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Abstract. Michor and Mumford have shown that the distances between pla-
nar curves in the simplest metric (not involving derivatives) are identically
zero. We derive geodesic equations and a formula for sectional curvature for
conformally equivalent metrics. We show if the conformal factor depends only
on the length of the curve, the metric behaves like an L

1 metric, the sectional
curvature is not bounded from above and minimal geodesics may not exist.
If the conformal factor is superlinear in curvature, the sectional curvature is
bounded from above.

1. Introduction

The purpose of this paper is to study the most basic properties of some of the
simplest Riemannian metrics suggested by applications to Computer Vision. The
problem is to understand and quantify similarities and differences between object
shapes and their individual variations. At a fundamental level, the problem is to
construct appropriate metrics on a space of closed surfaces in R

3. A simpler version
of the problem is the construction of Riemannian metrics on a space of closed planar
curves. The choice of a metric depends on the type of similarity that is being con-
sidered. In their seminal paper [2], Michor and Mumford analyze two Riemannian
metrics on a space of closed planar curves. Surprisingly, the Riemannian distance
between any two curves in the simpler of the two metrics, an Ho-metric, turns
out to be zero. To remedy this, they add a curvature term to the metric. Below,
we analyze conformal variants of the Ho-metric of Michor and Mumford. After
fixing the basic framework in §2, we investigate in §3 the existence of minimal
geodesics in two specific cases where the conformal factor depends only on length
of the curve. We derive upper and lower bounds for distances between curves and
show that these metrics behave like L1 metrics. In the case of simpler of the two
metrics, the only minimal geodesics are those which deform the curve by moving
all of its points with the same normal speed. In the case of the second metric, no
geodesic is minimal if the length of the curve is less than a certain threshold; the
question of minimality when the length of the deforming curve is equal or greater
than threshold is still open. In §4, we derive an explicit geodesic equation and in
§5, we provide a formula for the sectional curvature. We show that the sectional
curvature is unbounded from above if the conformal factor depends only on the
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length of the curve. If the conformal factor is a superlinear function of the curva-
ture, the sectional curvature at a point is bounded with respect to all the planes
passing through a fixed tangent vector.

Conformal Ho metrics using conformal factors depending on the length of the
curve were proposed by Yezzi and Mennucci in [7,8]. Higher order metrics have also
been proposed. Younes has proposed an H1 metric in [9]. Mio et al [4,5,6] have
constructed geodesics in H1 and H2 metrics. More recently, Michor and Mumford
have described a general Hamiltonian framework for studying Sobolev metrics on
the space of planar curves [3].

2. The Framework

The basic space considered by Michor and Mumford is the orbit space

Be(S
1,R2) = Emb(S1,R2)/Diff(S1)

of the space of all C∞ embeddings of S1 in the plane, under the action by compo-
sition from the right by diffeomorphisms of the unit circle. It is contained in the
bigger space of immersions modulo diffeomorphisms:

Bi(S
1,R2) = Imm(S1,R2)/Diff(S1)

Let π : Imm(S1,R2) → Bi(S
1,R2) be the canonical projection. The simpler of the

two metrics considered in [2] is an Ho-metric defined on Imm(S1,R2):

Go
c(m,h) =

∫

S1

(m · h) |cθ|dθ

where c : S1 → R
2 is an immersion, defining a point in Imm(S1,R2), m,h ∈

C∞(S1,R2) are the vector fields along the image curve, defining two tangent vectors
on Imm(S1,R2) at c, and cθ = dc/dθ. (m · h) is the usual dot product in R2.
Sometimes for the sake of clarity, we will use the notation a · b even when a, b are
scalars. Let nc denote the unit normal field along c. If we identify R2 with the
complex plane C, then, nc = icθ/ |cθ|. The tangent vectors onBi(S

1,R2) at π(c) are
of the form anc where aεC∞(S1,R). For any Co, C1 ∈ Bi, consider all liftings co, c1
to Imm(S1,R2) and all smooth paths t 7→ (θ 7→ c(t, θ)), 0 ≤ t ≤ 1, in Imm(S1,R2)
with c(0, ·) = co and c(1, ·) = c1. Let ct denote ∂c/∂t and c⊥t = (ct · nc)nc. The
arc-length of such a path c is given by

∫ 1

0

√

Go
c (ct, ct)dt

Michor and Mumford show that for any two curves in Bi(S
1,R2) ,

distGo(C1, C2) =def inf
c

∫ 1

0

√

Go
c

(

c⊥t , c
⊥
t

)

dt = 0

and strengthen Go by defining

GA
c (m,h) =

∫

S1

(

1 +Aκ2
c

)

(m · h) |cθ|dθ

where κc is the curvature, defined by the equation
(

cθ

|cθ|

)

θ
= iκccθ = κc |cθ|nc.

An alternative is to consider conformal transformations of Go:

Gρ
c(m,h) = ρ(c)

∫

S1

(m · h) |cθ|dθ
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where ρ(c) is a Diff(S1)-invariant function on Imm(S1,R2). In this paper, we
consider conformal factors ρ which are functions of the curve length ℓ and the
curvature κ.

Notation: Throughout this paper, we will use the superscript ρ (respectively
o) to label quantities which are calculated using the metric Gρ (respectively Go)
except that Gρ

c(h, h) will be denoted as ||h||2ρ and Go(h, h) simply as ||h||2.

