Meni Wanunu

Experimental Biological Physics

Meni Wanunu

Assistant Professor
PhD Weizmann Institute of Science, 2005

Research Summary:

Our research involves studying biosystems at the nanoscale (macromolecular and sub-molecular levels). Subtle changes in the chemical structure of biomolecules can enormously impact their function: In the morning sickness drug thalidomide, the enantiomeric form (mirror image of the same exact molecule) causes severe birth defects; a single base substitution in a gene, aka a mutation, is sufficient to cause disease by producing a malfunctioning protein; subtle changes in molecular structure to DNA, such as the addition of a methyl group, are now known to regulate gene expression. Many of the mechanisms by which miniscule chemical changes affect biomolecular function are unknown to date.

To address these questions, our group is developing novel techniques that probe how small molecular changes affect the global properties of macromolecules and biomolecules. Using various tools enabled by nanotechnology, we investigate biomolecular structure and dynamics at their corresponding size scale. Techniques used in the lab include micro- and nano-fabrication, organic and inorganic thin film deposition, interfacial chemistry and bioconjugate chemistry, scanning probe microscopy, vibrational spectroscopy, electronic/optical measurements, and many more. See our lab tools section to get an idea of the lab.


Recent Publications:

1. “Discrimination of methylcytosine from hydroxymethylcytosine in individual DNA Molecules. Wanunu M*, Cohen-Karni D*, Johnson RR*, Fields L, Benner J, Peterman N, Zheng Y, Klein ML, and Drndic M, Journal of the American Chemical Society, 133, 486–492 (2011).

2. “Rapid Electronic Detection of Probe-Specific MicroRNAs Using Thin Nanopore Sensors”, Wanunu M*, Dadosh T*, Ray V, Jin J, McReynolds L, Drndic M; Nature Nanotechnology, 5, 807–814 (2010) (COVER FEATURE).

3. “Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient,” Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A, Nature Nanotechnology 5, 160-165 (2010).

4. “DNA Translocation Governed by Interactions with Solid State Nanopores,” Wanunu M., Sutin J., McNally B., Chow A., Meller A.,Biophysical Journal, 95, 4716-4725 (2008).

5. “Orientation Dependent Interactions of DNA with an alpha-Hemolysin Channel,” Wanunu M., Chakrabarti B., Mathe J., Nelson D. R., Meller A., Physical Review E, 77, 031904 (2008).

Related links: