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Abstract

The purpose of this study was to investigate age-related differences in contractile and elastic properties of both dorsi- (DF)
and plantarflexor (PF) muscles controlling the ankle joint in young and older adults. Experimental data were collected while
twelve young and twelve older male and female participants performed maximal effort isometric and isovelocity
contractions on a dynamometer. Equations were fit to the data to give torque-angle (Th) and torque-angular velocity (Tv)
relations. Muscle series-elasticity was measured during ramped dynamometer contractions using ultrasonography to
measure aponeurosis extension as a function of torque; second order polynomials were used to characterize the torque-
extension (TDL) relation. The results showed no age differences in DF maximal torque and none for female PF; however,
older males had smaller maximal PF torques compared to young males. In both muscle groups and genders, older adults
had decreased concentric force capabilities. Both DF and PF TDL relations were more nonlinear in the older adults. Older PF,
but not DF muscles, were stiffer compared to young. A simple antagonism model suggested age-related differences in Th
and Tv relations would be magnified if antagonistic torque contributions were included. This assessment of static, dynamic,
and elastic joint properties affords a comprehensive view of age-related modifications in muscle function. Although many
clinical studies use maximal isometric strength as a marker of functional ability, the results demonstrate that there are also
significant age-related modifications in ankle muscle dynamic and elastic properties.
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Introduction

The functional capabilities of the dorsi- (DF) and plantarflexor

(PF) muscles controlling the ankle joint are important in many

activities of daily living. Age-related degradations of muscular

properties such as a decline in maximal isometric ankle torque can

impact these activities [1]. However, maximal isometric torque

capability is only one of several joint properties that may change with

advancing age. Ankle torque production also depends on the joint

position or angle (the torque-angle relation; Th), the joint angular

velocity (the torque-angular velocity relation; Tv), and the series

elasticity (the torque-extension relation; TDL) of the muscles crossing

the joint. Together, these three relations reflect the active contractile

and elastic properties of the muscles controlling the ankle joint.

To date, studies investigating age-related changes in DF and PF

joint Th relations have produced equivocal results. Lanza et al. [2]

have reported an angle-dependent decrease in torque for older adults;

however, this might simply be due to their decreased range of motion

[2]. Other studies have found no Th changes for DF [3] or PF [4].

Studies on the Tv relation have generally shown reduced torque

capability for concentric velocities for older DF [2,5] and PF [5,6]

muscles, but some have found that eccentric torque production is

preserved in older adults [7,8]. Technical aspects of Tv determina-

tion may play a role in variations between studies. Many studies select

the peak torque values generated at a range of joint angular velocities,

and scale the data to the maximal value of the isometric Th curve

[5,9]. However, these peak torque data points may occur at different

joint angles, therefore appropriate adjustments should be made to

account for the shape of the underlying Th relation [10].

Although the Th and Tv relations reflect the force-length [11]

and force-velocity [12] relations of human muscle, the exact

relation between joint and muscle properties also depends on the

stiffness of the muscular series elastic elements, which are

characterized by the TDL relation. Studies on DF stiffness are

scarce, while PF stiffness findings are equivocal. Quick-release

studies [13,14,15] suggest an increase in PF stiffness with age, but

an ultrasonography study showed a decrease [16]. This inconsis-

tency may be due to measurement methods; the quick-release

technique measures total muscle-tendon stiffness (KMT, including

external tendon, aponeurosis, and within sarcomeres), while the

ultrasonography study measured the stiffness of the external

tendon KET. Animal studies have indicated that KET is greater than

stiffness of the aponeurosis KAP ([17,18,19]; although see [20,21]),

so greater KMT in older adults could result from an increase in KAP,

which can be measured in humans using ultrasonography.

It is important to recognize that the joint Th, Tv, and TDL

relations are closely intertwined, and that age-related changes in

series elasticity may occur in tandem with Th and Tv modifications,

thereby complicating interpretations based on Th and/or Tv
measurements alone. The Th relation affects the shape of the Tv
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relation [22,23], and series elastic stiffness (TDL) influences muscle

fiber length and velocity, altering the shapes of the Th and Tv
relations [24]. Therefore, measuring Th and Tv characteristics in

parallel with the TDL relation may offer additional insight into age-

related differences in functional capability.

Accordingly, the purpose of this study was to investigate age-

related differences in static (Th), dynamic (Tv), and elastic (TDL)

characteristics of both dorsi- (DF) and plantarflexor (PF) muscles

controlling the ankle joint in young and older adults. Based on

evidence from previous studies, we anticipated that active

community dwelling older adults would have smaller isometric

torque capacities, slower concentric muscular properties (i.e. less

torque at a given velocity on the Tv relation), and stiffer series

elasticity in the aponeurosis TDL relation when compared to active

young adults. We also expected to find greater age-related

differences for the PF muscle group than in the DF, based on

more atrophy of Type II fibers in the gastrocnemius [25].

Measuring all three Th, Tv, and TDL properties in the DF and PF

antagonist muscle groups provided a comprehensive snapshot of

age-related differences in ankle joint function.

Methods

Twelve young and twelve older independent community-

dwelling adults without musculoskeletal or neurological impair-

ments participated in the study (balanced for gender, Table 1).

Physician’s clearance was obtained for all older subjects. Prior to

participating, subjects read and signed an informed consent

document approved by the University of Massachusetts Amherst

Institutional Review Board. Subjects performed two experimental

protocols, with all measurements taken on the left leg.

Torque-Angle (Th) and Torque-Angular Velocity (Tv)
Measurements

Experimental Setup. To measure the Th and Tv relations,

a series of isometric and isovelocity muscular efforts were

performed on a Biodex System 3 dynamometer [26,27] (Biodex

Medical Systems, Shirley, NY). Ankle torque and angular

displacement were sampled from the dynamometer at 1000 Hz

and 16-bit resolution with software written in Visual Basic 6.0

(Microsoft Corporation, Redmond, WA).

Protocol. Subjects sat upright with their trunk inclined

backwards 45u from the vertical and arms crossed in front of their

chest. After sub-maximal warm-up efforts, passive joint torque was

measured by having the dynamometer slowly (20u/s) move the

ankle joint through its range of motion without active subject

resistance. Isometric (Th) and isovelocity (Tv) dynamometer trials

were done on separate days to minimize fatigue. Two trials were

performed at each joint angle (h) and angular velocity (v), with trial

order randomized and a one-minute rest between trials. The knee

remained fixed at 100u for DF and 90u for PF. For isometric trials

the ankle position was varied at five different angles evenly spaced

throughout each subject’s full range of motion. Concentric

isovelocity trials were performed at 20u/s, and from 30 to 240u/s

in 30u/s increments. Eccentric trials were performed at 2150, 260,

and 230u/s. In all trials, passive elastic, gravitational, and inertial

torque contributions were assessed to calculate the active muscular

torque [28]. The passive torque-angle data were averaged across

dorsi/plantarflexion trials (typically three per subject); a third-order

polynomial was fit to these mean data to generate a passive torque-

angle relationship. In the active trials, the polynomial was evaluated

at the each instantaneous joint angle and subtracted from the

measured torque. Torque contributions due to the weight and

inertia of the foot, estimated from de Leva [29], and dynamometer

arm, measured experimentally, were also subtracted. We did not

account for joint viscosity and friction, as these make negligible

contributions to the net joint torque compared with passive elastic,

gravitational, and inertial effects [30].

Data Processing – Torque Angle (Th). For each subject,

the larger of the two maximal isometric joint torque measurements

at each ankle angle (TIM) was used to construct a Th relationship.

The Th relationship for each subject was expressed as a second

order polynomial fit to the DF and PF TIM vs. h data using a least

squares approach. The maximum of the polynomial within the

measured range of motion was used to define the maximum

isometric torque T0 and the optimal angle h0.

Data Processing – Torque Angular Velocity (Tv)
The peak torque TIV and corresponding v from each isovelocity

trial were used to construct a Tv relation. At peak torque all

shortening/lengthening occurs via the contractile component, i.e.

elastic component velocity is momentarily zero. Measured Tv
data were also adjusted to account for Th effects [2,10,31]. For

each subject, the relation between h and v coinciding with the TIV

data points was established using linear regression, and used with

the Th relation to predict the isometric torque capability

corresponding to each TIV value. Each original Tv data point

was divided by its angle-specific isometric torque capability to give

scaled isovelocity peak torque (�TTIV .) values (if �TTIV . = 1 then TIV

was equal to the isometric torque at that angle). A rectangular

hyperbola was fit to these scaled Tv data. Based on Hill [32], if v
(rad/s) is positive (concentric), then

�TTIV ~
1zATvð ÞBTv

vzBTv
{ATv

where ATv and BTv are coefficients describing the shape of the

scaled Tv relation (Figure 1). For eccentric conditions, when v is

negative, based on FitzHugh [33]

Table 1. Subject characteristics.

Subject Group N Age (yrs) Height (m) Mass (kg)

Mean±SD Range Mean±SD Range Mean±SD Range

Young Male 6 2763 21–30 1.8160.06 1.70–1.85 76.968.2 68.3–87.5

Young Female 6 2663 21–31 1.6560.08 1.52–1.74 57.266.6 49.9–65.8

Older Male 6 7365 67–79 1.7760.08 1.68–1.88 91.7610.3 74.0–102

Older Female 6 7065 66–78 1.6660.09 1.60–1.70 72.6 617.0 59.3–77.4

N = number of subjects; SD = between-subjects standard deviation.
doi:10.1371/journal.pone.0015953.t001
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�TTIV ~TECC{
s TECC{1ð Þ

s{v

where

s~
BTv TECC{1ð Þ

1zATv

and TECC defines the eccentric plateau.

