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Hasson CJ, Goodman SE. Learning to shape virtual patient
locomotor patterns: internal representations adapt to exploit interac-
tive dynamics. J Neurophysiol 121: 321–335, 2019. First published
November 7, 2018; doi:10.1152/jn.00408.2018.—This work aimed to
understand the sensorimotor processes used by humans when learning
how to manipulate a virtual model of locomotor dynamics. Prior
research shows that when interacting with novel dynamics humans
develop internal models that map neural commands to limb motion
and vice versa. Whether this can be extrapolated to locomotor reha-
bilitation, a continuous and rhythmic activity that involves dynami-
cally complex interactions, is unknown. In this case, humans could
default to model-free strategies. These competing hypotheses were
tested with a novel interactive locomotor simulator that reproduced
the dynamics of hemiparetic gait. A group of 16 healthy subjects
practiced using a small robotic manipulandum to alter the gait of a
virtual patient (VP) that had an asymmetric locomotor pattern mod-
eled after stroke survivors. The point of interaction was the ankle of
the VP’s affected leg, and the goal was to make the VP’s gait
symmetric. Internal model formation was probed with unexpected
force channels and null force fields. Generalization was assessed by
changing the target locomotor pattern and comparing outcomes with
a second group of 10 naive subjects who did not practice the initial
symmetric target pattern. Results supported the internal model hy-
pothesis with aftereffects and generalization of manipulation skill.
Internal models demonstrated refinements that capitalized on the
natural pendular dynamics of human locomotion. This work shows
that despite the complex interactive dynamics involved in shaping
locomotor patterns, humans nevertheless develop and use internal
models that are refined with experience.

NEW & NOTEWORTHY This study aimed to understand how
humans manipulate the physics of locomotion, a common task for
physical therapists during locomotor rehabilitation. To achieve this
aim, a novel locomotor simulator was developed that allowed partic-
ipants to feel like they were manipulating the leg of a miniature virtual
stroke survivor walking on a treadmill. As participants practiced
improving the simulated patient’s gait, they developed generalizable
internal models that capitalized on the natural pendular dynamics of
locomotion.

biomechanics; internal model; locomotion; motor learning; rehabili-
tation; stroke

INTRODUCTION

Locomotor impairments are a significant contributor to dis-
ability, comorbidities, diminished self-care, and loss of self-
reliance, and their prevalence is increasing in the global aging
population (Satariano et al. 2012). Rehabilitation is typically
prescribed to restore a more functional gait pattern and is
traditionally performed by human therapists or, more recently,
with robotic exoskeletons. Although rehabilitation outcomes
are multifactorial and often positive, a significant percentage of
patients retain locomotor impairments after locomotor training
(e.g., see reviews by Belda-Lois et al. 2011; Díaz et al. 2011;
Louie et al. 2015; Nam et al. 2017; Pennycott et al. 2012;
Schaechter 2004).

To improve the effectiveness of locomotor rehabilitation,
studies have focused on understanding patient learning pro-
cesses. Various approaches have been tested that address
elements such as the presentation of error feedback, repetition
of movement, training specificity, and focus of attention (Pat-
ton et al. 2006; Richards et al. 1993; Yogev�Seligmann et al.
2008). However, the complementary question remains largely
unanswered: how do therapists learn to manipulate patient
locomotor patterns? This question can be reframed in terms of
motor adaptation: how does a human learn to interact with and
manipulate the moving leg of a patient, while at the same time
compensating for the high dynamical complexity afforded by
linked-segmental dynamics under external and possibly path-
ological neuromuscular control?

To answer this question, one can look toward current theo-
ries of motor adaptation based on evidence that humans de-
velop and use internal models of externally imposed dynamics.
Internal models are neural representations of dynamics that
allow humans to map neural commands to limb motion, and
vice versa, providing the ability to predict and generalize future
limb states (Kawato 1999). Evidence for internal model use by
humans has been provided by the use of externally applied
force fields of varying complexity. This includes the classic
velocity-dependent curl field (Kurtzer et al. 2008; Lackner and
Dizio 1994; Scheidt et al. 2001; Shadmehr and Mussa-Ivaldi
1994; Thoroughman and Shadmehr 2000) and others that
include combined gravitoinertial and Coriolis fields (Lackner
and Dizio 1998), negative viscosity (Huang et al. 2010),
inverted pendulums (Mah and Mussa-Ivaldi 2003), mass-
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spring dynamics (Dingwell et al. 2002), and hammerlike ob-
jects (Ingram et al. 2010).

Although the body of research on internal models is robust,
it remains unclear whether the internal model hypothesis holds
ad infinitum, i.e., when controlling increasingly complex dy-
namical systems, such as the leg of a locomoting patient,
humans could resort to model-free strategies (Haith and
Krakauer 2013; Huang et al. 2011) such as a stiffness strategy
with high antagonistic coactivation (Howard et al. 2011) or a
rote memorization strategy (Conditt et al. 1997; Conditt and
Mussa-Ivaldi 1999). Examples of model-free learning have
been shown in several task domains. For instance, despite years
of driving experience, humans perform incorrect steering op-
erations when asked to perform a simple lane shift without
visual feedback, which suggests a reliance on model-free
feedback control (Wallis et al. 2002).

Improving our understanding of human adaptation to com-
plex dynamics could lead to future improvements in human-
and robot-delivered locomotor rehabilitation. For example,
there is no specific set of standardized instructions detailing
how a therapist is to help patients achieve locomotor goals with
manual assistance, and quantitative measurements of human
therapists show large differences in manipulative actions be-
tween therapists for the same patient (Galvez et al. 2005,
2007). A deeper understanding of therapist adaptation may also
advance robotic gait training algorithms by incorporating ben-
eficial aspects of human-delivered approaches (biomimicry),
such as adaptive impedance control (Hussain et al. 2013) and
assistance-as-needed (Cai et al. 2006).

Whether and how humans develop internal models of loco-
motor dynamics is unknown, in part because of the challenge
of conducting controlled studies with real therapists and pa-
tients, as both adapt simultaneously. This study overcomes this
challenge by asking subjects to interact with a locomoting
virtual patient (VP) with the use of a robotic manipulandum.
The VP’s locomotor dynamics are mathematically specified
with a simple impedance model that aims to capture the basic
features of human locomotion. Internal model formation is
probed with a classical force-field approach with a locomotor
twist: the field consists of pathological gait dynamics using
chronic stroke as a model. Interaction with the VP causes
subjects to experience forces that pull their hands into a typical
stroke gait pattern as if they were holding onto the leg of a real
(miniaturized) patient. Subjects must learn how to apply forces
to the VP’s leg to make its gait pattern symmetric. The overall
hypothesis is that subjects learn internal models of external
locomotor dynamics, which would be supported by the pres-
ence of aftereffects (i.e., persistence of feedforward motor
plans despite altered dynamics) in response to randomly inter-
spersed catch trials (H1) and generalization of manipulation
skill to a different locomotor training task (H2). The alternative
hypothesis is that subjects use a purely model-free manipula-
tion strategy (e.g., high arm stiffness or rote memorization).

METHODS

Locomotor Simulator

Stroke locomotor kinematics model. The VP was modeled after the
locomotor patterns of stroke survivors, characterized by less weight
bearing and shorter steps in the affected leg (Roth et al. 1997). The
model was based on existing published data presented in Olney and

Richards (1996). The aim was to create a model that had enough detail
to approximate pathological locomotor dynamics yet remained math-
ematically tractable to implement in a real-time physically interactive
simulation. Joint angles were obtained through manual digitization of
hip and knee joint angle data (�h and �k, respectively) in the sagittal
plane throughout the gait cycle for the medium self-selected walking
speed (0.41 m/s) hemiparetic patient group in Olney and Richards
(1996) (their Fig. 2b). The digitized data were fit with piecewise cubic
splines using a linear least-squares solver with the constraint that the
y-value and slope had to be equal in the beginning (0%) and end
(100%) of the gait cycle. Although the Olney and Richards data were
normalized to the stride cycle, the stride time was needed to determine
where in the gait cycle the VP is during simulation. With the reported
average walking velocity of 0.41 m/s the stride frequency was esti-
mated to be 0.64 strides/s, giving a stride time of 1.56 s based on
Wagenaar and Beek (1992). In the experiment, subjects could see the
motion of both the unaffected and affected legs of the VP but could
only physically interact with the affected limb (see Experimental
Approach).

Kinematic targets for adaptation experiment. For some experimen-
tal conditions subjects were asked to make the VP’s gait symmetric,
i.e., make the affected leg follow the same kinematic pattern as the
unaffected leg. This “healthy” target trajectory was created by digi-
tizing the contralateral leg kinematics for the stroke survivor data
presented in Olney and Richards and shifting the phase by 180° (Fig.
1A). Here, we use the term “healthy” in a relative sense, i.e., in stroke
survivors the unaffected leg typically exhibits a kinematic pattern
closer to healthy adults compared with the affected leg. The healthy
target trajectory was shown to subjects, and the task was to follow this
target trajectory with appropriate timing (see Experimental Approach
for more details). To test generalization, subjects were asked to make
the VP’s ankle follow a different trajectory, which was created by
measuring the gait kinematics of a healthy male adult executing a
rendition of the “not particularly silly” walk performed by Michael
Palin in “The Ministry of Silly Walks” sketch from the Monty
Python’s Flying Circus sketch comedy show (episode 14). This walk
has an exaggerated step height with a hesitation at the end (Fig. 1B).
For this, a 12-camera passive reflective marker motion tracking
system was used, sampling at 120 Hz (OptiTrack Flex 13; Natural-
Point, Corvallis, OR), with markers placed on the hip, knee, and right
lateral malleolus. After data collection, a single representative gait
cycle was selected, and the data were resampled to match the stroke
stride time (1.56 s; Fig. 1C).

Robotic interface. A small robotic manipulandum (Geomagic
Touch; 3D Systems, Andover, MA) was used to haptically render the
VP’s locomotor dynamics. The manipulandum allows six-degree of
freedom movement and renders three-dimensional forces at the end-
effector (position resolution: 0.055 mm; backdrive friction: 0.26 N;
max force output: 3.3 N; stiffness: 1.26, 2.31, and 1.02 N/mm for X,
Y, and Z directions) within a small workspace (160 mm W � 120 mm
H � 70 mm D). The device used an open-loop impedance control
scheme (Hatzfeld and Kern 2016), i.e., it measured its position and
output a programmed force upon the user. The manipulandum end-
effector defined a single point at which the user interacted with the
VP. This point was the ankle joint (lateral malleolus) of the VP’s
affected leg, which is close to the points of lower-extremity force
application commonly used in body weight-supported gait rehabilita-
tion (Kosak and Reding 2000). The rendered motion of the VP was
scaled down by ~96.5% (1.0 m in real-patient dimensions � 0.035 m
in manipulandum workspace) so that it required only small wrist/
forearm motions. The VP model was two dimensional, and manipu-
landum end-effector motion was restricted to the frontal plane of the
subject.

Rigid body dynamics model. The VP’s affected leg was modeled
with the equations of motion for a two-dimensional double pendulum
(thigh and shank) derived by the Lagrangian method (Bruderlin and
Calvert 1989; Sasagawa et al. 2014; van der Kooij et al. 1999). For
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simplicity, the hip joint was considered to be fixed (upper body
dynamics were excluded) and the foot segment was omitted. Rigid
body dynamics were defined by inertial, centrifugal, and gravitational
torques,

I����̈ � T � V��, �̇� � G��� (1)

where I(�) is the geometry-dependent inertia tensor, V��,�̇� are the
torques due to centrifugal and Coriolis forces, and G(�) are the
gravitational torques. In Eq. 1, T � [Th,Tk]T (vector of joint torques)

and the quantities � � [�h,�k]T, �̇ � ��̇h,�̇k�T, and �̈ � ��̈h,�̈k�T are
vectors of joint angles, velocities, and accelerations, respectively. The
subscripts h and k represent the hip and knee, respectively (superscript
T denotes transposition). The I, V, and G matrices are detailed in the
APPENDIX. Values for segment lengths, masses, and inertias are given
in the APPENDIX and were calculated with the regression equations in
Winter (1990), based on the average stroke survivor height and
weights reported in Olney and Richards (1996).

The goal was to create a simple model that made subjects feel like
they were holding onto the VP’s affected leg during treadmill loco-

motion with the manipulandum. It should be stressed that the model
was not intended to be veridical but was designed to capture the basic
features of the interaction. In the model, if a subject precisely
followed along with the nominal (stroke based) movements of the
VP’s leg, then the subject felt no interaction forces. However, if a
subject tried to alter the VP’s motion, he/she began to feel the
locomotor dynamics, which required the subject to generate appro-
priate forces to maintain the VP’s altered state (Fig. 2). The more
severely the subject deviated the kinematics, the greater the effect. To
achieve this behavior a mass-spring-damper impedance model was
created, such that the subject felt a resistance (or assistance) that
depended on gravitational, velocity, and inertia-dependent joint
torques and how far the VP deviated from the reference stroke model
kinematics, given by

T � I����̈err � V��, �̇��̇err � G����err (2)

In Eq. 2 the quantities �̈err, �̇err, and �err refer to the vectors
representing the difference between the hip and knee angular kine-
matics of the stroke reference model and the actual state of the VP as
controlled by the subject with the manipulandum. For implementa-
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Fig. 1. Kinematics used to create the virtual patient (VP) model. A: stick figure representations of the VP kinematics. The nominal impaired locomotor pattern
(red) shows how the VP’s affected leg tried to move on its own, absent input from the subjects. The task for subjects was to make the VP move in the healthy
target pattern (blue). The stroke and healthy target patterns were derived from real stroke patient data (Olney and Richards 1996) based on motions of the affected
and unaffected legs, respectively. The generalization locomotor pattern (purple) was based on new experimental data collected for the study. B: 2-dimensional
VP ankle trajectory for each condition. C: hip and knee VP angular kinematics for each condition as a function of time.
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tion, the joint torques were transformed to end-point forces at the
point of interaction (the ankle) with the inverse transpose of the
Jacobian J�T (see APPENDIX for J�T), such that

FD � J�TT (3)

where FD � [FD,x,FD,y]
T are the anterior-poster and vertical compo-

nents of the to-be-rendered VP end-point force, respectively. The
subscript D denotes that these are forces due to rigid body dynamics
(as opposed to muscular; see Neuromuscular contributions).

Neuromuscular contributions. If a subject tries to make the VP
deviate from the nominal stroke trajectory, he/she should also feel

forces reflecting the torques produced by the VP’s muscles. Although
muscular torques are relatively small during leg swing, they are
nonnegligible during push-off. Neuromuscular effects were repre-
sented by a muscular spring stiffness KSPR, geometric stiffness KGEO,
and damping B. Contributions from KSPR depended on the muscular
spring stiffness coefficients � � [�h,�k]T, where �h is the hip spring
stiffness and �k is the knee spring stiffness (see APPENDIX for KSPR

details). Values for � were obtained by computing the derivative of
the internal hip and knee joint moments (Fig. 3A) with respect to the
joint angles, based on the stroke patient data from Olney and Richards
(1996). Discontinuous portions were removed and linearly interpo-
lated (Fig. 3B). Because of the irregular nature of �k and the fact that
�k was close to zero during most of the swing (ignoring the discon-
tinuity), only the hip muscular stiffness was included in KSPR. Al-
though physiologically there is also a coupling stiffness from multi-
articular muscles, this was excluded because of the lack of accurate
experimental data. While KSPR reflected the springlike action of
muscles, KGEO modeled how the limb end-point stiffness is affected
by skeletal geometry in the presence of a contact force (English 1999).
In general, KGEO is largest when the leg is relatively straight and
increases in proportion to the contact force; the latter is reflected by
the muscle-generated hip and knee joint torques: Mh and Mk, respec-
tively (these were obtained from the Olney and Richards data). An
end-point contact force orientated toward the hip is less stable, i.e.,
acts like a hardening spring, compared with one that is oriented away
from the hip, i.e., acts like a softening spring (equations describing
KGEO can be found in APPENDIX). Finally, muscular damping B was
added to account for the viscosity-like effects of skeletal muscle
mechanical properties. The damping was inversely proportional to the
ankle velocity and KSPR (see APPENDIX). These stiffness and damping
effects can be expressed in equation form as an additional set of
end-point forces:

FM � �KSPR � KGEO�perr � Bṗerr (4)

In Eq. 4, the quantity FM � [FM,x,FM,y]
T is a vector of the VP

end-point force components due to muscular actions and perr and ṗerr
are the difference vectors for the ankle position and velocity (stroke
reference model minus actual VP state).

Treadmill model. A simple treadmill model was incorporated into
the simulation. A treadmill normal force FN was created with a virtual
sphere (radius � 7 mm in manipulandum workspace) that followed
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the VP ankle position and another of identical size that slid along a
semicircular arc defining a modified virtual treadmill surface. The arc
had a radius equal to 99.85% of the total VP leg length. The two
spheres had a stiffness kN � 2.0 N/mm, and if the spheres collided,
i.e., if the VP’s ankle tried to penetrate the treadmill arc, the resistive
force increased (see APPENDIX for equation details). A second treadmill
force FS prevented slipping due to frictional forces and was modeled
as a simple horizontal spring with stiffness kS � 0.7 N/mm. The latter
caused the manipulandum to pull the subject’s hand posteriorly (with
respect to the VP), just as it would for a real patient on a treadmill. The
net treadmill model force FT was given by

FT � FN � FS (5)

FT � �kNp̂err� � �kSperr� (6)

where p̂err is the position of the VP’s ankle projected onto the surface
of the virtual sphere defining the treadmill surface.

Net end-point force computation and scaling. The force rendered
by the manipulandum FNET was the sum of the impedance forces
computed for the rigid body dynamics, neuromuscular contributions,
and the treadmill model, given by

FNET � a�FD � FM � FT� (7)

where a is a scaling factor determined through experimentation (a �
1/12). This value was chosen so that the forces required to move the
VP into a “healthy” trajectory were small enough (1–2 N) to prevent
user fatigue and/or exceeding the manipulandum capabilities. Note
that these forces are at least an order of magnitude less than the
interaction forces previously reported by Galvez and colleagues
(Galvez et al. 2005) for a therapist manipulating the gait of a real
human patient with a spinal cord injury (American Spinal Injury
Association impairment grade D).

Online processing of VP kinematics. The impedance model re-
quires online computation of the joint angular velocities and acceler-
ations. Since the stroke reference kinematics are derived analytically,
they are noise free. However, the manipulandum kinematics are
encoder based and were therefore smoothed online to prevent noise
amplification during numerical differentiation. First, � was smoothed
with a moving-average filter (MAF) using the prior 350 samples,
which equates to a first-order low-pass filter with a ~2 Hz cutoff at the
simulation sampling rate of 1,500 Hz. Next, a first-order adaptive
windowing (FOAW) algorithm (Janabi-Sharifi et al. 2000) was used

to calculate angular velocity (�̇) with a 10-sample window (noise
threshold � 0.05 rad) followed by smoothing with a 16-sample MAF.

Acceleration (�̈) was similarly estimated with FOAW and then
smoothed with a 10-sample MAF. Although necessary, the online
smoothing had the disadvantage that it introduced a delay in the VP
position. Because of this, when the joint impedances were calculated
the VP state was differenced against a delayed version of the reference
state (delay � 160 ms).

Experimental Approach

Subjects. Seventeen young adults [n � 17; 13 women, 4 men; 16
right handed, 1 left handed, 27.1 yr (SD 4.4); 67.2 kg (SD 12.0) 1.7
m (SD 0.07)] participated in the study. All subjects were healthy and
free from neurological and musculoskeletal impairments that affect
the control of their upper extremity and gave their written informed
consent. The study was approved by the Northeastern University
Institutional Review Board.

Visual and auditory feedback and task instructions. A monitor
displayed a stick-figure representation of the VP’s lower body, and
subjects saw both the unaffected and affected legs (Fig. 4). Subjects
could not control the unaffected side, which always moved in a
healthy gait pattern based on the previously recorded patient locomo-
tor data. The manipulandum moved as if it was attached to the ankle

of the VP’s affected leg. The thigh and shank segment positions were
calculated online with the fixed hip position, ankle position, and
inverse kinematics. The target ankle trajectory, which was either
the healthy trajectory or a generalization target trajectory (see
below for more details), was shown as a white line. During task
practice, a white target sphere moved along the target ankle
trajectory, showing where the VP’s ankle should be throughout the
gait cycle. Subjects were instructed to practice making the VP’s
ankle follow this sphere. The white sphere turned yellow whenever
the instantaneous tracking error was �1.25 mm. To provide
additional kinematic error information, a thin magenta “tail” fol-
lowed the VP’s instantaneous ankle position, showing its displace-
ment over the previous 1 s. This was particularly helpful in allowing
subjects to gauge their performance during the relatively fast swing
phase of gait. For additional pacing information, a “ding” was played
each time the target sphere reached the end of the gait cycle at heel
strike. A chime sound was played for each step that had a root-mean-
squared error (between actual and target ankle positions) � 1 mm
(called “super steps”), which were tallied on the screen.

Experimental setup. Subjects sat in a chair behind a desk with the
manipulandum and visual display in front of them on the desk.
Subjects rested the middle of their dominant forearm on the edge of
the desk and grasped the manipulandum with a writing implement
grip.

Dynamics conditions. In an impaired-dynamics condition, subjects
felt forces that pulled their hand toward the nominal stroke patient-
based locomotor trajectory as if holding onto the ankle of a (minia-
ture) patient locomoting on a treadmill. In a null-dynamics condition,
the locomotor dynamics were turned off, so subjects felt no forces
when the VP’s leg was off the treadmill. The null condition controlled
for tracking-related practice effects, i.e., so that when subjects expe-

Step Number: 24 Super Steps: 4

Fig. 4. Example of visual display. The magenta dot represents the virtual
patient’s (VP’s) right ankle joint (affected leg; green). The right ankle repre-
sents the point of physical interaction for subjects. The red unaffected leg
serves as a visual reference. The yellow dot moves along the white target
healthy trajectory; subjects were asked to make the VP’s ankle follow this dot.
In the image, the target dot is yellow because the subject is very close to it;
otherwise it turns white. A magenta tail followed the ankle to give additional
performance feedback.
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rienced the impaired dynamics they were accustomed to the visual
feedback and proficient at maintaining the appropriate locomotor
timing. In both conditions the treadmill model remained in effect, i.e.,
the leg could not push through the treadmill and there was a horizontal
force that dragged the leg rearward.

Healthy target trajectory practice. Subjects practiced making the
VP’s affected leg follow the healthy target ankle trajectory (i.e., the
180° phase-shifted kinematics of the unaffected leg) for the majority
of the experimental session (Fig. 5). They first performed the healthy
target task for 100 steps in the null-dynamics condition (NDH1), and
this was repeated twice more (NDH2 and NDH3). In the next trial,
subjects practiced with null dynamics for 15 steps (NDH4), and on
step 16 the impaired locomotor dynamics were turned on and re-
mained on for another 100 steps (IDH1). In the next three trials
(IDH2–IDH4) subjects continued to practice making the VP move in
the healthy locomotor pattern while compensating for the impaired
locomotor dynamics (100 steps/trial).

Generalization test (silly walk). An internal model of locomotor
dynamics should allow participants to generate appropriate forces to
move the VP into a variety of kinematic states, including those that
differ from the ones practiced (Conditt et al. 1997). To test general-
ization, the kinematic goal of the task was changed while the under-
lying dynamics (the governing equations of motion) were kept the
same. This was achieved by changing the target kinematic trajectory
from the healthy target to the generalization target (silly walk). The
latter deviated from the characteristic pendular motion of leg swing
and required an exaggerated step height and a different kinematic
profile (see Fig. 1). The generalization target practice lasted for 100
steps under null dynamics (NDG1), followed by one block with 15
null field steps (NDG2) and then 100 impaired-dynamics steps (IDG1;
see Fig. 5).

Catch steps. Randomly applied force channels (Scheidt et al. 2000)
and null-dynamics (Shadmehr and Mussa-Ivaldi 1994) catch steps
were used to assess internal model adaptation during practice. For the
force-channel steps, a stiff spring applied forces to create a channel
that made the manipulandum (VP’s ankle) follow the target trajecto-
ries (healthy or generalization). The forces were orthogonal to the
target trajectories. During null-dynamics steps the impaired dynamics
were turned off, i.e., the treadmill remained, but during the swing
phase subjects moved freely in the air. The catch steps were initiated
while the VP’s foot was on the treadmill (affected leg), remained in
effect throughout the swing phase, and turned off after the VP’s foot
returned to the treadmill. Since kinematic errors were minimal during
treadmill contact, subjects could not feel the catch steps initiating.
Each impaired-dynamics trial had four force channels and four null-
dynamics steps randomly inserted, and each 100-step null-dynamics
trial had eight force channels randomly inserted (additional force-
channel steps were inserted in lieu of null-dynamics steps).

The experiment used both types of catch steps because they provide
a window into a subject’s forward motor plan yet differ in the
specifics of the assay. The null-dynamics steps are useful because they
allow substantial kinematic errors to develop, which reveals the
consequences of a suddenly incorrect internal model (if one exists),

which in turn engages a relatively rapid error correction system likely
driven by muscle spindle feedback (Scheidt et al. 2000). On the other
hand, force channels do not elicit a large error correction response,
with much slower adaptation possibly driven by Golgi tendon organs
and mechanoreceptors (Scheidt et al. 2000). This allows force chan-
nels to probe internal model output later in the swing phase of the
locomotor cycle, which is of interest in the present study.

