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Z. Sibel Gőktepe Tari
Mechanical and Industrial Engineering Department

Northeastern University, Boston, MA 02115
e-mail: sibelt@meceng.coe.neu.edu

Jayant Shah
Mathematics Department, Northeastern University, Boston, MA 02115

e-mail: shah@neu.edu

Homer Pien
Draper Laboratory, Cambridge, MA 02139

e-mail: hpien@draper.com

Abstract1

Shape skeletons have been used in Computer Vision to represent shapes and discover their
salient features. Earlier attempts were based on morphological approach in which a shape is
eroded successively and uniformly until it is reduced to its skeleton. The main difficulty with
this approach is its sensitivity to noise and several approaches have been proposed for dealing
with this problem. In this paper, we propose a new method based on diffusion to smooth out the
noise and extract shape skeletons in a robust way. In the process, we also obtain segmentation
of the shape into parts. The main tool for shape analysis is a function called the “edge-strength”
function. Its level curves are smoothed analogs of the successive shape outlines obtained during the
morphological erosion. The new method is closely related to the popular method of curve evolution,
but has several advantages over it. Since the governing equation is linear, the implementation
is simpler and faster. The same equation applies to problems in higher dimension. Unlike most
other methods, the new method is applicable to shapes which may have junctions such as triple
points. Another advantage is that the method is robust with respect to gaps in the shape outline.
Since it is seldom possible to extract complete shape outlines from a noisy grayscale image, this
is obviously a very important feature. The key point is that the edge-strength may be calculated
from grayscale images without first extracting the shape outline. Thus the method can be directly
applied to grayscale images.

1 This work was partially supported under NIH Grant No. I-R01–NS34189–01 and NSF Grant No. DMS-9531293.
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1. Introduction

It has been long recognized that the classical descriptions of curves such as parametrization
or Fourier expansion are not adequate for representing shapes [2,3,13]. For example, they fail
to capture two-dimensional features such as necks and protrusions or blobs versus ribbons.
Alternative approaches have been suggested within both computer science and psychology to
take into account the two-dimensional nature of the shape. One such approach is the well-known
Blum transform [2,3]. It is commonly visualized by the grassfire analogy in which one imagines
the interior of the shape filled with dry grass and fire is started simultaneously at all points on the
shape boundary. The advancing front propagates with constant speed and at any time, its points
are equidistant from the shape boundary. The shape skeleton is defined as the locus of singularities
of the advancing front. By keeping track of the time at which the front arrives at skeleton points,
it is possible to recover the original shape. Thus, no information is lost. A consequence of this
fact is that if the shape boundary is noisy, the noise is also preserved in the skeleton and thus
the transfrom is not robust with respect to noise. Many strategies have been devised to prune
noisy skeletons to arrive at the essential skeleton of the shape [17]. An alternate systematic
approach following the philosophy behind segmentation functionals is to introduce smoothing or
regularization in the grassfire itself, thus combining skeletonization and regularization in a single
formulation. A straight-forward approach to regularization is the method of curve evolution in
which the front velocity now depends on two components: a constant component as before and
a smoothing component proportional to curvature [9,11,20]. In this paper, a simpler and faster
method of regularization is proposed so that the resulting skeleton is robust with respect to noise.

We first illustrate the concept by means of a simple example. Consider the grassfire analogy
for a rectangle. Think of time � as a function over the plane by setting ���� �� = the time when
the advancing front passes through the point ��� ��. Then, the surface ���� �� is a pyramid ending
in a horizontal ridge at the top. The level curves of the surface ���� �� describe the propagation
of the front and the projection of the singular locus of the surface constitutes the skeleton of
the rectangle. In place of the surface ���� ��, we propose to use a function � which we call the
edge-strength function. Function � is smooth and equals 1 along the shape boundary and decays
rapidly away from the boundary. Thus �� � may be thought of as an approximately monotonic
function of distance from the boundary and hence, an approximately monotonic function of �.
The level curves of � look like smoothed version of the level curves of �. The surface ��� looks
like a smoothed (monotonically scaled) version of the surface ���� ��� We extract information
regarding the shape skeleton and the decomposition of the shape into parts from the geometry
of the level curves of �.

