chinese divide the ecliptic into 24 equal parts called ch’i. The mean
sun spends 15 days, 664 day parts and 7 fractional parts in each ch’. I-
hsing tabulates the solar inequality as the number of day parts by which
the true sun is ahead of the mean sun at the beginning of each ch’i.
The solar inequality is assumed to be zero at the winter solstice. The
maximum value of the equation of the center in Ta-yen li is 7366 day
parts which equals 2.388°. Yabuuti [Yabuutil963] obtains the correct
value of the maximum solar inequality in 726 A.D. from S. Newcomb’s
table as 1.974°.

I-hsing also tabulates the number of day parts by which the true sun
gains over the mean sun in each ch’. This is just a table of forward
differences AI of the table of solar inequality. The graph of Al is
shown in Figure (1). It shows that AI varies almost linearly between
the solstices. It should be practically a cosine curve if I-hsing had based
his calculations on Eq. (2.1). In fact, a cubic interpolates exactly his
values of A in each quadrant of the ecliptic. This is not to suggest
that I-hsing actually formulated such a cubic. In fact, later in the
chapter, he uses quadratic interpolation to calculate the values of Al
at any time in a ch’i.
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Shou-shih li does explicitly use a cubic to describe daily solar in-
equality:

I = £(0.0513322 — 0.0002462 — 0.000000312%) 0 < 2 < 88.909225
if the true sun is south of the equator and
I = £(0.048706x — 0.00022122 — 0.000000272%) 0 < x < 93.712025

if the true sun is north of the equator. x is the distance of the true
sun in days from the nearest solstice. The sign is positive if the quad-
rant contains the vernal equinox, negative otherwise. (Shou-shih li does
use this degree of precision in its constants by dividing a tu into 10%
parts. It is amazing that the Chinese astronomers insisted on using
such a high degree of precision, considering that their formula must
have ultimately been based on observations.) The maximum value of
the equation of the center is 2.40144161 days or 2.367°. The graph
of the corresponding values of AT in days/ch’i shown in Figure (1) is
remarkably close to I-hsing’s values. There must have been more ac-
curate contemporary tables of the equation of the center prepared by
the Muslim astronomers in the Mongol court. But, as Sivin explains
[Sivin2009], “Muslim astronomers came to China because the Mongols
wanted second opinions on the reading of the heavenly signs and por-
tents, not because they or their Chinese counterparts wanted scientific
exchange.”

Nonuniform motion of the sun was first noticed by Chang Tzu-hsin
in the middle of the 6h century [Yabuutil963|. Liu Cho recorded Tzu-
hsin’s observations as the number of days spent by the true sun in each
ch’i in Huang-chi li compiled in the late 6th century. These values
were repeated in Lin-te li in the 7th century. The graph of Al derived
from this data shown in Figure (1) consists of two segments spanning
the equinoxes. Each segment is an oscillating saw-tooth wave function.
If we ignore the oscillations, the graph becomes a step-wise constant
function. A century later, I-hsing has the approximately correct trend
line for the equation of the center.

Following the Indian tradition, Chiu-chih li assigns 360 degrees to
the ecliptic. It sets Ao = 80° and the maximum solar inequality 2e =
134" = 2.233°. It lists forward differences of 134sinf at 15 degree
intervals for 0 < 6 < 90°. We have to convert this data into days spent
by the true sun in each ch’ in order to compare it with Ta-yen .

I =2.233sin(A — 80) degrees

dl  2.2337
d\ 180

cos(A — 80) = 0.03898 cos(A — 80)
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FIGURE 1. Number of days of the mean sun in a ch’i minus the
number of days of the true sun in the ch’i

degrees per a degree of travel by the mean sun. Dividing by the velocity
% of the true sun, we get the rate at which the true sun is gaining

over the mean sun in terms of days:

0.03898 cos(A — 80)
1+ 0.03898 cos(A — 80)

showing that the graph of correct Al is nearly a cosine curve. The
graph of Chiu-chih’s values of Al as the gain of the true sun over the
mean sun in days during a ch’i shown in Figure(1) is indeed almost a
cosine curve.

3. SOLAR ECLIPSE AND LUNAR PARALLAX

Since the lunar orbit is inclined to the ecliptic, the distance between
the sun and the moon at the time of conjunction depends on their
distance from the lunar nodes. The distance has to be sufficiently
small for a solar eclipse to occur. The observed distance between the
sun and the moon depends on the geographical location of the observer
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due to the lunar parallax. Therefore, it is essential to take into account
the effect of the lunar parallax when predicting solar eclipses.

The lunar parallax p at a location is defined as the angle between the
line of sight of the observer looking at the moon and the line joining
the moon and the center of the earth. The maximum possible value
of p is called the horizontal parallax, H. For all practical purposes, H
equals the radius of the earth divided by the distance of the moon from
the earth.

(3.1) p~sinp = Hsinz

where z is the distance of the moon from the zenith. Given the local
latitude ¢, the declination ¢ of the moon and the hour angle A of the
moon, z may be obtained using the formula

cos 2z = sin ¢ sin d 4 cos d cos p cos h

from spherical trigonometry.

I-hsing takes into account the lunar parallax in the following manner.
The lunar parallax makes the apparent lunar orbit (observed at Yang
Ch’eng) appear south of the true orbit. Since the lunar orbit is inclined
to the ecliptic, the shift in the lunar orbit causes a shift in the lunar
node. The distance between the true node and the apparent (observed)
node is called the ecliptic difference (shih-ch’a). Ta-yen li provides
values of shih-ch’a at the beginning of each ch’iin terms of days of moon
travel along the ecliptic. The hour angle is not taken into account. The
maximum value of the ecliptic difference is given as 1275 day parts and
occurs when the sun is farthest from the observer, that is, at the winter
solstice. Using the conversion factor given in Ta-yen li, we find that
the node shifts by 1275 x ﬁ = 5.306 tu = 5.230°. I-hsing tabulates
corrections to be applied to the maximum value of the ecliptic difference
to obtain the ecliptic difference at the beginning of each ch’. He also
lists forward differences of the corrections which are distributed linearly
between the solstices. As a result, the graph of the ecliptic difference
consists of two parabolas as shown in Figure (2).

In order to compare I-hsing’s values with the theoretical, imagine
the moon and the observer to be on the same meridian (i.e. A = 0)
so that parallax p is confined to the plane of the meridian. It causes
a change in the declination of the moon, but has no effect on its right
ascension.

(3.2) p = sinp = Hsin(p — 0)

The component of p perpendicular to the ecliptic is the parallax in
latitude. Let o = the angle between the local meridian and the ecliptic.
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Then, from spherical geometry,

1

tanog = ——
cosftane

where ¢ is the longitude of the moon and € is the obliquity of the
ecliptic.

(3.3) parallax in latitude &~ H sin asin(p — 0)

and

llax in latitud
(3.4) the ecliptic difference = parallax in latitude

sin ¢

where ¢ is the inclination of the lunar orbit to the ecliptic. The modern
value of the horizontal lunar parallax is about 57’. The latitude of Yang
Ch’eng is 34.7° and the obliquity of the ecliptic = 23.4°. ¢ —4§ = 58.1°.
The most sensitive parameter in calculating the ecliptic difference is of
course the inclination ¢ which varies over the years and also depends
on the phase of the moon at the time when it passes its nodes. The
mean inclination at present is 5.14°. We will set ¢ = 5.15°, its value
in the 13th century [Nakayamal969|. I-hsing gives the value of ¢ as 6
tu, or 5.91°. At the winter solstice, the meridian passes through the
ecliptic pole and o = 90 degrees. The parallax in latitude = 0.8065°.
We get the theoretical value of the ecliptic difference equal to 8.961°,
about 70% larger than I-hsing’s value. The graph of Equation (3.4) at
Yang Ch’eng is shown in Figure (2). According to Tiezhu Hu [Hu2002],
Ta-yen li tended to predict too many solar eclipses: It predicted 75%
of the actual solar eclipses that occurred in Xian, but only about 50%
of the predicted eclipses actually occurred.

The parallax formula in Shou-shih li takes into account the hour an-
gle, but again it is an empirical formula. As Nakayama [Nakayamal969]
remarks, the favorite Chinese practice of approximating an arc by a
parabola is very much in evidence. Each formula is designed so that
the function smoothly rises to a maximum and then smoothly drops
back. Computation begins with the parallax correction for the time of
the maximum eclipse:

h(5000 — h)

9600
where h is the time interval between noon and the syzygy, expressed in
units of one ten-thousandth of a day. Then, the parallactic shift in the
node in tu is calculated by combining the following three components:

T =

2 h
(7) North-South difference: o = (4.46 - 1870) (1 - dj/LQT)
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where ) is the longitudinal distance of the true sun from the solstices,
and d is the time interval between the sunrise and the sunset, expressed
in units of one ten-thousandth of a day.

) | N(A=N) (h+7
(17) East-West difference: [ = 1870 ( 2500)

where A is a semicircle expressed in tu.