Data Analysis

All analysis procedures were performed in MATLAB (version 9.4,
R2018a; MathWorks, Natick, MA). Primary dependent variables
included the VP tracking error, ankle kinematics, and the force
applied by the subjects on the VP. The tracking error was calculated
as the root-mean-squared Euclidean distance error between the ma-
nipulandum end-point position (VP’s ankle) and the locomotor target
tracker. The tracker was the white/yellow sphere that followed the
target trajectory showing where the VP’s ankle should be at each point
in the gait cycle. For each trial the continuous data record was
separated into individual strides with the maximum forward displace-
ment of the ankle joint as the separation point (end of the swing
phase). Each stride was normalized to a percentage of the stride cycle.
Variables were averaged over either the last 30 steps for the 100-step
conditions (NDH1–NDH3, IDH1–IDH4, NDG1, and IDG1) or over
the last 10 steps for the 15-step conditions (NDH4 and NDG2). To
capture early learning transients, the first five trials were analyzed
separately for the beginning of the null-dynamics practice trials
(NDH1 Early and NDG1 Early) and the beginning of the impaired-
dynamics practice trials (IDH1 Early and IDG1 Early). Force-channel
and null-dynamics responses were averaged within each trial for each
subject. As subjects were imperfect at following the healthy trajectory
even in the null-dynamics trials (see RESULTS), the average force-
channel forces during the last null-dynamics healthy target trial
(NDH3) were subtracted from those measured in each of the im-
paired-dynamics trials (IDH1–IDH4) for each subject. These are
subsequently referred to as normalized force-channel steps. One
subject was classified as an outlier based on very high performance
errors compared with the other subjects [�q3 � 2.7� � (q3 – q1),
where � is the standard deviation and q1 and q3 are the 25th and 75th
percentiles, respectively, based on MATLAB function boxplot.m];
thus the analysis was completed with 16 subjects.

Statistics

Separate repeated-measures analysis of variance (RM ANOVA)
procedures were performed to determine whether there were signifi-
cant practice effects during the initial null-dynamics healthy target
practice trials (NDH1–NDH4) and impaired-dynamics practice trials
(IDH1–IDH4) for tracking error, peak anterior-posterior and vertical
ankle displacements, and peak subject-applied forces. Paired t-tests
were used for other planned comparisons to determine whether the
initial exposure to the impaired dynamics caused a significant change
in the dependent variables in both the healthy target (NDH4 vs. IDH1
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Early) and generalization target (NDG2 vs. IDG1 Early) conditions.
Significance was at P � 0.05 for these statistical tests and all others.
Statistics were performed in MATLAB and SPSS (version. 25; IBM,
Armonk, NY).

Potential changes in the magnitude of the normalized channel
forces with practice were examined at five time points across the
swing phase of the gait cycle (60%, 70%, 80%, 85%, and 95%) with
RM ANOVAs (across trials IDH1–IDH4). The finer-grained spacing
between 80% and 95% was used because the ankle moves faster
during this time. Practice effects for the angle of the channel force
vectors were analyzed with circular statistics. The Cramer-Von
Mises goodness of fit hypothesis test (Zar 1999) indicated that the
angle data were not normally distributed; thus differences among
the practice trials (IDH1–IDH4) were tested nonparametrically
with the Moore test (Moore 1980) for paired circular data (Zar
1999). For the null-dynamics catch steps, a RM ANOVA tested for
differences in the peak anterior-posterior and vertical trajectory
errors with practice (across IDH1–IDH4).

Generalization vs. Naive Participants

To assess generalization, a second new group of 10 subjects, called
the naive group, was recruited [7 women, 3 men; all right handed,
26.5 yr (SD 5.4); 70.5 kg (SD 16.9); 1.7 m (SD 0.08)]. All subjects
provided written informed consent as described above. This group
began their practice session making the VP’s affected leg follow the
generalization (silly walk) trajectory for 100 steps in the null field
(NDG1). The naive group never practiced making the VP follow the
healthy target trajectory (Fig. 5). NDG1 practice was followed by one
block with 15 null field steps (NDG2) and 100 impaired-dynamics
steps with the generalization target (IDG1). Force channels and
null-dynamics steps were included as described for the first experi-
ment. To differentiate between the groups, the original group of
subjects who practiced the healthy walk task first are called the
experienced group.

The generalization analysis compared the experienced and naive
groups during the generalization trajectory practice to test whether the
experienced group had an advantage and tested for differences in
aftereffects. The dependent variables included those previously de-
scribed: tracking error, force-channel forces, and null-trial deviations.
Unpaired Welch’s t-tests (Welch 1947) were used for all between-
group tests because of different group sizes, except for the circular
data (force vector angles), which used Watson’s test (Watson 1962).
For the force channels, differences in subjects’ applied force were
assessed at five points in the gait cycle (55%, 57.5%, 60%, 65%, and
70%). This set of points differs from the healthy target points (60%,
70%, 80%, 85%, and 95%) because of timing differences, i.e., if the
same healthy target time points were used for the generalization target
they would be clustered at the very end of the swing. To control for
multiple comparisons, the Benjamini-Hochberg step-up procedure
(Benjamini and Hochberg 1995) was used to calculate adjusted P
values (P̃) with a tolerable false discovery rate of 0.1, based on the
recommendation of McDonald (2014) (p. 254–260). For the null
steps, the average absolute tracking error during the null steps was
computed for each subject and compared between the groups.

RESULTS

Task Performance

Performance was quantified as the average tracking error
throughout the gait cycle; the results are summarized in Fig. 6.
For the initial null-dynamics/healthy target practice (NDH1–
NDH4), subjects improved their tracking, as the RM ANOVA
revealed a main effect of time (F[4, 60] � 39.6, P � 0.001).
Error decreased significantly from the beginning to the end of

the first practice block and decreased again at the end of the
second block (from NDH1 Early to NDH2; P � 0.05 for each
pairwise comparison). By the end of the initial null-dynamics/
healthy target practice block, subjects were able to closely
track the healthy trajectory, with mean errors of ~1.25 mm.
When the stroke was first turned on (IDH1 Early) there was a
small but significant increase in error (NDH4 vs. IDH1 Early:
P � 0.038). Error quickly decreased by the end of the first
stroke-dynamics/healthy target practice block (RM ANOVA
for IDH trials: F[4, 60] � 7.7, P � 0.001; pairwise comparison
for IDH1 Early vs. IDH2: P � 0.05) but did not exhibit further
decreases after that. By the end of IDH4 (last 30 trials) the
percentage of super steps was 53.5% (SD 25.5). Silly walk
results are reported in Generalization vs. Naive Participants
below.

Kinematics and Kinetics

The path of the VP’s ankle during practice with the impaired
dynamics is shown in Fig. 7A. To quantify adaptation, the
maximum rearward and upward VP ankle displacements are
shown across practice in Fig. 7B. These data show that subjects
did not pull the leg far enough rearward (undershoot). This
undershoot decreased rapidly during the NDH trials (RM
ANOVA: F[4, 60] � 4.774, P � 0.002; pairwise comparisons
show that NDH1 Early had more rearward undershoot than
NDH1–NDH4: P � 0.05 for all). The undershoot became
greater when transitioning to the IDH trials (NDH4 vs. IDH1
Early; P � 0.001) but did not change with further practice
across IDH trials (RM ANOVA: F[4, 60] � 0.405, P � 0.804).
In early NDH practice, subjects moved the VP’s ankle too high
(overshoot), and this switched to an undershoot for the rest of
NDH practice (RM ANOVA: F[4, 60] � 2.953, P � 0.027).
When the stroke dynamics were turned on, vertical undershoot
decreased (NDH4 vs. IDH1 Early; P � 0.022) but did not
change with further practice across IDH (RM ANOVA: F[4,
60] � 1.766, P � 0.147).

Inspection of the average subject-applied force patterns
show that, as expected, subjects pulled rearward and upward to
match the locomotor targets during heel lift and initial leg
swing (Fig. 7A). The peak posterior and upward forces were
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analyzed to assess adaptation (Fig. 7B). There were no differ-
ences in the peak posterior force across the NDH trials (RM
ANOVA: F[4, 60] � 0.542, P � 0.705). When the stroke
dynamics were turned on, the maximum posterior force
increased (NDH4 vs. IDH1 Early; P � 0.014) and there was
a small decrease across the IDH trials (RM ANOVA: F[4,
60] � 3.201, P � 0.019; pairwise comparison for IDH1
Early had greater posterior force than NDH4: P � 0.043).
There were no practice-related changes in the peak vertical
force across NDH (RM ANOVA: F[4, 60] � 1.908, P �
0.121). The peak vertical force increased when the stroke
dynamics were turned on (NDH4 vs. IDH Early; P � 0.001)
but did not change with additional IDH practice (RM
ANOVA: F[4, 60] � 0.867, P � 0.489).

Catch Steps

The normalized force-channel forces, i.e., with null-dynam-
ics effects subtracted out, were nonzero (Fig. 8A), indicating
that subjects pushed against the channel walls. How subjects
pushed against the channel changed with practice. This effect
was quantified at five time points across the swing phase of
gait. During midswing there was a progressive decrease in the
magnitude of subject-applied forces, at both 80% (RM
ANOVA: F[3, 45] � 4.5, P � 0.009) and 85% (RM ANOVA:
F[3, 45] � 13.9, P � 0.001) of the gait cycle (Fig. 8B). There

were also changes in the angle of force application with
practice (Fig. 8B), with forces becoming more vertical at 80%
(IDH1 vs. IDH4: R= � 1.224, P � 0.025) and more anterior at
85% and 90% (at 85% IDH1 vs. IDH4: R= � 1.515, P � 0.001;
at 90% IDH2 vs. IDH4: R= � 1.043, P � 0.05).

When the impaired dynamics were turned off during the
random null-dynamics steps, subjects made kinematic errors
(Fig. 9A). During each IDH practice trial the peak null-step
vertical (Fig. 9B) and anterior-posterior (Fig. 9C) errors were
significantly larger than zero (P � 0.01). The RM ANOVA
revealed a main effect of time; the peak errors changed with
practice (anterior-posterior error: F[3, 45] � 5.578, P � 0.002;
vertical error: F[3, 45] � 4.046, P � 0.012). Pairwise compar-
isons showed a significant drop in the anterior-posterior and
vertical errors from IDH1 to IDH2 and rising again to IDH3
and IDH4 (P � 0.05 for all; note that for IDH2 vs. IDH3
vertical error the test is borderline, with P � 0.048).

Generalization vs. Naive Participants

In contrast to the experienced group, the naive group started
practice tracking the generalization trajectory (Fig. 5). After
practicing in the null-dynamics field, the naive group had a
tracking proficiency similar to the experienced group (Fig.
10A; NDG2 experienced vs. naive: P � 0.570). The initial
decrement in performance in response to the impaired dynam-
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ics being turned on was similar for both groups (no between-
group difference in change from NDG2 to IDG1 Early; P �
0.574). However, with continued practice the experienced
group decreased their tracking error more than the naive group
(change from IDG1 Early to IDG1; P � 0.030) and had a
smaller tracking error at the end of generalization trajectory
practice (between-group IDG1 comparison; P � 0.004). This
suggests generalization in the experienced group.

Analysis of the force-channel data in the silly walk condition
showed differences in the patterns of forces between the
experienced and naive groups (Fig. 10B). The normalized force
magnitude (with null-dynamics channel forces subtracted) was
greater in the experienced group early after the VP’s foot left
the ground at 55% of the gait cycle (P � 0.032; P̃ � 0.080) but
not at 57.5% (P � 0.077; P̃ � 0.128). Note that in this case the
adjusted P value (P̃) is derived from the Benjamini-Hochberg
step-up procedure and is compared against the specified toler-
able false discovery rate (i.e., if P̃ � 0.1, then the test is
significant). The experienced group channel forces were larger
and more vertical right before the foot was placed back on the
ground (at 70%: force magnitude P � 0.001 and P̃ � 0.005;
force direction P � 0.012; P̃ � 0.060). During the random
null-dynamics steps both experienced and naive groups made
errors, pulling the leg too high above the generalization target

trajectory (Fig. 10C). However, the experienced group made
larger errors during these steps compared with the naive group
(P � 0.002). Together, these results indicate larger aftereffects
in the experienced group.

DISCUSSION

Main Findings

This study sought an answer to the question of how humans
learn to modify the locomotor dynamics of a virtual patient
(VP). This question is nontrivial because of the complexity of
the dynamical interaction, i.e., it is continuous and involves
position-, velocity-, and acceleration-dependent forces. A
novel interactive locomotor simulator was developed that re-
produced the dynamics of hemiparetic gait. In the simulator,
subjects used a small manipulandum to physically interact with
the VP’s affected leg and attempted to make its locomotor
kinematics more symmetric. The hypothesis was that subjects
would accomplish this task by learning an internal model of the
VP’s locomotor dynamics. The alternative hypothesis was that
in such dynamically complex situations humans default to
other strategies that do not rely on explicit dynamics models.
The results provide evidence that supports the internal model
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hypothesis: the presence of aftereffects (persistence of feedfor-
ward motor plans despite altered dynamics) and generalization
of manipulation skill. Moreover, the results demonstrate how
internal locomotor models develop over time, shifting from a
general to a specific strategy that required less assistive force
by taking advantage of the pendular dynamics of the VP’s leg.
In other words, subjects seemed to transition from a more
heavy-handed position-control approach to one that more
closely resembled the assist-as-needed approach commonly
used in robotic gait rehabilitation (Cai et al. 2006).