3. Instability of Gρ(ℓ) geodesics

In this section, we assume that ρ is a function of the curve length ℓ alone:
ρ(c) = ℓ(c) or eAℓ(c) where A is a positive constant. If c is a path connecting
curves C,C′, let α(c) denote the area swept out by c in R

2. For a path c(t, ·), let
ℓmax(c) = maxt ℓ(c(t, ·)). The following theorem characterizes the L1-type behavior
of the metrics Gρ(ℓ).

Theorem 3.1. If ρ(c) = ℓ(c), then,

distGρ (C,C′) = inf
c
α(c)

If ρ(c) = eAℓ(c), then,

inf
c

√
Aeα(c) ≤ distGρ (C,C′) ≤ inf

c

√
AeeAℓmax(c)/2α(c)

We first prove a series of lemmas.

Lemma 3.2.

distGρ (C,C′) ≥
{

infc α(c) if ρ(c) = ℓ(c)

infc

√
Aeα(c) if ρ(c) = eAℓ(c)

Proof. For any path c,

LGρ(c) =

∫ 1

0

[

ρ(c)

∫

S1

(

c⊥t · c⊥t
)

|cθ|dθ
]

1
2

dt

≥
∫ 1

0

[

(

ρ(c)

| sup(c⊥t )|

)
1
2

∫

S1

|c⊥t ||cθ|dθ
]

dt

≥
[

min
t

ρ(c)

ℓ(c)

]
1
2

∫

S1×[0,1]

| det dc(t, θ)|dθdt

≥
{

α(c) if ρ(c) = ℓ(c)√
Aeα(c) if ρ(c) = eAℓ(c)

�

David Mumford observed from the formula for the sectional curvature that the
geodesics along which | sup(c⊥t )| < ℓ if ρ = ℓ and < 1/A if ρ = eAℓ may not be
minimal. Such a possibility can be heuristically seen from the inequality

LGρ(c) ≥
∫ 1

0

[

(

ρ(c)

| sup(c⊥t )|

)
1
2

∫

S1

|c⊥t ||cθ|dθ
]

dt

which suggests that while traversing a given area, one should try to minimize
ρ(c)/| sup(c⊥t )|. The key point is that we can increase | sup(c⊥t )| indefinitely by
replacing the part of the curve supporting c⊥t by a saw-tooth shaped curve of high
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frequency and small amplitude. When ρ = ℓ and | sup( c⊥t )| < ℓ, we can increase
| sup(c⊥t )| so that ℓ/| sup(c⊥t )| tends to 1. When ρ = eAℓ and | sup(c⊥t )| < 1/A,

we can force eA| sup(c⊥t )|/| sup(c⊥t )| to equal its unique minimum Ae by making
| sup(c⊥t )| equal 1/A. (In the case of the metric Go, ρ = 1 so that ρ/| sup(c⊥t )|
tends to 0.) In order to obtain an upper bound for a general path, we break it up
into a series of tiny bumps. When ρ = ℓ, this method gives an upper bound for
distGρ (C,C′) which coincides with the lower bound. When ρ = eAℓ, the larger the
value of | sup(c⊥t )|, the greater the divergence between the upper bound obtained
by this method and the lower bound since it is more efficient to create a large bump
all at once instead a series of tiny bumps.

Rectangular Bumps

Let co : S1 → R2 be a smooth and free immersion. Let Co be the corresponding
curve in R2. Let co be parametrized by the arclength so that θ parametrizes the
scaled circle S1

ℓo
where ℓo is the length of Co. For any function u(θ), let u′ denote

du/dθ. Let no denote the normal vector ic′o. Let κo denote the curvature of co.
Fix small positive numbers δ and ǫ such that δ < ℓo and ǫ ‖κo‖∞,[0,δ] << 1.

Construct a ”rectangular” bump, over Co as follows:

c1(θ) =







co(θ) + ǫno if 0 < θ < δ
{co(θ) + sno|0 ≤ s ≤ ǫ} if θ = 0, δ
co(θ) otherwise

Let C1 be the corresponding curve in R2.

Lemma 3.3. For a rectangular bump C1 over a curve Co, we have the following
estimates:

(i) If ρ = ℓ,

distGρ(Co, C1) ≤
[

1 + ǫ||κo||∞,[o,δ]

1 − ǫ||κo||∞,[o,δ]

]2

(area of the bump)

(ii) If ρ = eAℓ and δ < 1/A,

distGρ(Co, C1)

≤
[

1 + ǫ||κo||∞,[o,δ]

1 − ǫ||κo||∞,[o,δ]

]3/2

eA(ℓo+2ǫ−δ)/2

√

Ae
1+ǫ||κo||∞,[o,∂]
1−ǫ||κo||∞,[o,∂] (bump area)

Proof. We prove the lemma using a modification of the ”teeth” construction of
Michor and Mumford [2]. If ρ = ℓ, choose A < 1/δ. Approximate C1 by a ”trape-

zoidal” bump C̃1 as follows. Replace C0 in the interval [0, δ] by a saw-tooth curve
of height η and period 1

m such that its length equals 1
A . This is done by growing

teeth on C0 in time η. Move the saw-tooth curve at unit speed along the normals n0

keeping its end-points fixed, until it touches the upper edge of the bump. Finally,
retract the teeth in time η. Formally, define a path c(t, θ) = co(θ)+ f(t, θ)no where
f(t, θ) is defined as follows.

