Swastik Kar

Nanophysics

Swastik Kar

Assistant Professor
PhD Indian Institute of Science, Bangalore, India, 2004
(617)373-3375
s.kar@neu.edu

Research Summary:

Prof. Kar’s interests lie in fundamental and applied research of graphene and related materials. Graphene is an exotic, single-atom-thick, perfectly two-dimensional, pure sp2-bonded allotrope of carbon with exceptionally high carrier mobility, mechanical strength, and thermal conductivity. Due to its unique gapless band-structure and low-energy linear dispersion E(k) = υFħ|k|, charge carriers in graphene are massless relativistic Dirac Fermions that demonstrate spectacular quantum properties such an anomalous quantum Hall effect, the Klein paradox, and a breakdown of the adiabatic Born-Oppenheimer approximation. Graphene also shows extraordinary optical and molecular interaction phenomena, resulting in a rich spectrum of novel 2D physics. At the same time, with its conductance being susceptible to modulation under a gate voltage, by photons, or by doping, and with a number of large-scale fabrication techniques becoming available, graphene is the world’s thinnest (single-atom-thick) transistor, photodetector, and molecular sensor.

The research group of Prof. Kar will look at exciting new directions related to the electronic and optical properties of graphene-based nanostructures. Topics of interest include:

  • Electronic Transport
  • Nanoelectric devices
  • Engineered optics
  • Electrochemical energy storage
  • molecular sensing
  • Photovoltaics

In addition to graphene, Professor Kar is also interested in other nanomaterials such as metal nanoparticles, nanowires, nanotubes, fullerenes etc., and issues related to metal-insulator transitions, nanoscale magnetism and superconductivity. In particular, an ongoing project is related to the development of next generation nanoscale interconnects for gigascale integration using parallel architectures of single- and multi-wall carbon nanotubes (NSF funded).

Prof. Kar has a strong commitment to collaborative and multidisciplinary research in nanoscience and nanotechnology, and is always open to new and interesting frontiers of research in a multitude of disciplines.

Recent Publications:

1. Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications. Xiaohong An, Trevor Simmons, Rakesh Shah, Christopher Wolfe, Kim M. Lewis, Morris Washington, Saroj K. Nayak, Saikat Talapatra, and Swastik Kar* [Nano Letters, (cover article, November 2010), ASAP: http://pubs.acs.org/doi/abs/10.1021/nl903557p].

2. Highly Aligned Scalable Platinum-decorated Single-wall Carbon Nanotube Arrays for Nanoscale Electrical Interconnects Young Lae Kim. Bo Li, Xiaohong An, Myung Gwan Hahm, Li Chen, Morris Washington, P.M. Ajayan, Saroj K. Nayak, Ahmed Busnaina, Swastik Kar*, and Yung Joon Jung* [ACS Nano, 3 2818 (2009)].

3. Lüttinger Liquid to Al’tshuler-Aronov Transition in Disordered, Many-Channel Carbon Nanotubes S. Kar*, C. Soldano*, L. Chen, S. Talapatra, R. Vajtai, S.K. Nayak and P.M. Ajayan [ACS Nano, 3 207 (2009)].

4. Detection of Nanoscale Ferromagnetic Activity using a Single Carbon Nanotube. C. Soldano*, S. Kar*, S. Talapatra, S.K. Nayak and P.M. Ajayan [Nano Letters, 8, 4498 (2008)].

5. Aligned Carbon Nanotube-Polymer Hybrid Architectures for Diverse Flexible Electronic Applications. Y.J. Jung*, S. Kar*, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F.S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, P.M. Ajayan [Nano Letters**, 6 413 (2006)].

Related Links:

Laboratory for Graphene Research