The edge-strength function � is computed by means of a linear diffusion equation and thus
easy to implement. The diffusion equation may be applied to a collection of curves which may
intersect. In particular, the method permits analysis of shapes involving Y-junctions such as the
line-drawing of a solid cube. It is also applicable to shape outlines which are incomplete due to
gaps, that is, to shape outlines consisting of a collection of disconnected pieces.

The most important advantage of the method proposed here is that it can be applied to
grayscale images because one may calculate the edge-strength function corresponding to shape
boundaries directly from the grayscale image without first segmenting it. This is in contrast to
most methods of shape analysis in which the central assumption is that the shape outline has
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already been extracted in the form of a closed curve from the grayscale image. Indeed, in the
approach based on curve evolution, curve evolution is first applied (for example, an intrinsic
version of Terzopoulos’ snakes) to recover the shape boundary. Then, curve evolution is applied
again to the recovered shape boundary to extract the shape skeleton. Shape recovery is not an
easy task if the image is noisy. A number of recent papers [5,6,12,14,21,22,27] has been devoted
to shape recovery from raw images by the method of curve evolution. (See [23] for a discussion
and a generalization of these methods.)

The edge-strength function we use is motivated by the Ambrosio-Tortorelli approximation of
Mumford-Shah segmentation functional. Indeed, we use Euler-Langrange equations of Ambrosio-
Tortorelli approximation to compute the edge-strength function of grayscale images. What we
demonstrate is that the Ambrosio-Tortorelli edge-strength function is much more then a technical
device for appying gradient descent to the Mumford-Shah functional. It is a much better measure
of “boundaryness” at every point in the image because the nonlinear smoothing by Ambrosio-
Tortorelli approximation reduces or prevents smoothing of the image in the neighborhood of actual
object boundaries. We go further and show that it has a close relationship to curve-evolution
and provides a much easier method for regularizing the “grassfire” method of Blum and thus
for computing shape skeletons. The crucial point we make is that this edge-strength function is
important in its own right and is much better suited for all the current applications (like “geodesic
snakes”) which need a continuous function as a measure of boundaryness across the entire image.

Although our paper is about extraction of shape skeletons from grayscale images, we decided
to devote a large part of the paper to binary images for the two reasons: (A) Most of the work by
other researchers on shape skeletons is done using binary images. So we think it is important that
we give results by our method using the same or similar binary images so that our method can be
compared with the others. (B) When our method is used for grayscale images, it integrates within
a single framework three steps which are normally carried out as three separate hierachical steps,
namely, smoothing of the grayscale image, shape recovery and determination of shape skeleton.
Each step involves different issues such as grayscale noise, noisy boundary and level of detail in
the skeleton. Since our focus is on determining shape skeletons by a novel use of edge-strength
function, we think it would be better if the method is explained first in the context of binary
images so as to demonstrate clearly the relationship between the edge-strength function and shape
skeletons before other issues associated with grayscale images are brought in.

To our knowledge, neither our method nor any other method for determining skeletons can
deal with occlusions. A separate ingredient such as 2.1D sketch of Nitzberg and Mumford or
some type of multilayered representation is required. Note that there is some confusion in the
literature between incomplete figures and occluded figures. If an occluded figure is extracted
from its surroundings as an incomplete figure, our method can be applied as shown in §4.

This paper is organized as follows. In §2, we introduce the edge-strength function and analyze
the behavior of its level curves. In §3, shape skeleton and shape segmentation are defined and
illustrated by several test cases. In §4, we deal with incomplete figures and in §5, we discuss ways
in which one may assign a level of significance to different branches of a shape skeleton. Finally,
in §6, we extend our construction to grayscale images and apply it to analyze an MRI image.

A preliminary version of this paper appeared in [26].
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2. The Edge-Strength Function of a Shape

Let � be a curve in the plane, not necessarily a simple closed curve. We consider the
following functional introduced by Ambrosio and Tortorelli [1]:

(1) ����� �
�

�

� � �
������ �

��

�

�
����

subject to the boundary condition � � � along �. Let � denote the unique minimizer of the
functional. Then, � varies between 0 and 1 and for sufficiently small values of �,

(2) � � �
�

�

�

where � is the (unsigned) distance from �. As �� �, � � � everywhere except along �. Thus,
� may be thought as a blurred version of the characteristic function of � and � as the nominal
blurring radius. The key point is that as �� �, �������� tends to the length of �. For reasons
which will become clear in §6, we call � the edge-strength function. We compute the minimizer
of functional (1) by numerically computing the steady state of the following linear diffusion
equation obtained by applying gradient descent functional (1):

(3)
��

��
� ��� �

�

��

The equation was implemented by means of central finite differences. Alternatively, one can
directly solve the steady state equation ��� � ����, by the finite element method for example.