f(t, θ) = 0, 0 ≤ t ≤ ǫ and δ ≤ θ ≤ ℓo

For 0 ≤ t ≤ η, 0 ≤ k ≤ m− 1,

f(t, θ) =

{

t
(

2mθ
δ − 2k

)

2k
2m ≤ θ

δ ≤ 2k+1
2m

t
(

2k + 2 − 2mθ
δ

)

2k+1
2m ≤ θ

δ ≤ 2k+2
2m
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For η ≤ t ≤ ǫ− η,

f(t, θ) =











ǫ(t−η)+η(ǫ−η−t)
ǫ−2η · 2mθ

δ 0 ≤ θ
δ ≤ 1

2m
ǫ−η
ǫ−2η (t− η) + f(η, θ) 1

2m ≤ θ
δ ≤ 1 − 1

2m
ǫ(t−η)+η(ǫ−η−t)

ǫ−2η · 2m
(

1 − θ
δ

)

1 − 1
2m ≤ θ

δ ≤ 1

For ǫ− η ≤ t ≤ ǫ,

f(t, θ) =







2mǫθ
δ 0 ≤ θ

δ ≤ 1
2m

ǫ[t−(ǫ−η)]+(ǫ−t)f(ǫ−η,θ)
η

1
2m ≤ θ

δ ≤ 1 − 1
2m

2mǫ
(

1 − θ
δ

)

1 − 1
2m ≤ θ

δ ≤ 1

c′ = c′o + f ′no − fκoc
′
o = (1 − fκo)c

′
o + f ′no

|c′| =
√

(1 − fκo)2 + f ′2

n =
−f ′c′o + (1 − fκo)no

|c′|

ct = ftno

c⊥t · c⊥t = (ct · n)2 =
(1 − fκo)

2f2
t

|c′|2

Let

β =

√

(1 + ǫ||κo||∞,[o,δ])2 + f ′2

(1 − ǫ||κo||∞,[o,δ])2 + f ′2

1 ≤ β ≤ 1 + ǫ||κo||∞,[o,δ]

1 − ǫ||κo||∞,[o,δ]

Choose m and η such that
∫ δ

o |c′(η, θ)|dθ = 1
A . Note that as m→ ∞, η → 0.

Estimates when 0 ≤ t ≤ η: Since |f ′| is independent of θ and |f | ≤ ǫ,
√

(1 − ǫ||κo||∞,[o,δ])2 + f ′2 ≤ |c′(η, θ)| ≤
√

(1 + ǫ||κo||∞,[o,δ])2 + f ′2

δ
√

(1 − ǫ||κo||∞,[o,δ])2 + f ′2 ≤
∫ δ

o

|c′(η, θ)|dθ =
1

A
≤ δ

√

(1 + ǫ||κo||∞,[o,δ])2 + f ′2

We also have

√

(1 − ǫ||κo||∞,[o,δ])2 + f ′2 ≤ |c′(t, θ)| ≤
√

(1 + ǫ||κo||∞,[o,δ])2 + f ′2

1

β

√

(1 + ǫ||κo||∞,[o,δ])2 + f ′2 ≤ |c′(t, θ)| ≤ β
√

(1 − ǫ||κo||∞,[o,δ])2 + f ′2

1

β
· 1

Aδ
≤ |c′(t, θ)| ≤ β

Aδ

ℓ(c) =

∫ ℓo

o

|c′|dθ ≤ (ℓo − δ) +
β

A

eAℓ(c) ≤ eA(ℓo−δ)eβ
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Since |ft| ≤ 1,
∫ ℓo

o

|c⊥t |2|c′|dθ =

∫ δ

o

(1 − fκo)
2f2

t

|c′| dθ ≤
(

1 + ǫ||κo||∞,[o,δ]

)2
βAδ2

lim
m→∞

∫ η

o

[

ρ (ℓ(c))

∫ ℓo

o

|c⊥t |2|c′|dθ
]1/2

dt = 0

Estimates when η ≤ t ≤ ǫ− η: Estimate for |c′(t, θ)| is the same as in the interval
[ δ
2m , δ(1 − 1

2m )] since the curve has the same shape. In the intervals [0, δ
2m ] and

[δ(1 − 1
2m ), δ] , 2mη

δ ≤ |f ′(t, θ)| ≤ 2mǫ
δ . Therefore, |c′(η, θ)| ≤ |c′(t, θ)| ≤ 1 +

ǫ||κo||∞,[o,∂] + 2mǫ
δ .

ℓ(c) =

∫ ℓo

o

|c′|dθ ≤ (ℓo − δ) +

(

1 + ǫ||κo||∞,[o,δ] +
2mǫ

δ

)

δ

m
+
β

A

lim
m→∞

ℓ(c) ≤ (ℓo − δ) + 2ǫ+
1 + ǫ||κo||∞,[o,δ]

1 − ǫ||κo||∞,[o,δ]

1

A

lim
m→∞

eAℓ(c) ≤ eAℓo+2ǫ−δ)e
1+ǫ||κo||∞,[o,δ]
1−ǫ||κo ||∞,[o,δ]

We also have |ft| ≤ ǫ−η
ǫ−2η . Therefore,

∫ ℓo

o

|c⊥t |2|c′|dθ ≤
(

1 + ǫ||κo||∞,[o,δ]

)2
(

ǫ− η

ǫ− 2η

)2

βAδ2

lim
m→∞

∫ ǫ−η

η

[

ρ (ℓ(c))

∫ ℓo

o

|c⊥t |2|c′|dθ
]1/2

dt

≤



























(

1 + ǫ||κo||∞,[o,δ]

)

√

1+ǫ||κo||∞,[o,δ]

1−ǫ||κo||∞,[o,δ]

[

A (ℓo + 2ǫ− δ) +
1+ǫ||κo||∞,[o,δ]

1−ǫ||κo||∞,[o,δ]

]1/2

δǫ

if ρ(ℓ) = ℓ

(

1 + ǫ||κo||∞,[o,δ]

)

√

1+ǫ||κo||∞,[o,δ]

1−ǫ||κo||∞,[o,δ]
eA(ℓo+2ǫ)/2

√

Ae
1+ǫ||κo||∞,[o,δ]
1−ǫ||κo ||∞,[o,δ]

−Aδ
δǫ

if ρ(ℓ) = eAℓ

Estimates when ǫ− η ≤ t ≤ ǫ: The path c(t, θ) in the interval [ǫ− η, ǫ] is essentially
the same as that in [0, η] and

lim
m→∞

∫ ǫ

ǫ−η

[

ρ (ℓ(c))

∫ ℓo

o

|c⊥t |2|c′|dθ
]1/2

dt = 0

Since

(area of the bump) =

∫ ǫ

o

∫ δ

o

(1 − tκo)dθdt ≥
(

1 − ǫ||κo||∞,[o,δ]

)

δǫ

the lemma is proved in the case when ρ = eAℓ. It is proved in the case when ρ = ℓ
by letting A→ 0. �

In Lemma 3.3, we may replace the single bump by a finite number of disjoint
bumps of height ǫ and total length δ. The proof remains unchanged except that we
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must replace 2ǫ in the formula by 2kǫ if k is the number of bumps. The function f
in each individual bump may be positive or negative.

We prove the theorem by approximating the path by a series of small rectangular
bumps. The error of approximation may be made arbitrarily small by the following
lemma. Define a Fréchetmetric on Imm(S1,R2) and Bi(S

1,R2) as follows. If co, c1
are points in Imm(S1,R2), let

d∞ (co, c1) = sup
θ

|co (θ) − c1 (θ) |

If Co, C1 ∈ Bi(S
1,R2), let

d∞ (C1, C2) = inf
{co,c1|π(co)=Co,π(c1)=C1}

d∞ (co, c1)

Lemma 3.4. For any pair C1, C2 ∈ Bi(S
1,R2),

distGρ (C1, C2) ≤ d∞(C1, C2) · max{ρ(ℓ1), ρ(ℓ2)}
where ℓi = ℓ(Ci), i = 1, 2.

Proof. Let c1,c2 be lifts of C1, C2 to Imm(S1,R2). Let c(t, θ) = (1 − t) c1 (θ)+tc2 (θ)
be a path connecting them. Then, |cθ(t)| ≤ (1 − t) |c1,θ|+t|c2,θ| and hence, ℓ(c(t)) ≤
max{ℓ(C1), ℓ(C2)}. Moreover, ct = c2 − c1. Therefore,

distGρ (C1, C2) ≤ inf
c
LGρ(c)

≤ inf
{pairs c1,c2}

{

sup
θ

|c1(θ) − c2(θ)|
}

max{ρ(ℓ1), ρ(ℓ2)}

�

The polygonal approximations used in the proof of the theorem lie on the bound-
ary of Imm(S1,R2) and Bi(S

1,R2), and Lemma 3.4 extends to them.
Proof of the theorem:

Consider a path c (t, θ) connecting C and C′. Since the absolute curvature of
the curves c(t, ·) is uniformly bounded by a constant K, each curve has a tubular
neighborhood of width which is bounded from below. Choose ǫ and a sequence

0 = t0 < t1 < · · · < tN−1 < tN = 1

such that ǫK << 1 and, for 0 ≤ k < N , c (tk+1, ·) is in a local chart of c (tk, ·):
c (tk+1, θ) = c (tk, θ) + fk (θ)nk

where c (tk, ·) is parametrized by the arclength, nk is the normal vector field of
c (tk, ·) and |fk| < ǫ. Let F = max

{

‖f ′
k (θ)‖∞ |0 ≤ k < N

}

. Let Ck denote

π (c (tk, ·)). Let ℓk = ℓ(Ck). Let ℓ̃k = (1 + ǫK + F )ℓk.
Choose δ such that

max
k

√

ℓ̃kρ(ℓ̃k) · Fδ < ǫ

N

We now estimate the distances distGρ(Ck, Ck+1). Consider the path segment
[co, c1] from co to c1 in the local chart at co. Divide the range of θ into intervals
of length δ . Replace fo by a piecewise constant function f̄o whose value in each
subinterval equals the average of fo over that interval. Let C̄o be the curve defined
by f̄o. The Frechét distance between C1 and C̄o is ≤ Fδ. The sum of the jumps
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in f̄o is ≤ Fℓo. Since |c̄′o| = |1 − ǫκo| ≤ 1 + ǫK, ℓ(C̄o) ≤ (1 + ǫK + F )ℓo = ℓ̃o.
Therefore,

distGρ

(

C1, C̄o

)

≤ max{ℓ̃oρ(ℓ̃o), ℓ̃1ρ(ℓ̃1)} · Fδ ≤
ǫ

N
Let α([co, c1]) denote the area swept out by the path c during [0, t1]. The area

between Co and C̄o equals the area between Co and C1 which in turn is less than
or equal to α([co, c1]). The curve C̄o consists of a series of bumps over Co. Traverse
the bumps sequentially, taking care to retract the common edge of each bump with
the previous bump before going to the next bump. Retracting a common edge can
be done without incurring any cost.

By Lemma 3.3, if ρ = ℓ,

distGρ

(

Co, C̄o

)

≤
(

1 + ǫK

1 − ǫK

)2

α([co, c1])

and if ρ = eAℓ,

distGρ

(

Co, C̄o

)

≤
(

1 + ǫK

1 − ǫK

)3/2

eA(ℓo+2ǫ)/2

√

Ae
1+ǫK
1−ǫK α([co, c1])

distGρ (Co, C1) ≤ distGρ

(

Co, C̄
)

+
ǫ

N
Similar estimates hold for distGρ (Ck, Ck+1) for 0 < k < N .
Therefore, if ρ = ℓ,

distGρ (C,C′) ≤
(

1 + ǫK

1 − ǫK

)2

α(c) + ǫ

and if ρ = eAℓ,

distGρ (C,C′) ≤
(

1 + ǫK

1 − ǫK

)3/2

eAℓmax(c)/2

√

Ae
1+ǫK
1−ǫK α(c) + ǫ

Since ǫ is arbitrary, we have

distGρ (C,E) ≤
{

α(c) if ρ(ℓ) = ℓ

eAℓmax(c)/2
√
Aeα(c) if ρ(ℓ) = eAℓ

�

For any oriented curve Cor, define the integer-valued measurable function wC

on R2 by:
wC(x, y) = the winding number of C around (x, y)

and let

d♭(Cor
1 , Cor

2 ) =

∫

R2

|wC1 − wC2 |dxdy

It is shown in [2] that for any two oriented curves Cor
1 , Cor

2 ,

d♭(Cor
1 , Cor

2 ) ≤ min
all paths c joining C1,C2

α(c)

Therefore, we have

distGρ (Cor
1 , Cor

2 ) ≥
{

d♭(Cor
1 , Cor

2 ) if ρ(ℓ) = ℓ√
Aed♭(Cor

1 , Cor
2 ) if ρ(ℓ) = eAℓ

Corollary 3.5. (Existence of minimal geodesics) If ρ = ℓ, then the only minimal
geodesics are the horizontal paths along which |c⊥t |ℓ is constant.
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Proof. If c(t) is horizontal path projecting to a minimal geodesic, LGρ(c) = α(c).
Hence, since the inequality

LGρ(c) ≥
∫ 1

0

[
∫

S1

|c⊥t ||cθ|dθ
]

dt = α(c)

is an equality if and only if |c⊥t | does not depend on θ , that is, ∂
∂θ |c⊥t | = 0 (the

case of ”grassfire”), |c⊥t | must be independent of θ. Let c(t, θ) be a horizontal path
connecting C1, C2 such that |c⊥t | is independent of θ. After reparametrization if
necessary, we may assume that ct · cθ = 0 . Following [2], we let w(c) be the
2-current defined by the path c(t, θ). Since c(t, θ) is an immersion,

d♭(Cor
1 , Cor

2 ) =

∫

R2

|w(c)|dxdy =

∫

S1×[0,1]

| det dc(t, θ)|dθdt = α(c)

Therefore, LGρ(c) is the minimal distance between C1, C2. For c(t, θ) to be a geo-
desic path, reparametrize t such that the infinitesimal arc-length |c⊥t |ℓ is constant
along the path. �

Corollary 3.6. Suppose ρ = eAℓ and c(t, θ), 0 ≤ t ≤ 1, is a path connecting C1, C2.
Assume that |c⊥t | does not depend on θ and ℓ(t) < 1/A for all t. Then,

distGρ(Cor
1 , Cor

2 ) =
√
Aed♭(Cor

1 , Cor
2 )

It follows that the path c(t, θ) is not minimal.

Proof. Break up the interval [0, 1] into small segments of length ǫ and apply Lemma
3.3 with δ = ℓo. (The proof of the lemma extends to this case after minor mod-
ifications.) Calculate the length of the new path c̃ǫ applying the construction of

Lemma 3.3 to each of the segments.. We get lim
ǫ→0

LGρ(c̃ǫ) =
√
Aeα(c) as in the

proof of Theorem 3.1. On the other hand,

LGρ(c) =

∫ 1

0

√

ρ(c)

ℓ(c)

[
∫

S1

|c⊥t ||cθ|dθ
]

dt

>

√

min
ℓ

ρ

ℓ
α(c) =

√
Aeα(c)

�

4. Geodesic Equation

With ψ = 1
2 log ρ, we have the following relation between the Levi-Civita con-

nections [1]:

∇ρ
XY = ∇o

XY + (DXψ)Y + (DY ψ)X −Go(X,Y )∇oψ

Let c(t) be a horizontal path in Imm(S1,R2) projecting to a path in Bi(S
1,R2).

ct is a horizontal vector field along c projecting onto Bi(S
1,R2). Write ct = anc.

Then the geodesic curvature ∇o
ct
ct is horizontal and is given by the formula [2]

∇o
ct
ct =

(

at −
1

2
κca

2

)

nc

Therefore,

∇ρ
ct
ct =

(

at −
1

2
κca

2 + 2ψta− ||anc||2(∇oψ · nc)

)

nc
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The geodesic equation may be written as

at =
1

2
κca

2 − 2ψta+ ||anc||2o(∇oψ · nc)

Suppose ρ is a function of ℓ alone: ρ = ρ(ℓ). Let ρ′ denote dρ/dℓ. Let fg =
1
ℓ

∫

S1 fg|cθ|dθ. Then,

ψt =
ρ′

2ρ
ℓt = − ρ′ℓ

2ρ
aκc

∇oψ · nc =
ρ′

2ρ
(∇oℓ · nc) = − ρ′

2ρ
κc

Therefore the geodesic equation in the metric Gρ(ℓ) is

at =
κc

2
(a2 − ρ′ℓ

ρ
a2) + a

ρ′ℓ

ρ
aκc

Specifically,

(4.1) at =







κc

2

(

a2 − a2
)

+ a · aκc if ρ(ℓ) = ℓ

κc

2

(

a2 − (Aℓ)a2
)

+ (Aℓ)a · aκc if ρ(ℓ) = eAℓ

As an example, consider the case of concentric circles, c(t, θ) = r(t)eiθ , ro =
r(0), r1 = r(1) We have κc = 1/r and a = −rt. Substituting these in Eq. (1) when
ρ(ℓ) = ℓ, we get −rtt = r2t /r or

(

r2
)

tt
= 0. Therefore, r2 (t) = tr21 + (1 − t)r2o .

This example is a special case of the curve evolution by ”grassfire” in which a is
independent of θ. We have a2 = a2 and the equation of the geodesic reduces to
at = a · aκc = −aℓt/ℓ and hence (aℓ)t = 0. Therefore, aℓ = a constant. By
substituting in the equation for the length of the geodesic, we find that aℓ = the
length of the geodesic. When ρ(ℓ) = eAℓ, the equation of the geodesic in the case
of concentric circles is

(

r2
)

tt
= r2t (1 − 2πrA) which is zero when the perimeter of

the circle equals 1/A, marking the unique inflection point of the function r2(t).

5. Sectional Curvature

We will use the local chart on Bi(S
1,R2) constructed in [2]. Let cε Imm(S1,R2)

be a smooth free immersion, c : S1 → R2. Let C = π(c)εBi(S
1,R2). Let c be

parametrized by the arclength so that θ parametrizes the scaled circle S1
ℓ where ℓ

is the length of c. A local chart centered at C is as follows:

Ξ : C∞(S1
ℓ , (−ǫ, ǫ)) → Imm(S1,R2)

Ξ(f)(θ) = c(θ) + f(θ)nc(θ)

π ◦ Ξ : C∞(S1
ℓ , (−ǫ, ǫ)) → Bi,f (S1,R2)

For h ∈ C∞(S1
ℓ ,R), h · nc ∈ TΞ(f) Imm(S1,R2). If u is a function on S1

ℓ , let u′

denote its derivative du/dθ; . We have the following formulae from [2]:

Ξ(f)′ = (1 − fκc)c
′ + f ′nc

|Ξ(f)′| = 1 − fκc +
1

2
f ′2 +O(f3)

ℓf =

∫

S1
ℓ

√

(1 − fκc)2 + f ′2dθ =

∫

S1
ℓ

(1 − fκc +
1

2
f ′2)dθ +O(f3)
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κf = κc + (f ′′ + fκ2
c) + (f2κ3

c +
1

2
f ′2κc + ff ′κ′c + 2ff ′′κc) +O(f3)

Ro
C(m,h,m, h) =

1

2
||(m′h−mh′||2

The conformal change in the Riemann (4,0) curvature tensor is given by the
formula [1]

Rρ = ρ(Ro −Go
? Ω)(5.1)

Ω = (∇odψ − dψ ◦ dψ +
1

2
||dψ||2Go))

where ? denotes the Kulkarni-Nomizu product of symmetric 2-tensors:

u? v(x, y, z, t) = u(x, z)v(y, t) + u(y, t)v(x, z) − u(x, t)v(y, z) − u(y, z)v(x, t)

∇odψ is the Hessian of ψ with respect to Go and ◦ denotes the symmetric product
of symmetric tensors:

dψ ◦ dψ(x, y) = dψ(x)dψ(y)

Let m,h ∈ C∞(S1
ℓ ,R) be constant tangent vectors in the local chart which are

orthonormal with respect to Gρ. Let < u, v > denote Go(u, v). Note that ||m||2 =
||h||2 = 1/ρ and < m,h >= 0. From (5.1), we obtain a formula for the sectional
curvature:

Kρ
Bi,C

(m,h) =
ρ

2
||(m′h−mh′||2 − Ωc(m,m) − Ωc(h, h)

An explicit expression for the Hessian is

(∇odψ)c(m,m) = Dc,m(Dc,mψ) −DΓo(m,m)ψ

where the Christoffel symbol Γo(m,m) = − 1
2κcm

2 as shown in [2]. (Note that the
sign convention in this paper is opposite to that used in [2].) Therefore,

Ωc(m,m) = Dc,m(Dc,mψ)+ <
1

2
κcm

2,∇oψ > − < m,∇oψ >2 +
1

2ρ
||∇oψ||2)

Since

∇oψ =
1

2ρ
∇oρ

and

Dc,m(Dc,mψ) =
1

2ρ
Dc,m(Dc,mρ) −

1

2ρ2
< m,∇oψ >2

we have

Ωc(m,m) =
1

2ρ
Dc,m(Dc,mρ) +

1

4ρ
< κcm

2,∇oρ > − 3

4ρ2
< m,∇oρ >2

+
1

8ρ3
||∇oρ||2)(5.2)
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5.1. Case when ρ is a function of ℓ alone: ρ = ρ(ℓ). We compute the various
quantities involved in the expression for the sectional curvature using the local
chart.

Dc,mℓ = − < m,κc >

∇oρ = −ρ′κc

Dc,m(Dc,mρ) = ρ′Dc,m(Dc,m ℓ) + ρ′′(Dc,m ℓ)2

= ρ′||m′||2 + ρ′′ < m,κc >
2

< κcm
2,∇oρ >= −ρ′ ‖mκc‖2

< m,∇oρ >2= ρ′2 < m,κc >
2

||∇oρ||2 = ρ′2||κc||2

Ωc(m,m) =
ρ′

2ρ
||m′||2 − ρ′

4ρ
‖mκc‖2 − 3ρ′2 − 2ρρ′′

4ρ2
< m,κc >

2 +
ρ′2

8ρ3
|κc||2

Substituting the explicit expressions in the formula for the sectional curvature,
we get

K
ρ(l)
Bi,C

(m,h) =
ρ

2
‖m′h−mh′‖2 − ρ′

2ρ

(

‖m′‖2
+ ‖h′‖2

)

(5.3)

+
ρ′

4ρ

(

‖mκc‖2
+ ||hκc||2

)

+
3ρ′2 − 2ρρ′′

4ρ2

(

< m,κc >
2 + < h, κc >

2
)

− ρ′2

4ρ3
‖κc‖2

Each of the last three terms on the right-hand side is absolutely bounded with
respect to m and h since:

‖mκc‖2
+ ‖hκc‖2 ≤ 2 ‖κc‖2

∞

ρ
, < m, κc >

2 + < h, κc >
2≤ 2 ‖κc‖2

ρ

where ‖κc‖∞ = maxθ |κc(θ)|. Therefore, the boundedness of the sectional curvature
from above depends on the first two terms. For a fixed m, the magnitude of each of
the two terms depends on ||h′ || which can be made arbitrarily large while keeping
||h|| fixed by making h highly oscillatory.

Proposition 5.1. Letm be a tangent vector at CǫBi. Then the sectional curvature

K
ρ(l)
Bi,C

(m,h) is uniformly bounded from above with respect to h if and only if

m2(θ) ≤ ρ′ℓ

ρ
m2.

Proof. We may assume that m,h are orthonormal with resepct to the metric Gρ so

that
ρ′ℓ

ρ
m2 =

ρ′

ρ2
. We need to estimate only the first two terms on the right-hand

side of Eq. (5.3).
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Suppose ||m||2∞ ≤ ρ′

ρ2
. Then,

ρ

2
‖m′h−mh′‖2 − ρ′

2ρ

(

‖m′‖2
+ ‖h′‖2

)

= ρ

∫

S1
ℓ

[

ρ

2
(m′h)2 − ρ′

2ρ
m′2 − ρmm′hh′ +

ρ

2

(

m2 − ρ′

ρ2

)

h′2
]

dθ

≤ ρ

2
‖m′‖2

∞ − ρ2

4

∫

S1
ℓ

(m2)′(h2)′dθ

≤ ρ

2
‖m′‖2

∞ +
ρ2

4

∫

S1
ℓ

(m2)′′(h2)dθ

≤ ρ

2
‖m′‖2

∞ +
ρ

4

∥

∥(m2)′′
∥

∥

∞
<∞

Conversely, suppose ||m||2∞ >
ρ′

ρ2
. Choose ǫ such that U = {θ : m2(θ) >ρ′/ρ2+ǫ}

is not empty. Let h be a high frequency wave function with sup(h) ⊂ U . Then,

ρ

2
‖m′h−mh′‖2 − ρ′

2ρ

(

‖m′‖2
+ ‖h′‖2

)

= ρ

∫

S1
ℓ

[

ρ

2
(m′h)2 − ρ′

2ρ
m′2 − ρmm′hh′ +

ρ

2

(

m2 − ρ′

ρ2

)

h′2
]

dθ

≥ − ρ′

2ρ
||m′||2 +

ρ2

4

∫

S1
ℓ

(m2)′′(h2)dθ +
ρǫ

2
‖h′‖2

≥ − ρ′

2ρ
||m′||2 − ρ2

4

∥

∥(m2)′′
∥

∥

∞
+
ρǫ

2
‖h′‖2

which tends to ∞ as the frequency of the wave function h tends to ∞. �

If U = {θ : m2(θ) > ρ′/ρ2 + ǫ} is not empty,

1 = ρ

[

∫

U

m2dθ +

∫

[0,ℓ]/U

m2dθ

]