Task Performance and Adaptation

To achieve a low tracking error, subjects had to make the
VP’s affected leg follow a healthy locomotor pattern. The latter
was based on the VP’s unaffected leg kinematics, and therefore
successful task performance made the VP’s locomotor kine-
matics symmetric. This required subjects to appropriately com-
pensate for impedance forces that tried to maintain the VP’s
nominal impaired locomotor pattern. With practice, subjects
became proficient and were able to reduce their tracking error
to ~1.25 mm on average with peak forces of ~1 N. Although
the average tracking error was small, subjects did not precisely
follow the healthy target trajectory and instead rounded off/

approximated certain portions. This behavior could be because
the curvature of the target ankle trajectory exceeded the ability
of subjects to follow with the requisite velocity because of the
one-third power law (Lacquaniti et al. 1983). Alternatively, it
could be due to high centripetal accelerations encountered
during the heel lift and swing initiation, which are higher than
would be encountered in real life because of the smaller radius
of curvature in the VP simulation. In the generalization task,
errors and forces increased by ~50% and subjects did not pull
enough posteriorly and upward to match the target trajectory.
This was evident in both the experienced and naive groups and
could be because subjects had only a single 100-step practice
trial with the impaired dynamics turned on while tracking the
generalization target.

Internal Representations During Task Adaptation

The central hypothesis was that humans develop internal
models of locomotor adaptation. An alternative is a brute-force
strategy, i.e., subjects could increase their arm’s end-point
impedance by using antagonistic coactivation to overpower
any perturbations from the VP (Hogan 1984). Normally, a
downside of this strategy is that it incurs a large energetic cost
(Falconer and Winter 1985; Macaluso et al. 2002), but in this
study the magnitude of the forces exerted by subjects was
relatively small (~1 N). Nevertheless, the data rule out a pure
brute-force strategy because subjects made significant errors
during the random null-dynamics catch steps, which would not
be expected if subjects exhibited a high nondirectional arm
stiffness. Notably, the errors on null-dynamics steps changed
with practice. Early on, the size of the null-trial errors de-
creased before increasing again. This suggests that early in
practice subjects could have employed a partial brute-force
“stiffness” strategy when the internal model was still develop-
ing (Milner and Franklin 2005). In a rehabilitation context, this
resembles the early guidance approach used in robotic rehabil-
itation, which made use of strong nonbackdrivable motors to
force a patient’s leg to follow a desired trajectory (Hornby et
al. 2005). With practice, subjects’ internal models became
stronger, decreasing the need to rely on muscle viscoelasticity
to reduce task errors (Osu et al. 2002). The latter more closely
resembles the assist-as-needed robotic rehabilitation approach
(Cai et al. 2006).

A second argument against the use of a pure brute-force
strategy is that subjects applied significant forces against the
force channels and these responses were modified with prac-
tice. Since the force channels were imposed unexpectedly, they
(approximately) reflect the forward motor plan and provide
insight into how subjects’ internal models adapted. Of partic-
ular significance is that the forces applied to the channel
changed with practice to take better advantage of the VP’s
locomotor physics. Specifically, subjects learned to apply less
force during midswing when the pendular dynamics of the leg
would naturally tend to progress the leg forward. This is
consistent with prior studies showing that humans learn to take
advantage of the intrinsic dynamics of an external system, for
example, by forcing a system close to its resonant frequency
(Hatsopoulos and Warren 1996; Holt et al. 1991; Huang et al.
2007; White et al. 2008) or with exposure to artificial negative
viscosity (Huang et al. 2010), and the idea that one of the
optimization criteria for human sensorimotor control is mini-
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mizing energy expenditure or effort (Alexander 1997; Todorov
and Jordan 2002). However, this study also shows that exploit-
ing natural dynamics 1) may occur at the level of internal
models and 2) is observed for a task with complex rhythmic
dynamics (locomotion).

Another alternative hypothesis is that subjects used a rote
memorization strategy, in which they learned to predict forces
explicitly as a function of time (Conditt et al. 1997; Conditt and
Mussa-Ivaldi 1999). While the null-dynamics and force-chan-
nel probes cannot rule this out, the generalization test can: an
internal model should facilitate generalization, but rote mem-
orization should not (Conditt et al. 1997). This was tested by
asking subjects to make the VP walk in a different generaliza-
tion trajectory—the silly walk. If learning generalized, subjects
should perform as well or better at the generalization trajectory
compared with naive subjects who did not previously practice the
healthy trajectory. The results showed that the naive group im-
proved less than the experienced group, which suggests that the
experienced subjects were not just working from a memorized
“tape recording” of motor commands but were able to use their
implicit knowledge of the VP locomotor dynamics to adapt to the
new task requirement (i.e., they generalized learning). This is
consistent with other reports showing generalization when sub-

jects adapt to a new movement pattern that covers similar states
(Conditt et al. 1997; Shadmehr and Mussa-Ivaldi 1994) and when
training with an artificial robot-induced negative viscosity (Huang
et al. 2010). However, it is worth noting that other studies have
shown more limited generalization when subjects are asked to
extrapolate to more novel situations (Gandolfo et al. 1996; Good-
body and Wolpert 1998) and when learning force fields with
explicit time dependencies (Conditt and Mussa-Ivaldi 1999). Thus
in future work it would be interesting to test the extent of
generalization for VPs modeled after different patient populations
(e.g., Parkinson’s disease or spinal cord injury), which could have
vastly different walking speeds in addition to differences in
neuromuscular control.

Extensions to Rehabilitation (Caveats)

The advantage of having subjects train the VP in a locomo-
tor simulator is one of experimental control: the VP’s dynamics
can be precisely specified and instantaneously manipulated.
However, the degree to which the results extend to real patients
is presently unknown. Although the VP model included many
features of real locomotor dynamics, including inertial effects,
geometric constraints, and muscular contributions, it was not
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intended to be a precise model of human locomotion. For
example, the knee joint muscular spring stiffness was ex-
cluded, the knee-hip coupling stiffness was absent, and the VP
conspicuously lacked a foot. The latter required some creativ-
ity concerning the leg-treadmill interface, which was made
semicircular to make up for the absent degree of freedom (the
ankle). Because the model only operated in the sagittal plane
and the hip joint could not translate, the model could not
capture the circumduction and hip-hiking strategies that some
patients employ to prevent toe dragging (Davids 1992). It is
also important to note that the simulator turned a gross-motor
task, therapist-guided locomotor rehabilitation, into a fine-
motor task. Compared with interactions with real patients, the
level of manipulation force required from the subjects was
reduced by an order of magnitude, and the spatial extent of
movement shrank by 96.5%. Also, real rehabilitation is a
cooperative human-human interactive task (Jarrassé et al.
2012; Sawers and Ting 2014) and real patients would be
expected to adapt over the course of training. Therefore, the
results of this study should be interpreted in the context of the
hypothesis, i.e., understanding the sensorimotor processes used
by humans when learning how to manipulate a virtual model of
locomotor dynamics, and not extrapolated to real patients at the
present time.