In order to understand the behavior of the level curves of �, assume that � is a simple,
closed curve. As in Appendix (3) of [16], inside �,

(4) ���� �� � ��
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where 	��� �� is the curvature of the level curve of � passing through the point ��� �� and 
 is the
direction of the inward normal. Therefore, if we imagine moving from a level curve to a level
curve along the normals, then for small values of �, a change of �� in level requires movement

(5) �� � �
�

�

�
	 


�	

�

�
����

where � denotes the arc length along the gradient lines of �, (the positive direction being the
direction of the inward normals). Let � � ��

���
��

. (Notice that � is a decreasing function in the
direction of the inward normal so that �� is negative. Functions � and  have the same set of level
curves because  is a monotonic function of �.) Passing to the infinitesimals, we get the velocity:

(6)
��

�
�

�

�

 	

A similar argument shows that for moving outward from �, the velocity is given by the formula

(7)
��

�
� �

�

�

 	

Thus for sufficiently small values of �, the level curves of � mimic the usual curve evolution
which is obtained by letting points on the curve move with velocity consisting of two components:
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a constant component corresponding to morphology (that is, Blum’s grassfire) and a smoothing
component proportional to curvature. Thus � is a scale parameter analogous to the scale parameter
in the Laplacian pyramid or the entropy scale space of Kimia, Tannenbaum and Zucker.

The above analogy of level curves of the edge-strength function with curve evolution holds
only at points where � is small compared to the nearby radii of curvature of the level curve
through the point and also small compared to the radii of the largest circles passing through
the point and contained wholly inside the level curve or wholly outside of it. The differences
between the behavior of the level curves of � and the advancing front under pure curve evolution
emerge as � becomes large. The main difference is that while the velocity of the curve at a point
in curve evolution depends only on the curvature at that point, the velocity of the level curves of
� also depends on the interaction between nearby points. As a simple example, consider the case
of a circle containing a smaller eccentric circle inside it. Thus, the shape is an annulus of varying
width. The eccentricity is large so that the minimum width of the annulus is very small compared
to the its maximum thickness. Under curve evolution, circles remain circles. If � is sufficiently
large, both the circles shrink towards their centers and eventually disappear without intersecting.
Therefore we assume that � is small enough so that eventually, the two circles touch. Note that
where they touch each other, the circles are tangent to each other. Thereafter, the annulus breaks
at the singular point and continues to evolve as a simple closed curve until it shrinks to a point
and disappears. Consider now the level curves of �. Assume that � is small compared to the
minimum width of the annulus and also compared to the radius of the smaller circle. Then the
level curves near the boundary of the annulus closely approximate the initial set of fronts during
curve evolution. However, for the level curves further inside the annulus, as the width of the
annulus enclosed by a level curve becomes comparable to �, the interaction between the opposite
boundaries of the annulus becomes significant and the value of � is larger than what it would
be without the interaction. As a result, the gradient of � is reduced. In other words, the speed
of the evolving curve is increased. Therefore in the thinnest part of the annulus, the inner circle
begins to develop a bulge and the outer circle begins to develop a dent, leading to the formation
of a neck and eventual break (see Figure 1). At the point of the break, the outer and the inner
boundaries of the annulus form a cross instead of remaining tangent to each other as in the case
of curve evolution. This is definitely a computational advantage as argued in the next section.

Another difference between the approach proposed here and the method of curve evolution
is that the edge-strength function formulation does not extend to the limiting cases, namely, the
case of pure morphological evolution obtained by omitting from (6) and (7) the curvature term
(that is, the limit as �� �) and the case of pure smoothing obtained by setting � ��. This is
not a serious disadvantage. On one hand, the curvature term is essential in order to filter noise;
on the other hand, pure smoothing shrinks every shape to a single “round” point [7,8] and it
seems perceptually unnatural to reduce shapes which deviate a great deal from being a circle –
shapes such as dumbbells and spirals – to a single point.