(7ii) A constant term v = 6.15
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FIGURE 2. Ecliptic Difference: Nodal shift along the ecliptic
(hour anlge = 0)

«a and 8 have complementary behavior. « is zero at the equinoxes
and has a maximum of 4.46 on solstices at midday. § = 0 at midday
and has a maximum of 4.46 on equinoxes at sunrise and sunset. The
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first factor of a accounts for the parallax seen an observer on the equa-
tor at midday and hence its name. Its second factor gradually reduces
the contribution of the “North-South” component as the hour angle
increases and the contribution of 3 increase. The second factor of [ is
the parallax seen by an observer on the equator on an equinox when
the moon is on the equator. Hence it is zero at midday and maximum
at sunrise and sunset, giving it the name, “East-West Difference”. The
contribution of 8 is gradually reduced to zero as the moon moves to-
wards a solstice.

The constant v adjusts for local latitude since o and 8 do not depend
on the local latitude. It is the nodal shift as seen from Beijing, the Yuan
capital, at midday when the moon is on the equator.

The ecliptic difference seen at Beijing at midday according to Shou-
shih li and its theoretical values according to Equation (3.4) are plot-
ted in Figure (2). The graph consists of two parabolas of opposite
concavity, joined smoothly together. Clearly, Shou-shih [ is a huge
improvement over Ta-yen li. Li and Zhang [Li1999] have compared the
predictions of solar eclipses based on Shou-shih li with the modern val-
ues to conclude that Shou-shih’s accuracy deteriorated with time and
it could not compete in accuracy with the Shih-hsien calendar devised
by the Jesuit astronomers in the 17th century.

Following the Indian siddhantas, Ch’it’an Hsi-ta calculates the lunar
parallax using the ecliptic coordinate system, Although Chiu-chih li
computes the hour angle, it gives a formula for calculating only the
parallax in latitude, omitting the parallax in longitude. According to
siddhantas,

(3.5) parallax in latitude = H sin ¢

where ¢ is the distance of the ecliptic from the zenith at the time
of conjunction. ( = ¢ — ¢ where ¢ is the declination of the high-
est point on the ecliptic at the time of conjunction. Chiu-chih i fol-
lows Khandakhadyaka [Senguptal934] in calculating 0, but uses the
erroneous formula ¢ ~ ¢ — sind. (Paricasiddhantika [Thibaut1889)],
Mahabhaskariya [Shuklal960] and later, Suryasiddhanta [Burgess2005]
use an algorithm different from Khandakhadyaka for calculating & )
The rule for the horizontal parallax in Chiu-chih li is the one used
in all siddhantas: The horizontal parallax of any celestial body is as-
sumed to be one fifteenth of its daily motion. This follows from the
assumption that all celestial bodies move with the same linear speed.
Then, the angular velocity is inversely proportional to the distance of
the celestial body. Its horizontal parallax is also inversely proportional
to its distance. Therefore, the horizontal parallax is proportional to the
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angular velocity. Now Suryasiddhanta states the earth’s radius as 800
yojanas and the moon’s orbit as 324,000 yojanas. A linear distance of
800 yojanas travelled by the moon corresponds to an angular distance
of 800 x 7224 x 60 = 53’ 207 = the moon’s horizontal parallax. The
moon’s mean daily sidereal motion is 13° 10’ 35" = 790.59’. The time
to travel an angular distance of 53’ 20” is 53.333/790.59 =~ 1—15 days.
Therefore, the horizontal parallax ~ one fifteenth of the mean daily
motion.

At a solstice with h = 0, values obtained from Equations (3.3) and
(3.5) coincide. At the vernal equinox, we get 0.5117H from Equation
(3.3) at Yang Ch’eng. The formulas in siddhantas give a somewhat
different value:

Khandakhadyaka: 0.4679H, Suryasiddhanta: 0.4913H.

4. CONCLUDING REMARKS

In this paper, the motion of the sun and the lunar parallax in Ta-yen
li and Shou-shih li are analyzed to assess the influence of imported geo-
metric astronomy on Chinese astronomy during the T’ang and Yuan
dynasties. The analysis shows that there is no evidence of a geomet-
ric model in the official Chinese astronomy. The purpose of the offi-
cial astronomical texts was to provide instructions for calendric com-
putations, relying on observations and interpolation by polynomials.
Geometric methods of the Indian buddhists in China are shown to be
noticeably more accurate than the traditional algebraic methods, but
the Chinese continued to use their algebraic methods with frequent
revisions until the arrival of the Jesuits in the 17th century.

I-hsing was a polymath. He must have been aware of Chiu-chih [i,
especially since he is reported to be an expert astrologer and Chiu-
chih li is a chapter in a larger work, K’aiyian Chan-ching on omens
and divinations. Ohashi [Ohashi2008] also makes the case that I-hsing
changed the meaning of days called mieri to mean something similar
to the omitted tithi of the Indian calendar. One can conjecture that
it was politically more expedient for the emperor or the Royal Astro-
nomical Bureau to continue to promulgate traditional methods. They
must have deemed the degree of accuracy they obtained sufficient for
practical and political purposes.
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