
LOCAL SYMMETRIES OF SHAPES IN ARBITRARY DIMENSION

1. Introduction

In [TSP], level curves of a function �, called “the edge strength function,” de-
fined for 2–dimensional shapes, are interpreted as successively smoother versions
of the initial shape boundary. The local minima of the absolute gradient ������
along the level curves of � are shown to be a robust criterion for determining
the shape skeleton. More generally, at an extremal point of ������ along a level
curve, the level curve is locally symmetric with respect to the gradient vector
��. That is, at such a point, the level curve is approximately a conic section
whose one of the principal axes coincides with the gradient vector. Thus, the
locus of the extremal points of ������ along the level curves determines the axes
of local symmetries of the shape. In this paper, we extend this method to shapes
of arbitrary dimension and illustrate it by applying to 3D shapes.

2. The Edge-Strength Function

Let � be a connected, bounded, open subset in �� representing an n-
dimensional shape. Let � be the boundary of �. We consider the following
functional:
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subject to the boundary condition � � � along �. Let � denote the unique
minimizer of the functional. Then, � varies between 0 and 1 and decays
exponentially away from �. As � � 	, � � 	 everywhere except along �.
Thus, � may be thought of as a blurred version of the characteristic function
of � and � as the nominal blurring radius. This functional was introduced by
Ambrosio and Tortorelli [AT] in the context of approximating the Mumford-Shah
segmentation functional and in that context � may be interpreted as the probability
for the presence of an edge. For this reason, we call � the edge-strength function.
The key point is that as � � 	, 
������� tends to the “volume” of �. We
compute the minimizer of functional (1) by numerically computing the steady
state of the following linear diffusion equation obtained by applying gradient
descent to functional (1):
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The equation may be implemented by means of central finite differences. Alter-
natively, one can directly solve the steady state equation ��� � ����, by the
finite element method for example.

2. 2–Dimensional Shapes

When � � �, �������
��

� ��� where � is in the direction of the gradient vector
��, � is in the direction tangent to the level curve, � is the arc-length along the
level curve and the subscripts indicate derivatives with respect to these variables.
In terms of the global coordinates 	
 �,
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Hence, the extremal points of ������ along the level curves of � are given by
the zero-crossings of ��� . The symmetry of the level curve at a point P where
��� � 	 is indicated by the missing ��–term in the Taylor series of � at P:

(4) � � ��� � ���� � ����
� � ����

� � � � �

Thus, locally at P, the level curve � � ��� is approximately a conic section
whose one of the principal axes coincides with the gradient vector. An equivalent
description of the symmetry at P is that the hessian of � at P is diagonalized when
expressed in local coordinates � and �. This means that the gradient vector ��

is an eigenvector of the hessian at P, the other eigenvector being tangent to the
level curve at P.

3. General Case: n arbitrary

We now extend our analysis of the 2–dimensional case to arbitrary dimen-
sion. First, we look for the points where ������ is stationary along the level
hypersurfaces of �.

Proposition: ������ is stationary along a level hypersurface at a point P if
and only if �� is an eigenvector of the hessian  of �.

Proof: ������ is stationary along a level hypersurface at a point P if and only
if the derivative of ������ in any direction tangent to the level hypersurface at P
vanishes. That means that at P, ������� cannot have a component tangent to the
level hypersurface at P. In other words, the directions of ������� and �� must
coincide at P. That is, ������� must be a multiple of ��. But

(5) ��������� �
��
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It follows that the necessary and sufficient condition for P to be a stationary point
is that

(6) �� � ��� for some constant ��

Q.E.D.

If �� is the vector {��
 ��
 ���
 ��} and �� is the vector {��
 ��
 ���
 ��},
then we have � � � equations

(7)
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to determine the 1–dimensional locus of the extremal points. Note that the
hessian at an extremal point is diagonalized if we choose the direction of the
gradient vector as one of the local coordinates and choose the other coordinates
appropriately in the hyperplane tangent to the level hypersurface. Thus the
convexity of � is symmetric with respect to the direction of ��.

To obtain more information about the shape, we now look for partial sym-
metries. That is, we require that the level hypersurface be symmetric only about
some linear space containing ��. To be more specific, consider the matrix 

whose columns are

(8) ��
��
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Observe that if �� is an eigenvector of  , the rank of  is one. Therefore
we define the partial symmetry locus �	 of dimension � as the locus of points
where  has rank � �. We now have a sequence of nested loci of successively
increasing degree of symmetry:

(9) � � �� � ���� � � � � � �� � ��

where �� is just the locus of points where �� vanishes, making the rank of 
equal to zero. At a point in �	, � is locally symmetric with respect to the linear
space spanned by the columns of . It contains the gradient vector �� and is
spanned by � eigenvectors of  . Note that our definition of ���� is analogous
to the definition of Furst, Pizer and Eberly [MMBIA] for the ridges of a function
defined over a 4–dimensional domain.

4. 3–Dimensional Shapes

In the case of 3–dimensional shapes, �� is given simply by the vanishing of
the determinant of the matrix . The 1–dimensional locus �� is given by the

3



equations
(10)
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which may be written as
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The 0–dimensional locus �� is given by the equations �� � �� � �
 � 	.

5. Shape-Skeletons

Consider first the 2–dimensional case. There are two definitions given in
[TSP] for extracting the skeleton of a two-dimensional shape from ��. The one
simplest to implement defines the skeleton as consisting of �� and those points of
����� where the level curve has positive curvature. That is, the relevant points
are where the second derviative of � in the direction orthogonal to �� is positive.
The points where curvature is negative indicate the presence of a neck. Hence
for the general case, we look for a measure which depends only on the second
derivatives of � along directions orthogonal to the linear space spanned by the
columns of . In the case of ��, such a measure is readily provided by the mean
curvature � given by the formula
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where ��� is the hessian  of � and the last term is just the second derivative of
� in the direction of ��. The term � � �� is of course the laplacian of � given
by the trace of  . We prune ����� by removing points where � is negative. To
extend this construction to every �	, note that the expression in the bracket is just
the sum of the eigenvalues corresponding to the eigenvectors of  orthogonal
to ��. Therefore, we consider the linear space � spanned by the columns of
 and the linear space � orthogonal to �. Choose a basis for �� by choosing
an orthonormal basis for � and an orthonormal basis for � . Then at points in
�	��	��,  is block-diagonal with respect to this basis, consisting of a square
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block �	 of dimension � and a square block �	 of dimension � � �. At points
of �	��	��, define

(13) �	 �
�������	�
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The numerator in the expression for �	 is simply the sum of the second derivatives
of � along the basis vector of � . Prune �	 by removing points where �	 is
negative. Note that �� is the mean curvature �.

In the 3D case, the explicit formula for the mean curvature �� is as follows:
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To calculate ��, let � be the unit vector given by

(15) � �
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where 	 indicates the cross-product. Then in the 3D case,
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6. EXAMPLES
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