The advantages of the approach proposed in this paper over the method of curve evolution
are considerable. First of all, � may be calculated by solving a linear diffusion equation which
is easy to implement by standard finite difference methods. In contrast, for implementing curve
evolution, first the initial curve is embedded as zero-crossing in a surface and then all the level
curves of the surface are allowed to evolve simultaneously according to the same law of motion.
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The evolution equation of the surface is nonlinear and because the evolving surface develops
shocks, standard finite difference methods (for example, central differences) cannot be used. One
must use a shock-capturing scheme such as the one proposed by Osher and Sethian [18] in which
the direction of the finite difference depends on the direction in which the shock is developing.
Secondly, as the surface evolves, it traces out a three-dimensional volume and the surface ��� ��

traced out by the evolving zero-crossings is embedded in this volume. The fact that the surface
��� �� is realized as the locus of zero-crossings of a three-dimensional manifold adds another
layer of computational complexity to the task of locating the critical points of its level curves [25].

We now present three examples. Figures 2–4 display selected level curves of � in a sequence
of decreasing �. Note that we think of decreasing � as increasing time. The doll figure is on
a 	� � 	� lattice while the cat and the pliers are on a ��� � ��� lattice. The value of �

was set equal to 4 for all three examples. As time progresses, protrusions such as the ears of
the cat disappear, shape splits into parts, parts shrink and evolve towards more circular shapes
and eventually disappear. Smaller parts disappear before the larger parts. Shapes split into parts
along necks as seen in the example of the cat where the tail separates from the body. The head
connected to the body by a much thicker neck disconnects much later than the tail. Clearly, �
contains information regarding parts, protrusions and necks. How to represent this information
in a meaningful way is explained in the next section.

3. Shape Skeleton and Shape Decomposition

In the purely morpholgical evolution (Blum’s grassfire), singularities develop as corners
and self-intersections form. The locus of these singularities is the skeleton of the shape. When
smoothing is introduced, self-intersections still may develop (due to thinning of narrow necks), but
the corners are rounded out. Therefore, when smoothing is present, points of maximum curvature
serve as a substitute for corners. Now we note from Equation (4) that for small values of �,

(8)

�
�

�

 	

�
�

�������

���� � ��

��

so that along a level curve, the points of maximum curvature correspond approximately to the
points where ���� is minimum. This observation suggests an alternative way of defining shape
skeleton, namely, by determining points where ���� is minimum along the level curves of �.
We prefer this alternative because computation of curvature involves second derivatives of � and
hence more sensitive to noise than ����.

Let �� denote the closure of the set of zero-crossings of �����
��

where ������
���

is positive.
Here, � denotes the arc-length along the level curves.

(9)
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where

(10)

��� �
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Note that ���
���� is the curvature of the level curves and ���

���� is the curvature of the gradient lines.

Dually, let �� denote the closure of the set of zero-crossings of �����
��

where ������
���

is
negative.

Let � � �� 
 ��.

Let � denote the set of points where ���� � �.

The direction of evolution at each point of � is the direction of decreasing �. The branches
of � should be thought of as local axes of symmetry. For a perfect circle, �� and �� are
empty and � consists of a single point where � has its unique minimum. A simple closed curve
may be thought of as a deformation of a circle by means of protrusions and indentations. As it
evolves towards a more circular shape, �� tracks evolution of its protrusions while �� tracks
evolution of its indentations. During the evolution, a protrusion might merge with an indentation,
(�������� � ���������� � �), joining a branch of �� with a branch �� and terminating both
the branches. Of course, more complicated merges between the branches of �� and the branches
of �� are also possible and in such a case, a new branch might start from the junction. It is also
possible that a branch might bifurcate. This typically happens during the thinning of a neck. As
two indentations on the opposite sides of a neck begin to evolve towards each other, each one
gives rise to a branch of ��. However, as the indentations approach a break-point, they interact
and slow down the rate of decay of �. Each branch of �� splits into three branches, the middle
branch belongs to �� and continues towards the break–point while the other two belong to ��.
If a branch is not terminated at a junction with another branch, then it will terminate at a point
in �. If the point is a minimum point of �, then the evolution has come to rest at that point and
it is appropriate to call such a point the center of a part. If the point is not a minimum, then it
may signify a change in the topology of the evolving curve, that is, break-up of the shape due
to a thinning neck. If the point signifies a change in the topology of the shape, we will call it a
saddle point. There are at least two branches of �� leaving such a point.

