Making Road Infrastructure Safe for Pedestrians: A Framework Based on Systematic Safety Principles

Peter G Furth
TRB Annual Meeting
January 8, 2017
If we’d improved our road safety as Netherlands did, we’d be saving 20,000 lives per year.
Traffic Safety Programs

- Netherlands: Sustainable Safety (1997)

Based on a systematic approach to road safety

- US Cities: Vision Zero
Some Distinguishing Values of Europe’s Vision Zero

Value # 1: **Safe Mobility is a Civil Right**

Meanwhile, the nearest crossing is 0.3 miles away!
Value # 2: The road system owner is responsible for ensuring road safety

If our road system were treated like any other industry, it would be shut down immediately for gross safety violations

2011: Mother found guilty of *vehicular homicide* for crossing this street with her son.

1788 Austell Road, Marietta, Georgia (Google Maps)
Update December 22, 2016: Highest Court in NY State finds NY City liable for failing to curb speeding!

Gerritson Ave, Brooklyn, NY, with a road diet applied after a 12-yr old boy was seriously injured by a speeding car. City was held partly liable ($5M).
Value # 3: Traffic safety programs must be proactive, eliminating safety risks before they cause serious injury or death.

Reacting to historic crashes: necessary, but not sufficient

Data collection and analysis: valuable, but no excuse to delay action

A Tremont Street intersection treated after a pedestrian was injured. What about the other intersections just like it?
Value #4: For Vulnerable Road Users, Traffic Casualties Aren’t the Only Measure of Unsafety

Perceived safety matters, too

- Do people feel it’s safe for children to walk to school?
- Will parents let their kids play on the sidewalk?
- Do people feel it’s safe to ride a bike?
Why Do Traffic Injuries Happen?

1. Humans are vulnerable

- Puts a clear 20 mph (30 km/h) target on streets where people “cross anywhere”
- 30 km/h (20 mph) zones
2. Humans make mistakes

<table>
<thead>
<tr>
<th>Why we err</th>
<th>Responding Design Principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliberate (speeding, parking in a crosswalk)</td>
<td>Physical restrictions</td>
</tr>
<tr>
<td>Due to complexity and limited perception</td>
<td>Simplify perception / simplify decisions</td>
</tr>
<tr>
<td>Whatever the reason ...</td>
<td>Forgivingness</td>
</tr>
</tbody>
</table>

- Implications for unsignalized crossings of busy roads ...
Crossing Islands!

Policy in Netherlands, Germany, ... on unsignalized crossings

– Pedestrians should never have to cross more than 2 through lanes at a time

– (Desirable:) only 1 marked lane at a time (Delft)
Other Implications for Unsignalized Crossings

2. 25 mph (40 km/h) target maximum on driving speed
 Driver compliance is reasonable only at speeds of 25 mph or less (Dulaski & Bertulis, TRR, 2014)

3. Avoid multilane roads (road diets) wherever possible
 - Controlling speed
 - Multiple threat
A design paradigm for minor arterials

1+1 lanes

Crossing islands with a chicane effect

While speed limit on this street in Delft is 50 km/h, average speed is 37 and 85-percentile speed is 43 km/h
Application in Delft

• 85-percentile speed reduced from 35 mph to 26 mph
 – Legal speed limit unchanged at 31 mph (50 km/h)
• 2 traffic signals eliminated because crossings were made so safe
 – Less delay for peds and for cars
How it might be applied on Boston’s Dudley Street

- Slow
- Simple
- Forgiving → Systematically safe