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Abstract1

In recent years, curve evolution has developed into
an important tool in Computer Vision and has been ap-
plied to a wide variety of problems such as smoothing of
shapes, shape analysis and shape recovery. The different
versions of curve evolution used in Computer Vision to-
gether with the preprocessing step of constructing an edge-
strength function can be integrated in the form of a new
segmentation functional. The new functional permits junc-
tions such as triple points to develop. The numerical so-
lutions obtained retain sharp discontinuities or “shocks”,
thus providing sharp demarcation of object boundaries. In
this paper, the new segmentation functional is extended for
application to vector-valued features such as color.

1. Introduction

In recent years, curve evolution has been applied
to a wide variety of problems such as smoothing of
shapes [5,12], shape analysis [5,6] and shape recovery
[3,4,8,9,14,15,19]. The underlying principle is the evolu-
tion of a simple closed curve whose points move in the
direction of the normal with a prescribed velocity. Kimia,
Tannenbaum and Zucker [5] proposed evolution of the
curve by letting its points move with velocity consisting of
two components: a component proportional to curvature
and a constant component corresponding to morphology.
The formulation involves one parameter which together
with time provides a two-dimensional scale space, called
“entropy” scale space of the shape. Keeping track of how
singularities develop and disappear as the curve evolves
provides information regarding the geometry of the shape
in terms of its parts and its skeleton [6,7,17]. The above
technique assumes that the object boundary (in the form
of a simple closed curve) has already been extracted. As a
result, attempts have been made in the last couple of years
to extend the technique to recover shapes from noisy im-
ages in two distinctly different ways. In both cases, a con-
tinuous edge strength function �, varying between 0 and
1, is defined over the entire image domain. It equals or
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approaches the value one at the object boundaries and ap-
proaches the value zero where the image gradient is small.
One of the methods is a simple extension of the formula-
tion of Kimia et al [3,9,19] in which the velocity of the
curve is multiplied by a “stopping term”, ��� ��, so that
the evolution is slowed down near the object boundaries
(in fact stopped where � � �). In an alternate approach
[4,8,14,15], the idea is to let the curve evolve towards
a geodesic in the metric defined by �� � ��� where � is
a constant, usually equal to 1 or 2. The corresponding
point velocity of the curve along its normal consists of
the curvature term as before and an advection term given
by the derivative of � in the direction of the normal. There
is no constant component corresponding to morphology.
There is no stopping term either. The easiest way to im-
plement curve evolution is by embedding the intial curve
as a level curve in a surface and let all the level curves of
the surface evolve simultaneously. The advantage is that
changes in the topology of the curve are handled automat-
ically, simplifying the data structure. Numerical scheme
of Osher and Sethian [11] may then be used to implement
the evolution.

It turns out that the different forms of curve evolution
described above including the choice of initial curve, the
choice of the edge-strength function and the embedding
of the curve in a surface, can be incorporated into a single
segmentation functional as described in [16]. An added
bonus is that there is no restriction on the evolving curve
so that multiple intersecting curves are permitted. Another
bonus is that the set of level curves of the associated
edge-strength function constitutes a scale space for shapes
analogous to the entropy scale space proposed in [7]. In
particular, various kinds of shocks and resulting shape
skeleton may computed quite easily from � [18]. The
objective of this paper is to generalize this functional to the
case of vector-valued images, in particular color images.

2. The New Segmentation
Functional (scalar case)

The new segmentation functional from [16] is as
follows:
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where � is a connected, bounded, open subset of R2, �
is the feature intensity, � is a curve segmenting �, �
is the smoothed image �R2�� and �� is the jump in �

across �, that is, �� � ��� � ��� where the superscripts
+ and – refer to the values on two sides of �. �� � are
the weights. Note that each boundary point is assigned
weight according to its level of contrast instead of being
assigned a fixed weight. The associated approximation
which is the actual functional used for implementation by
gradient descent is:
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The gradient descent equations for ����� �� are:
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������� is the curvature of the level curves of �. The
edge-strength function � may be thought of as (non-
linearly) smoothed and normalized gradient of �.

Although functionals (1) and (2) superficially look
very similar to the Mumford-Shah functional [10] and
its approximation by Ambrosio and Tortorelli [2], they
behave in a fundamentally different way:

Curve Evolution: The level curves of � move with
point velocity of
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in the direction of the gradient of �. The first term is
advection, pulling the level curve towards higher values of

�. The second term smooths the level curve as described
in [1]. The last term moves the level curve with a point
velocity of ������ � ��. The sign is automatically
chosen such that this component of velocity pushes the
level curve towards the corresponding level curve of �.
If � is approximately constant along each level curve,
then the last term may be seen to correspond to the
constant velocity component used by Kimia et al. Thus
the equation may be seen as combining all three types of
velocity components described in the introduction. The
ratio ��� may be interpreted as the smoothing radius for
the level curves: If � is set identically equal to zero, the
equation smooths level curves such that their radius of
curvature is not less than ��� anywhere.

Shocks: The most important property of ����� ��
is that � develops shocks and thus object boundaries
are recovered as actual discontinuities. The reason is
that the evolution equation for � is parabolic only along
the level curves of �; it is hyperbolic in the direction
normal to the level curves. Note however that the edge-
strength function, �, is still a continuous function and
hence, the actual boundaries are to be recovered from the
discontinuities of �.

Deblurring: To illustrate the deblurring capability of
the new functional, consider the case of a 1–dimensional
image domain �. Note that, in contrast to other formu-
lations involving curve evolution, the new functional can
be applied even to the one dimensional case. When �
is one dimensional, the ������� term drops out and the
evolution equation for � becomes purely hyperbolic, gov-
erned by advection due to � and the “constant” velocity
component. Assume that � is zero in the first third of
�, increases linearly to 1 in the second and stays equal
to 1 in the third. When the diffusion system (3) is ap-
plied to this example, � develops a unique maximum at
the center of �, inducing motion of points on the graph of
� towards the center of �, eventually producing a shock
there. The steady state solution is a piecewise constant
function with a unique discontinuity at the center of �.
Since the penalty is higher for two breaks than a single
large break combining the two, we do not get multiple
breaks along the ramp.

3. The New Segmentation
Functional (vector case)

Assume now that the image � is a set of � functions:
� � ���� ���� ���. Since the focus of this paper is on im-
plementation, only the generalization of �� is considered
below. If the components of � are unrelated functions,
then the simplest way to link their evolution is through a
common edge-strength function. That is, consider
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with associated gradient descent equations:
(7)
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The level curves of each component �� evolve just as
before, independently of the other components except for
the common constraint imposed by their common edge-
strength function.

A more interesting evolution is obtained if � is a
vector-valued function so that it is more appropriate to
use the total variation of vector-valued functions. That is,
consider the functional:

(8)
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where ���� �
�� ������. The factor

�
� is intro-

duced so that the functional reduces exactly to the scalar
case when �� � �� � ��� � ��. Alternatively, the term
���� � ����

�
� may be replaced by

�
���� � ����. (Of

course, instead of the Euclidean norm, any other norm in-
duced by a positive definite quadratic form may be used.)

The gradient descent equations are:
(9)
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Here, �� is the hessian of ��. More explicitly,

(10)
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4. Illustrative Example

Equations (9) were tested on the ��	 	 ��	
(pseudo)color medical image2 (cryosections) shown in
the figure below. The top row shows the red, green and
blue components of the image, with pixel values ranging
from 0 to 120. (Each component is displayed after scal-
ing it to a common pixel range of 0 to 255.) Following
[13], the RGB components where transformed into CIE
1976 ������ space which behaves more like a vector
space. The values of � and ��� were set equal to 
 and
	 pixels respectively. The necessary value of � depends
on the level of contrast across the boundary of interest.
If the value is too low, the value of � would be much
less than one and features of interest might be smoothed
away. If the value is too high, diffusion is stopped too
early and the result is a noisy boundary. For the purpose
of this example, two separate values of � were chosen,
one for detecting the high contrast boundary surround-
ing the two cross-sections (the middle row in the figure)
and a higher value to detect the weaker boundaries of
some of the internal structures (the bottom row). Due
to the presence of shocks, the first and third term of the
evolution equation have to be calculated carefully. The
formulae of Osher and Sethian were used for each of
these terms. As mentioned before, the boundaries must
be recovered as discontinuities in �. To show how well
the common discontinuities develop for the three com-
ponents, the boundaries were recovered as level curves
of the ��– component and are shown superposed on the
three original RGB components.
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