In differential geometric terms, a point in � is either elliptic, hyperbolic and parabolic
depending on whether the determinant of the hessian of �, ������ � ���� , is positive, negative or
zero respectively. An elliptic point is always a center and a hyperbolic point is always a saddle
point. Parabolic points are more troublesome to classify because of their global nature. We have
to analyze the branches of � meeting the parabolic point (or the connected component of �

containing the parabolic point in case it is not an isolated parabolic point). If we can find at least
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two branches of �� leaving from the connected component of � containing a given parabolic
point, then it is a saddle point. If all the branches of � meeting the connected component
containing the parabolic point lead into it, it is a center.

Now we can define the skeleton of a shape. A strict definition of the skeleton is that it is the
subset of �� 
� which excludes those branches of �� which flow into a connected component
of � containing a saddle point. The definition is designed so as exclude the branches of �� along
which necks of the shape evolve towards a break. However, strict skeletons are hard to calculate
because one has to trace the branches of �. In order to simplify the calculation, we note that as
pointed out before, at a break point, due to interaction between the opposite boundaries on the
two sides of a neck, the boundaries tend to form a cross rather than be tangent to each other. In
other words, at break points, � tends to have hyperbolic points rather than parabolic points. The
advantage of having a hyperbolic point is that the curvature of the level curve along the branch
�� flowing into the saddle point is always negative while it is positive along the branch flowing
out. Therefore, we adopt a more managable definition of the skeleton as follows:

Definition: The skeleton of a shape is the union of � and those branches of �� along
which the curvature of the level curves is positive.

We define the segmentation of a shape corresponding to its break-up into parts during
evolution due to the presence of narrow necks as follows:

Definition: The segmentation of a shape is the union of branches of �� along which the
curvature of the level curves is negative.

(A strict segmentation is the union of branches of � which flow into a saddle point.) It is
interesting to note that the method of curve evolution will fail to find the segmentation curve in
the example of the annulus described in the last section, even if we use the definition of strict
segmentation, because the level curves do not have critical points before the annulus breaks.)

Note that since a branch of �� may terminate at a junction with a branch of ��, the skeleton
need not be connected. In our description, the skeleton always extends to the boundary while in
the purely morphological evolution, a branch starts only after a corner has formed. Note also that
the definition of segmentation does not deal with protrusions. Significant protrusions such as the
fingers of a hand have to be recovered as parts of the shape from the branches of the skeleton.

The skeleton and the segmentation depend on the choice of � and should be computed for
many values of rho to provide a scale space representation, just as it is done in other contexts
such as the Laplacian pyramid or the entropy scale space of Kimia, Tannenbaum and Zucker.
The branches of segmentation usually will not extend to the boundary of the shape because they
may start out as branches of �� or level curves along the branch may initially have positive
curvature. The length of the segmentation branch depends on �. The larger the value of �, the
longer the branch. The definition of strict segmentation has to be used if the segmentation must
be extended to the boundary.

This description can be readily translated into the language of the shock grammar of Siddiqi
and Kimia [10,25]. The first order shocks are the branches of the skeleton not belonging to �.
The second order shocks are the hyperbolic points. The third order shocks correspond to a line
of parabolic points. The elliptic points are the fourth order shocks. The rules of the grammar
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and properties follow easily from the fact that � is monotonically decreasing along the branches
of the skeleton and the fact the � is smooth.

Our work is also related to GRADMAT of Rosenfeld [28] and the related more recent
development of cores by Pizer et al [4]. In our context, the value of 	 � � measures the
medialness of a point on the skeleton. Our version of the core may be visualized by plotting the
values of 	� � along the skeleton. Figure 5 shows such a plot for a rectangle.

We now illustrate our construction in detail through the duck example. This simple shape
covers all the phenomena that may arise. Figure 6 shows computation of �, namely the points
where the gradient of � vanishes. We detect these points as the simultaneous zero-crossings
of the derivatives �� and �� . In the case of the duck figure, � consists of three points: two
elliptic points corresponding to the centers of the head and the body and one hyperbolic point
corresponding to the neck. Figures 7 and 8 depict the surface � in the vicinity of one of the
centers and in the vicinity of the saddle point in the neck.

Figure 9 shows all of � with � � ��. Figures 10 shows �� and �
�

separately with level
curves of � superimposed, illustrating that �� tracks protrusions while �

�

tracks indentations.
As we move towards the inner level curves in the direction of decreasing �, the level curves
deform towards a more circular form and some branches of � terminate. Figures 11 and 12
show the skeleton and the segmentation which are what one would expect.

Figure 13 shows skeletons of various shapes. (None of them happens to involve segmenta-
tion.) Examples of a pair of pliers and the outline of a cube illustrate the effectiveness of the
method for complex shapes involving junctions.

In these examples, we didn’t do any pruning.

4. Missing Information and Filling the Gaps

Although the constructions described above were motivated by the example of simple closed
curves, they work equally well for more general curves. For example, if the letter C is drawn
as an open curve, we can compute its skeleton. If the ends of the letter are sufficiently close, a
segmentation line joins the two ends. If the same letter is drawn as a thick shape with a simple
closed curve as its boundary, we recover the same information as above and also the medial axis.
The point is that � should be computed over the whole plane and the skeleton and the segmentation
really describe the complement of �. Whether the complement of � is connected or not is not
relevant to the computation of the skeleton and the segmentation. This property is very useful
in particular when the shape boundary is not fully specified. As long as important features of
the shape boundary are specified, evolution fills in the gaps and the essential skeleton can be
recovered. The missing portions of the boundary are recovered as branches of the segmentation.

We illustrate our construction by means of an incomplete rectangle, obtained by removing
a 56 pixel long piece from the middle of each of the two long sides of a complete ��� � ���

rectangle. Figure 14 shows the skeleton and the segmentation obtained using � � ��. The
skeleton consists of the skeleton of the complete rectangle and two new branches which may be
interpreted as the “medial axes” of the gaps in the sides. The larger the value of �, the shorter
these additional branches. The gaps themselves are filled in by the segmentation lines.
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5. Significance of a Skeleton Branch

There are several ways in which one may assign a level of significance to a point on the
skeleton. Branches tracking less important details terminate earlier than the branches tracking
globally more prominent details. Therefore the value of � � � at the termination point is one
measure of significance of a branch. Since � � � may be viewed as corresponding to time in
curve evolution, our first measure is the “time of extinction” of a branch.

Another measure of significance is the curvature of the level curve at points on the skeleton.
Thus, along a level curve, a skeleton point with large curvature indicates a more significant
protrusion than the one with smaller curvature.

Finally, one can compare robustness of the skeleton branches with respect to increasing values
of �. With increasing �, less significant branches become shorter while the most prominent
branches remain essentially unchanged. This effect is clearly seen in Figure 15 which shows
skeletons for different values of �.

6. Grayscale Images

The preceding sections dealt with the case in which the shape outline is already extracted in
the form of a line drawing although it may be incomplete. However, segmentation of a grayscale
image for obtaining such a line drawing is not an easy task. In this section, we extend the
previous constructions to grayscale images in a natural way, without requiring the intermediate
step of extracting a line drawing. We start with the segmentation functional introduced in [15].
Even finding a segmentation which only approximately minimizes this functional is an extremely
difficult task. Instead of looking for approximate minimizers, we employ its elliptic approximation
introduced by Ambrosio and Tortorelli [1]. They achieve this by replacing the segmentation curve
by a continuous function which we call the edge-strength function. Skeletons and segmentation
are then extracted from the level curves of this edge-strength function.

The segmentation functional is the following:

(11)

�������	 ��

� �
���

������	�



 �

� �
�

��� �	��	�

 ���

where  is a connected, bounded, open subset of R2 (usually a rectangle), � is the feature
intensity, � is a curve segmenting , � is the smoothed image � ��, ��� is the length of �
and �� � are the weights. Let � �

�
���. Then, � may be interpreted as the smoothing radius

in ��. With � fixed, the higher the value of �, the lower the penalty for � and hence, the
more detailed the segmentation.

Ambrosio and Tortorelli [1] replace

(12) ��� by
�

�

� �
�

�
������ 


��

�

�
�	�
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and

(13)
� �
���

������	�
 by
� �

�

��� �	�������	�


The result is the following functional:

(14)
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As � 	 �, � converges to 1 at points on � and to zero elsewhere. The corresponding
gradient descent equations are:

(15)
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��� � �
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where � denotes the boundary of  and � denotes the direction normal to �. The solution
of these equations gives us the edge-strength function � corresponding to the segmentation locus
� without determining � itself.

Notice that equation for each variable is a diffusion equation which minimizes a convex
quadratic functional in which the other variable is kept fixed:

(16)

Keeping � fixed, the first equation minimizes� �
�

�
���� �	������ 
 ���� �	�

�
�	�


Keeping � fixed, the second equation minimizes� �
�

������



� 
 ��������

��

�
� �

��������

� 
 ��������

��
��	�


Thus the edge strength function � is nothing but a nonlinear smoothing of

(17)
��������

� 
 ��������

where � is a simultaneous nonlinear smoothing of �.

In our integrated framework, there are three separate scales represented by parameters �, �
and �. Thus we have an integrated 3–dimensional scale-space. All of these scales are also present
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in all other approaches as well, but separately. To take a particular case, consider the method of
shape recovery and construction of skeletons by curve evolution. First, the grayscale image is
presmoothed for determining the gradient from which the edge-strength function (boundariness
function) is computed. Next, curve evolution is applied (for example, an intrinsic version of
Terzopoulos’ snakes) to detect the shape boundary. This also involves a scale in the form of ratio
between the curvature component and the morphology component of the curve velocity. This
determines the extent of smoothing of the boundary. Finally, skeleton is extracted by applying
curve evolution again to the extracted boundary, introducing a third scale determining the amount
of detail in the skeleton. The issue of automatic scale selection is a research topic in its own
right. Even when there is only one scale involved such as in the case of image smoothing by
Gaussians, automatic scale selection is difficult as the current research by various investigators
such as Koenderink, ter Romney and Lindeberg shows. Our purpose is to demonstrate a a general
method. For practical purposes, we suggest that scales be chosen empirically in the context of
the particular application at hand.

Ideally, the edge-strength function � computed from a raw image by equations (15) should
be constant along the object boundaries so that its level curves will correspond to the ideal cases
discussed in §2. However this almost never happens due to noise, differing levels of contrast
along the object boundaries and the interaction between nearby edges. Therefore, the object
boundaries are no longer defined by level curves of �. Typically, we should expect a level curve
corresponding to a value of � near its maximum to consist of several connected components,
each surrounding a high contrast portion of �. The situation is analogous to the earlier example
of the incomplete rectangle in §4 where the shape boundary consists of several disconnected
pieces. Note that even in the case of the functional (11), if � is not high enough, � may not
include portions of the object boundary where contrast is too low. The important point is that it
is not essential to have the complete shape boundary to compute its skeleton. As the evolution
progresses, the gaps between the pieces of the boundary are filled in. Thus we still recover an
essentially correct skeleton. As pointed out before, as the value of � is increased, � becomes
more and more detailed, adding to the skeletal details. This effect on the skeleton is distinct
from the effect of varying � discussed in §5 where the details of the initial shape are fixed and
the skeleton is smoothed as � is increased.

Before computing the skeleton, the definition of � must be modified by excluding the points
where � is maximum. The definition of the skeleton applies unchanged to raw images because
along the branches of �� emanating from the maxima of �, the level curves of � have negative
curvature and hence are automatically excluded from the skeleton. However, they do become
part of the segmentation. Note that now we have segmentation of the grayscale image given by
� and the segmentation of the shape into parts as defined in §3. The branches of �� along
which the level curves have negative curvature include both of these segmentations.

In order to illustrate application of the method to grayscale images, we present an example
shown in Figure 16 and analyze the dark shape (ventricles) in the center of the figure. To compute
the edge-strength function by equations (15), we set � � � � � and picked three different values
of �, obtaining three different edge-strength functions, ��� �� and �	 depicted in Figures 17–19.
The value of � corresponding to �� is sufficiently low so that only the corners portions of the
central dark area are prominent in the image of ��. The inner details such as the inner boundaries
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of the four disjoint corner lobes are smoothed over to a large degree. The value of � was doubled
to obtain �� and doubled again for �	. At each stage, the edge-strength function becomes more
detailed. Figure 20 shows the skeletons for the ventricle corresponding to the three values of �.
The effect of increasing � is clearly seen in the bottom row of the figure. The skeleton in the case
of �� is essentially that of an incomplete rectangle. As � is increased, it becomes more detailed
so that the skeleton from �	 depicts the axes of the four lobes more accurately and finds a center
for each lobe. Figure 21 shows the skeleton for the whole MRI image corresponding to ��.
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