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Abstract?!

A system of coupled differential equationsis formulated
which learns priors for modelling “ preattentive” textures.
It is derived from an energy functional consisting of a lin-
ear combination of a large number of terms corresponding
to the features that the system is capable of learning. The
system learns the parameter s associated with each feature
by applying gradient ascent to the log-likelihood function.
Updates of each parameter are thus governed by the resid-
ual with respect to the corresponding feature. A feature
residual is computed from its observed value and the value
generated by the system. The latter is calculated from a
synthesized sample image which is generated by means of
a reaction-diffusion equation obtained by applying gradi-
ent descent to the energy functional.

1. Introduction

A very effective approach for modelling many prob-
lems in Computer Vision is provided by variational calcu-
lus. In this approach, an energy functiona is formulated
containing a linear combination of terms or potentials,
each of which is a nonlinear transformation of the out-
put of a linear filter such as the gradient or the laplacian
of the smoothed image intensity. Diffusion equations are
derived by gradient descent to find solutions minimizing
the energy functional. Estimation of the coefficientsin the
linear combination, that is the parameters of the system, is
computationally expensive and so most of the time, these
parameters are chosen empirically. A more fundamental
problem is that the potentials are usually chosen in an ad
hoc manner. The objective of this paper is to formulate
a system of differential equations to address both of these
problems.

The formulation derived in this paper is illustrated
by application to texture modelling by reaction-diffusion
equations. This type of equation was first studied by Tur-
ing and applied recently by Sherstinsky and Picard [14] to
image processing. However, it is not clear how to design
these equations in general. Recently, Zhu and Mumford
[16] have introduced a new reaction-diffusion equation for
synthesizing textures. It is derived as the gradient flow of
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an energy functional in which all the nonlinear transfor-
mations are obtained from a single transformation involv-
ing just three parameters, its center, scale and its rate of
growth. Remarkably, the basic form of this potential is
qualitatively the same as some of the ad-hoc potentials
already in use such as the Blake-Zisserman [2] and the
Perona-Malik potentials [10] and the potentials used in
stochastic modelling of textures [8]. It is also similar to
the “edge-strength” function encountered in the segmenta-
tion problem [12] and the sigmoid function used in neural
nets (see 83). A fundamenta requirement is that the po-
tential must exhibit saturation for large values of the filter
output, a phenomenon also observed in animal vision. The
guestion is how to estimate the center, the scale and the
rate of growth of each potential. The approach of Zhu
and Mumford is to use the method of entropy minimax
and employs the Gibbs sampler of Geman and Geman [7]
in the process to synthesize images. In the present paper,
a reaction-diffusion equation is formulated to replace the
Gibbs sampler such that parameters in the equation may
be estimated by the maximum likelihood principle.

A brief description of the entropy minimax method of
Zhu, Wu and Mumford [17] is given in 82. The entropy
minimax principle is a powerful principle first formulated
by Christensen [4,5] in the context of pattern recognition
and dtatistical inference. The problem is to model the
probability distribution on the feature space or the space of
images. Since entropy isinversely related to the amount of
information in the model, its maximization ensures that the
model contains no more information than what is present
in the observed sample. Minimization of entropy is used
to find the model that captures the maximum amount of
information from the sample.

To apply the entropy minimax principle, both Chris-
tensen and Zhu et a partition the feature space and approx-
imate the probability distribution by a piecewise constant
function. The problem is thus reduced to a problem in
parametric statistics, albeit with a greatly increased num-
ber of parameters. The principle of maximum entropy is
used to estimate the probability distribution correspond-
ing to a given partition. Christensen uses the principle of
minimum entropy to find the optimum partitioning of each
feature space which consumes most of the computational
effort. Zhu, Wu and Mumford use the principle of mini-
mum entropy to implement feature pursuit so that features
are introduced in the order of their importance and usu-
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ally the first few features suffice to represent the sample
adequately. The minimum entropy principle works here
even with fairly crude estimates of entropy because it is
used for feature pursuit rather than feature selection. If
the features are chosen in a wrong order because the en-
tropy estimate is not accurate enough, the only penalty
is an increase in the computational burden, possibly by
an enormous amount. Consequently, the main computa
tion in their formulation is in estimating the parameters
by the principle of maximum entropy which amounts to
maximizing the log-likehood function by gradient ascent.
The computationally intensive part is concerned with the
synthesis of a sample image from the current estimates
of the parameters during each update. However, since
the potentials are approximated by non-smooth functions,
gradient descent cannot be used to synthesize images and
the Gibbs sampler must be used.

The solution proposed in this paper (84) to the prob-
lem of parameter estimation is to represent the unknown
potential of each feature as alinear combination of alarge
number of fixed potentials obtained by shifting and scaling
a smooth “mother” potential. The method is anal ogous to
the one proposed by Christensen [6] in which the unknown
probability distribution is appoximated by a linear combi-
nation of Gaussian potentials. Again, the total number of
parameters to be estimated is greatly increased. But since
the potentials are now analytic functions, it is possible to
use gradient descent instead of the Gibbs sampler for syn-
thesizing the sample image from a given set of values of
the parameters. The result is a system of coupled differ-
ential equations, one for updating each of the parameters
and one for updating the synthesized image.

2. Entropy Minimax

What follows is a brief summary of the entropy mini-
max formulation of Zhu, Wu and Mumford. In their set-
ting, the maximum entropy principle is equivalent to the
maximum likelihood principle applied to the Gibbs form
of probability distribution and since feature pursuit based
on feature residuals works well, it is not necessary to in-
voke the principle of minimum entropy either. Hence,
the description given below is in the framework of the
maximum likelihood principle and does not use entropy
minimax explicitly.

Start with the Gibbs form of probability distribution:

p(I) = %e—U(T)
6h) (D) = /Z‘W) (Im))

where I is an image, I(*) is a linear transform of I,
¢(*)(€) is a nonlinear function, D is the image domain

and Z is the partition function. Of course, U(f) is
the corresponding energy functional. The problem is to
estimate the potential functions ¢(®). (For the sake of
notational clarity, the weight associated with each feature
1) is absorbed in ¢(*)(¢).) Consider one of the ¢(*)’s
and to simplify the notation, denote it by ¢, omitting the
superscript. Divide the domain of ¢ into M bins. Let y;
denote the characteristic function of the #» bin:

@ (6 = {1 if & € ith bin

0 otherwise

Let & denote the coordinate of the center of the i** bin.
Let | D| denote the area of the image domain. Then,

#() ~ Z A& i (€)

) M
/ SENix = NS,

where A; = | D|¢(¢;) and f; is the normalized frequency:

1
fi= 1 [ viteax
1Dl Jp
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The probability distribution function now depends only
on the parameters {AE”)} which may be estimated by
the maximum likelihood principle. By applying gradient
ascent to the log-likelihood function, we get

dA” N §
®) T = B [K7D] = )

where A denotes the set of current values of the parameters
AL, Ep(1,n) [£4*)(I)] denotes the expected value of f\*)
and the last term is the observed value of fi(“). In this
paper, we assume that the observed image is sufficiently
large so as to provide a good estimate for the observed
frequencies.

It is not feasible to compute the expected values in
Equation (5). Instead, Geman and Geman suggest the
following estimator based on their ergodicity theorem
[7]: Synthesize a sample image I;,, o from the distri-
bution p(Z,A) and use f'*)(I,,, ) as an estimate for
Ep(IyA)[ff“)(I)]. The main computation is now that of
Ieyn,a and the transforms 1,5;:1 A- Computation of the
Gibbs sampler is made managable by keeping the number
of alowed pixel values and hence the number of local
characteristics that must be computed low. In order to re-
duce the number of features used and thereby the number
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of image transforms to be calculated, feature pursuit is
used. Features are introduced in the order of their impor-
tance. Since the purpose of gradient ascent (5) is to drive
down the residuals on the right hand side of the equation
to zero, a heuristic strategy is to select at each step the
feature with the largest residual vector. Let S denote the
set of features already selected. Let Ag denote the set
of values obtained by setting /\5“) equal to its maximum
likelihood estimate if the feature o belongs to S and zero
otherwise. Initialy, S is empty and I,,, ¢ consists of
uniform noise. Define

M
©®  dB) =3 | A Lynas) = £ (L)

i=1

Choose ¢ such that d(3) is maximum over the comple-
ment of the set 5. The use of the L!—norm in Equation (6)
instead of the L?—norm or higher norms is recommended
by Zhu et a as it gave the best results in their analysis
of natural scenes.

3. The Basic Potential

Zhu and Mumford derive their reaction-diffusion equa-
tion using potentials of the form:

(1€ = cal/by)™
L (1§ = cal/ba)™

They arrive at this form by fitting curves to the piecewise
constant potentials they found empirically by analyzing a
large number of natural scenes. The potential is symmetric
about ¢, and asymptotically reaches the value a, mono-
tonically. Introduction of the shift parameter ¢, is new
and necessary because there is no reason why a particu-
lar feature should behave symmetrically with respect to
the origin. To understand the behavior of such potentials,
consider the segmentation functional:

(8)
1
Ews(tB) = [ IVIF 45181+ = [1= L
D—-B D

© (&) ~ aq

where B is the segmenting curve, |B| is its length and
1 < p < oo. To see the relation of this functiona to the
Zhu—Mumford potential, first look at the GNC algorithm
of Blake and Zisserman. They replace the last two terms
in the functional (8) by a function of ||[VI|| which has
essentially the same shape as given by equation (7) with
p = 2, (see [11]). The diffusion equation of Perona and
Malik may also be derived from a similar potential [11].
The trouble of course isthat the new functionals have zero
infimum and the corresponding gradient descent equations
are unstable. Recently, Braides and Dal Maso have reg-
ularized the Blake and Zisserman functional by replacing

[|[V1]]inthe functional by ||V I,..|| where I,,. istheim-
age intensity averaged over a neighborhood and show that
the regularized functional, suitably normalized, converges
to the segmentation functional (8) as the averaging radius
tends to zero [3]. Another approximation of functional (8)
is due to Ambrosio and Tortorelli [1]:

Ear(l,v) = / (1= )V
9 D
9 (Il + ) 4 1= ]
7 p v p p obs

The minimizing edge-strength function v is a smoothing of

20|V 1/A|I"
L+ 2p|IVI/5

which is identical in form to the potentia (7) with zero
shift.

The role of the exponent p,, is also interesting. The
gradient flow for minimizing the p—norm of the gradient
is governed by I, + (p — 1)1, where I, is the second
derivative along the level curves of I and I,,,, isaong the
gradient direction. In the limiting case when p = 1, we
get smoothing by curvature-dependent evolution of the
level curves of 7 and the gradient flow of functional (9)
develops shocks [12]. As p — oo, the flow in the limit
is purely in the direction of the gradient and has been
analyzed by Jensen [9]. Potential (7) assumes sigmoidal
shape used in neura nets as p, — oo and becomes a
purely thresholding function in the limit. The scaling
parameter b, may now be thought of as a threshold for
the feature in the sense of neural nets. Each feature space
is partitioned into three segments.

Potentials of the same kind in the form of edge-strength
functions are also employed in the newly developed faster
methods for segmenting images, notably, the method of
curve evolution, which is intimately related to the seg-
mentation functionals (8) and (9), (see [12]), and a more
recent graph-theoretic method proposed by Shi and Malik
[15]. The two methods are in fact closely related; the lat-
ter may be interpreted as an approximation of the former
[13]. In both approaches, the increased speed of compu-
tation is achieved basically by delinking determination of
the edge-strength function from boundary detection. The
edge-strength function is calculated in advance of bound-
ary detection by means of ad-hoc potentials similar to the
basic potential (7). The object boundaries are now deter-
mined one closed curve at a time.

A very important consequence of saturation of poten-
tials is that the functional

(11) () = / o) (1)

(10)
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has not only an infimum, but also a supremum. Hence, the
weights a,, may be alowed to be negative, a possibility
discussed by Geman in [8] and very effectively exploited
by Zhu and Mumford in [16] to construct Gibbs reaction-
diffusion equations for synthesizing textures and removing
clutter. As a simple illustration, consider the case of a
single potential. Denote the corresponding filter by F
so that the integrand in Equation (11) is ¢(F = I). The
gradient flow is given by the equation

ol
ot

where F_(x) = —F(—x). When a > 0, I accentuates
the feature values near the center ¢ and the flow is a
diffusion flow. The kind of diffusion we get depends
on the value of p. If « < 0, instead of diffusion we get
sharpening of features, a reactive behavior; in the steady
state, feature values near saturation rendering the steady
state insensitive to the value of p. Consider for example
the case where I’ smooths the image by convolving it with
a Gaussian with standard deviation equal to 3/+/2 and
then computes the laplacian of the smoothed image. The
initial image consists of uniform noise. Figure 1 shows
two examples. Figure 1a shows the result witha = 1,6 =
10,¢e = —6 and p = 2. Smearing due to diffusion is
clearly seen. In contrast, the result depicted in Figure
1b corresponds to the case with a = —1,6 = 10,¢ = 6
and p = 2. The absolute values of the laplacian are driven
towards satuaration, with positive values dominating since
the center is positive, producing a pattern of black blobs.
Since the saturation acts like thresholding, the image is
nearly piecewise constant and the boundaries of the blobs
are sharp.

(12) =F_x¢(F«1)

4. Learning by Diffusion

The challenge is now to find a way to estimate directly
the parameters in the reaction—diffusion equation. As
already discussed in the introduction, a way to achieve
this is to represent each unknown potential as a linear
combination of fixed smooth potentials. We create such
a set of potentials by shifting and scaling the “mother”
potential

13 We) = ol
Let R = max{gmam - €mean 3 €mean - €m7n} Define
(14) Yo (€) = (m% _ k)

where m, k are integers, m > 0 and |k| < m. For a
fixed m, range of ¢ is covered by 2m + 1 potentials and

the potentials get narrower and narrower as m increases.
The situation is analogous to multiscale representation of
a function by wavelets except that our basis potentials are
not orthogonal.

The unknown potential (&) may be approximated as

(15) oE) ~ |D| Zem £k (€)

It is expected that with a sufficiently large set of fixed po-
tentials, a single value of p will suffice for approximating
the unknown potentials. Hence, p was set equal to 2 in
al the experiments.

The probability distribution is now given by

18  p1.0)= Lexp(-U(1,0))
where
() gl (e
U(I,0) /%:;;'D'e (1 )
(17) =D >l (D

a mk

()= & ) (fa)
where “m,k(l) = D] /1/;ka (I >
D

Quantities v(”)k may be thought of as a set of nonlinear

features derived from the original linear filters. Equations
for gradient ascent to estimate 9(“),c may be derived as
before, but the synthesized image is computed by applying
gradient descent to the energy functional U (7, ©). We get
a system of coupled differential equations:

dé(”)

U£n %(Isyn) - vf,fi (IobS)

zmz Pk (7 o 1)

where F(®) x [ is the linear transform ().

These equations are degenerate in the direction of the
current vector © in the sense that the infimum of U (1, ©)
with respect to 7 isindependent of the size of © and hence
© must be normalized. This may be done by restricting
© to Euclidean length of one. The first equation in (18)
may then be replaced by

(@)

de.. & N 1
19 = [“gn?c (Lsyn) — gn)k(l”hs)]

where theright hand side isthe component of the residuals
orthogonal to ©.

Again, feature pursuit may be used as described in 82.

(18)
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5. Experiments

; "" % i an B : l":
The following choices were made for the three exper- R A Tl iy '._": O
iments described below. ';_:‘:""' T T T it .'.',_' . ®y
The filter bank {F(*)} isasubset of the filter bank used o i geel alae®,
o ) o w ¥ * ot a - g
b%IOZhu, Wu and Mumford, consisting of 73 linear filters: A e o o e ™ - : .-.-ql
A i B a
| L)G(T) = [ (B) + (&) -] (e R R H LD
a4 |\T T . W e -l.-“':l_.l--“
where T' = +/2/2,1,2,3,4,5,6 and Gabor filters
v2/ FIGURE 1la FIGURE 1b
Geos(1,v) = Le_ﬂ%@xl +v") cos 2me
(21) 712
. I 1 (4074?27
Gsin (T,v) = e T ( Y >s1n
where ¢/ = wcosv + ysinv, ¥y = —xsinv + ycosv and

T = 2,4,6,8,10,12, v = 0°,307,60°,90°,120°, 150°.
The filters G'sin(2, .) were omitted because G'sin(2,0) is
identically zero at the lattice points.

The set of potentials <), ;, consisted of 35 potentials
with m = 1,2,4,8,16 and |k| < m/2. The full range
of centers k& was not used since the centers of the un-
known potentials should be near the mean values of the
corresponding features.

The observed images were normalized so that the pixel
values ranged from O to 255. The uniform noise was

sampled from this range of values. The input images and T el BN W Lo 1 W
the synthesized images are 128 x 128 pixels in size except .‘ IﬂLJ "L:-'_l"':.- ‘.p.".'..'l' . :f': .
the last input image is 79 x 142 pixelsin size. The range i i ‘:-tI.' e w ::-Ilif
of values of each feature was computed by combining the fatiy e 08! --Ih-' L "{: )
range obtained from the observed image with the range L | L BT Sl L i L PN
. . .. . . Frw e a M )
obtained from the image consisting of uniform noise. L ™ 'y - L PR I‘ - g
The stability properties of the system (18) are unknown. !.‘ o« ®ia 8 _"I .1 ‘: a8 amy
The size of the time step At was empirically chosen as 2 Talm @ -‘"l ot .“'i" “‘.."Il‘

follows. After the first feature was chosen, © was set
equal to the residuals with respect to that feature, with the
length adjusted to one. The time step was then chosen so FIGURE 2c FIGURE 2d
that the first update vector 6© had length equal to 0.1 and
this value of the time step was maintained during al the
subsequent updates. After each new feature was chosen,
© was updated 10 times. Each time © was updated, I,
was computed using the second update equation in (18).
The time step Af for updating I,, was set such that
during the first update of the uniform noise, the maximum
change in the pixel values was equal to 2. The image was
updated 60 times before introducing the next feature. Note
that it is not crucia to drive down the residuals to zero
before a new feature is introduced. It is sufficient to make
the residuals small enough compared to the residuals of the
new feature. In order to avoid boundary effects, toroidal
topology was assumed.

FIGURE 3a FIGURE 3b
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FIGURE 4a

In the first experiment, the system was given the syn-
thetic image shown in Figure 1b as the input image. The
system selected six filters in the following order: LG(4),
LG(0), Gecos(4,90), LG(6), Geos(4,0), Geos(8,90). Figure
2a shows the uniform noise with which the system be-
gins. The synthesized images after 1, 4 and 6 filters were
selected are shown in Figures 2b, 2c and 2d respectively.
Interestingly, athough the input image was synthesized
with a single filter LG/(3) using reaction-diffusion equa
tion (12), the system (18) chose L(/(4) instead as its first
filter. Values of d(3) of the two filters are very close with
the latter having a dlightly higher value.

The second test image shown in Figure 3a de-
picts animal fur. Figure 3b shows the result after
the system had selected 8 filters in the following or-
der:  Gcos(2,60), Gcos(2,0), Gcos(6,150), LG(v/2/2),
Gsin(12,0), Gcos(12,120), Gcos(2,90) and Gsin(6,60).
(Figures fail to reproduce finer details due to size reduc-
tion and 300 dpi printer.)

The last experiment is shown in Figure 4. Fig-
ure 4a is the input image showing cheetah skin. Fig-
ure 4b shows the image synthesized by the system &f-
ter it chose 9 filters in the following order: LG(1),
Gcos(12,150), Geos(12,120), Gsin(12,60), Gcos(10,90),
Gcos(12,0), Gsin(12,30), G(6,120), LG(4). Figure 4c
shows the result after the system chose 4 additiona fil-
ters, Gsin(6,30), Gsin(6,0), Gsin(6,60) and Gsin(6,150).
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