A Future Platform for Understanding Locomotor
Rehabilitation

The locomotor simulator presents an intriguing set of poten-
tial experimental manipulations that could increase our under-
standing of locomotor rehabilitation. However, this may re-
quire increases in the sophistication of the VP’s neural control.
For example, in the present study, on purpose, the VP always
tried to walk in the same stroke-based asymmetric locomotor
pattern and never adapted its behavior during the course of the
experiment. This clearly neglects the richness of human sen-
sorimotor control and the stride-to-stride variability that re-
flects human control processes and the natural environment
(Hausdorff 2007). Programmatically, it would be simple to add
different noise structures to the model, e.g., one could add 1/f
noise to create long-range correlations in the VP’s gait (Haus-
dorff et al. 1996). It could also be instructive to allow the VP
to adjust its actions based on the errors it makes, which could,
in turn, be influenced by the actions of a therapist. For exam-
ple, the VP could be given an explicit control policy that could
optimize maintaining stability (Cajigas et al. 2017) or other
costs that might be relevant to patient populations, such as pain
(Arendt-Nielsen and Graven-Nielsen 2008; Boudreau et al.
2010) or safety (Hasson and Sternad 2014). This may help
answer new and relevant theoretical questions, such as how to
guide patients with different and possibly shifting motor pri-
orities. It could also serve as a practical tool that allows
clinicians to experience therapeutic interactions with various
virtual gait disorders before delivering care to real patients. Of
course, drawing conclusions about patient control policies will
require models that are validated against the populations in
question.

Conclusions

This study developed an interactive locomotor simulator that
allowed subjects to manipulate the gait patterns of a virtual

patient. The aim was to understand the sensorimotor processes
used by humans when learning how to manipulate locomotor
dynamics. The results showed that, despite the complexities of
the interaction, subjects nevertheless developed and used in-
ternal models that generalized to a different locomotor pattern.
With practice the internal model became more refined to take
advantage of the pendular dynamics of locomotion. With
further advancements to the neuromusculoskeletal model, the
locomotor simulator may serve as a useful tool for increasing
our understanding of locomotor rehabilitation and inform both
human and robotic therapy for more effective training out-
comes.

APPENDIX: MATRICES ASSOCIATED WITH VIRTUAL

PATIENT MODEL

For simplicity, all equations below were derived in the first quad-
rant and rotated 90° clockwise into a physiologically realistic orien-
tation for locomotion (Fig. A1).

Rigid Body Dynamics

I��� � �
It � Is � mtrt

2 � msrs
2

� msLt
2 � 2msLtrscos�k

Is � msrs
2 � msLtrscos�k

Is � msrs
2 � msLtrscos�k Is � msrs

2 �
V��,�̇� � ��msLtrssin�k�̇k �2msLtrssin�k�̇k

�msLtrssin�k�̇h 0 	
G��� � �g�mtrtsin�h � msltsin�h � msrscos�hk

msrssin�hk
	

Fig. A1. Schematic showing segment length (L), joint angle (�), and joint
torque (T) conventions. h, Hip; ha, hip to ankle; hk, hip to knee; k, knee; s,
shank; t, thigh.
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Muscular Spring Stiffness Expressed at Ankle End Point
(English 1999)

KSPR � �kxx
S kxy

S

kyx
S kyy

S 	
kxx
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 1

LtLssin�k
�2

�Lssin�hk�2	h
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2sin�hkcos�hk	h
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S � kxy

S

kyy
S � 
 1

LtLssin�k
�2

�Lscos�hk�2	h

Muscular Geometric Stiffness Expressed at Ankle End Point
(English 1999)

KGEO � �kxx
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G
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G kyy
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Muscular Damping (Tee et al. 2004)

B �
0.1

�ṗTṗ
�kxx

S kxy
S

kyx
S kyy

S 	
Forward Kinematics Transformation of Joint Moments to
End-Point Forces

J � ��Lhasin�ha �Lssin�hk
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Treadmill Contact Model

D � ��px � px,Gnd� � �py � py,Gnd�
Pen � RGND ⁄ D

p̂err � �px,Gnd � Pen�px � px,Gnd�
py,Gnd � Pen�py � py,Gnd� 	

GLOSSARY
For Virtual Patient

Fx Horizontal force at ankle (end point)
Fy Vertical force at ankle (end point)
Is Shank moment of inertia about center of gravity
It Thigh moment of inertia about center of gravity
Lha Distance between hip and ankle
Ls Length of shank
Lt Length of thigh
Mh Hip torque due to hip muscular action
Mk Knee torque due to knee muscular action
ms Mass of shank
mt Mass of thigh
px Horizontal position of ankle
py Vertical position of ankle
rs Distance to center of mass of shank from prox-

imal end
rt Distance to center of mass of thigh from prox-

imal end
Th Hip torque
Tk Knee torque

�h,�̇h,�̈h Hip angle, angular velocity, and angular accel-
eration

�k,�̇k,�̈k Knee angle, angular velocity, and angular ac-
celeration


s Shank radius of gyration about center of gravity

t Thigh radius of gyration about center of gravity

For Treadmill Model

D Distance between the VP’s ankle and the tread-
mill

Pen Ratio describing how far the leg penetrates the
treadmill

RGND Radius of treadmill surface from hip joint center
RS Radius of virtual spheres; one was attached to

VP’s ankle, and the other slid along a semi-
circular arc defining a modified virtual tread-
mill surface with radius RGND

�h Hip muscular spring stiffness

Vectors and Matrices

B Muscular damping matrix
F Vector of end-point (ankle) forces
G Matrix specifying joint torques due to gravity
I Inertia matrix
J Jacobian matrix
JT Jacobian transpose matrix
J�T Inverse Jacobian transpose matrix
KSPR Muscular spring stiffness expressed at ankle end

point
KGEO Muscular geometric stiffness expressed at ankle

end point
pGnd Position of the ankle at which it would contact

the treadmill
p̂err VP ankle position projected onto the surface of

the treadmill sphere
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T Vector of joint torques
V Matrix specifying joint torques from Coriolis

and centrifugal forces

Parameters (from Winter 1990, except height and weight)

g Gravitational acceleration in Boston (9.82045
m/s2; from WolframAlpha)

ht Height (1.70 m) (Olney and Richards 1996)
It mt
t

2

Is ms
s
2

Lt 0.245ht
Ls 0.246ht
mt 0.1wt
ms 0.0456wt
rt 0.433Lt
rs 0.433Ls
wt Weight (72.0 kg) (Olney and Richards 1996)

t 0.323Lt

s 0.302Ls

Other Quantities

px Ltsin�h � Lssin�hk
py �Ltcos�h � Lscos�hk
RGND 0.995(Lt � Ls � 14 mm)
�hk �h � �k
�ha �atan(px/py)
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