≥ ρ

∫

U

m2dθ ≥
(

ρ′

ρ
+ ǫρ

)

|U |

and hence, |U | <ρ/ρ′. If ρ = ℓ, |U | < ℓ and if ρ = eAℓ, |U | < 1/A. Thus, the
case when ||m||2∞ >ρ′/ρ2 may be seen as a generalization of the rectangular bump
considered in §3.

If ρ = ℓ, the sectional curvature is bounded if and only if m2(θ) ≤ m2 which is
true if and only if m = 1/ℓ. Setting m = 1/ℓ, we get

K
ρ(l)
Bi,C

(m,h) =
‖hκc‖2

4ℓ
+

3

4ℓ2

(

<
1

ℓ
, κc >

2 + < h, κc >
2

)

which is always positive. If h and κc additionally have disjoint supports, the sec-
tional curvature equals 3π2N2/ℓ4 where N is the rotation index of C.

If ρ = eAℓ, the sectional curvature is bounded if and only if m2(θ) ≤ (Aℓ)m2. In
particular, the sectional curvature is unbounded for every m if ℓ < 1/A.
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For an example of a negative sectional curvature, consider the unit square with
slightly rounded corners. Choose m,h such that sup(m) and sup(h) are disjoint
and concentrated along the straight portions of the square. Then,

K
ρ(l)
Bi,C

(m,h) = − ρ′

2ρ

(

‖m′‖2
+ ‖h′‖2

)

− ρ′2

4ρ3
‖κc‖2

5.2. Case when ρ =
∫

S1 ϕ(κ2)|cθ|dθ. We again assume that the tangent vectors

m,h ∈ C∞(S1
ℓ ,R) are constant in the local chart and are orthonormal with respect

to Gρ.

Dc,m|cθ| = −κcm

Dc,m(Dc,m|cθ|) = m′2

Dc,mκ = m′′ + κ2
cm

Dc,m(Dc,mκ) = 2κ3
cm

2 + κcm
′2 + 2κ′cmm

′ + 4κcmm
′′

Dc,mρ =

∫

S1

[2κcϕ
′(m′′ + κ2

cm) − ϕκcm]|cθ|dθ

=

∫

S1

[(2κcϕ
′)′′ + 2κ3

cϕ
′ − κcϕ]m|cθ|dθ

Therefore,
∇oρ = (2κcϕ

′)′′ + 2κ3
cϕ

′ − κcϕ

Dc,m(Dc,mρ) =

∫

S1

[2κcϕ
′(4κcmm

′′ + 2κ′cmm
′ + κcm

′2 + 2κ3
cm

2)

+2(2κ2
cϕ

′′ + ϕ′)(m′′ + κ2
cm)2

−4κ2
cϕ

′m(m′′ + κ2
cm) + ϕm′2]|cθ|dθ

=

∫

S1

[2(2κ2
cϕ

′′ + ϕ′)m′′2 + 8κ2
c(κ

2
cϕ

′′ + ϕ′)mm′′

+(2κ2
cϕ

′ + ϕ)m′2 + 4κcκ
′
cϕ

′mm′

+2κ4
c(2κ

2
cϕ

′′ + ϕ′)m2]|cθ|dθ
Applying integration by parts to the second term, we get

Dc,m(Dc,mρ) =

∫

S1

[2(2κ2
cϕ

′′ + ϕ′)m′′2 − (8κ4
cϕ

′′ + 6κ2
cϕ

′ − ϕ)m′2

−4κc(2κ
3
cϕ

′′′ + 2κc(4κcκ
′
c + 1)ϕ′′ + 3κ′cϕ

′)mm′

+2κ4
c(2κ

2
cϕ

′′ + ϕ′)m2]|cθ|dθ
Since there exists a constant γ such that for all fεC2(S1), if 0 < ǫ ≤ 1,

||u′||2 ≤ γ(ǫ||u′′||2 +
1

ǫ
||u||2

boundedness of Kρ
Bi,C

(m,h) from above at C for a given m is clearly controlled by
the term

−1

ρ

∫

S1

(2κ2
cϕ

′′ + ϕ′)h′′2|cθ|dθ

which is negative if 2xϕ′′(x) + ϕ′(x) > 0. If x > 0,

1

2
√
x

(2xϕ′′(x) + ϕ′(x)) =
√
xϕ′′(x) +

ϕ′(x)

2
√
x

= (
√
xϕ′(x))′
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Therefore, for a fixed m, Kρ
Bi,C

(m,h) is bounded from above at C if ϕ′(0) > 0 and√
xϕ′(x) is a strictly increasing function. A case of particular interest in Computer

Vision is ϕ(x) = (1 +Ax)α with α,A > 0. We then have

2xϕ′′(x) + ϕ′(x) = [Aα(1 +Ax)α−2][Ax(2α− 1) + 1]

which is positive if α ≥ 1/2.
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