Torque-Extension (TDL) Measurements
Experimental Setup. To estimate DF and PF TDL

relationships, ankle torque was measured as subjects performed

a series of ramped maximal isometric efforts on the dynamometer.

The tibialis anterior, lateral head of the gastrocnemius, and soleus

muscles were imaged using an Acuson 128XP real-time ultrasonic

scanner with a linear-array probe (7.5 MHz, 50 mm scanning

length, B-mode). The ultrasound probe was orientated along the

mid-sagittal axis of each muscle, with transmission gel used for

improved acoustic coupling [34,35]. Ultrasound images (Figure 2A)

were sampled at 30 Hz and saved to magnetic tape. With the knee

extended, the ankle was positioned at 90u where passive

contributions are minimal [36]. The torque data were sampled

at 900 Hz with 16-bit resolution, using a 5V analog pulse for

synchronization with the ultrasound data.

Protocol. Subjects performed two blocks of trials (DF, PF),

with block order balanced across subjects. Within each block, two

maximal voluntary contractions (MVCs) were performed to

establish maximal isometric ankle torque, followed by five trials

with torque and ultrasound measurements. In each 30-second

trial, subjects were asked to match their ankle torque to a

predefined green target force template that increased

exponentially from 0 to 30% MVC, and linearly from 30 to

100% MVC (Figure 2C, solid line). The initial exponential

increase was to ensure a slow rate of extension to facilitate

subsequent image analysis. Red lines defined acceptable torque

variation (Figure 2C, broken lines). During each trial, the subject’s

actual ankle torque appeared in real time. Subjects were instructed

to follow the green line as closely as possible. Trials were separated

by two-minute rest periods.

Video Capture and Preprocessing. The ultrasound video was

parsed into individual trials and converted to digital format (AVI,

7206480 pixels) using a video capture system (Studio MovieBox

USB, Pinnacle Systems). Subsequent processing was done using

MATLAB
TM (Version 7, The MathWorks, Natick MA). The 900 Hz

torque data were downsampled to 30 Hz and synchronized with the

ultrasound video using the rising edge of the analog pulse.

Tracking of Aponeurosis Extension. To measure extension,

multiple points on the ultrasound images were identified: one set of

eight superficial reference points evenly spaced near the skin, and a

cluster of eight points along the aponeurosis (see Figure 2A). The

movement of all points was automatically tracked using a two-

dimensional cross-correlation tracking algorithm [37]. The tibialis

anterior aponeurosis extension was assumed to represent the DF

muscles (including the tibialis anterior, extensor hallucis longus,

extensor digitorum longus, and peroneus tertius), while the

extension of the combined gastrocnemuis and soleus aponeuroses

represented the PF muscles.

Data Processing. Horizontal and vertical point displacements

and the torque data were smoothed using a Butterworth digital filter

with optimal cut-off frequencies determined through residual and

power spectral analyses [38]. The multiple reference and

aponeurosis point displacements were averaged to give a single

reference and aponeurosis time-series (Figure 2B). After subtraction

of reference point motion to account for possible probe movement

relative to the skin, the magnitude of the aponeurosis displacement

vector was expressed as extension (DL) from the rest position. Highly

variable data above 60% MVC torque were excluded from the

subsequent fitting of a second order polynomial [16,39,40] to the

ankle torque (T) vs. DL data (Figure 2D):

T~aTDLDL2zb7TDLDL

where aTDL and bTDL are shape coefficients. The linear stiffness (K)

was calculated as the slope of the fitted polynomials (i.e.

K~2aTDLDLzbTDL.) at three different torque levels

(KLow = 5 Nm [DF], 15 Nm [PF]; KMed = 15 Nm [DF], 30 Nm

Figure 1. Effects of changing the coefficients describing the torque-angular velocity relation (Tv). Left: effect of varying ATv from 0.02 to
0.62 while keeping BTv = 2.25. Right: effect of varying BTv from 0.2 to 5.0 while keeping ATv = 0.1. The eccentric plateau (TECC) was set to 1.5 T0.
Dashed and thick solid lines indicate small and large values for each coefficient, respectively.
doi:10.1371/journal.pone.0015953.g001
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[PF]; KHigh = 30 Nm [DF], 60 Nm [PF]). The maximum extension

of the series elastic components (DLMAX) was assessed by evaluating

the polynomial equation at MVC.

Statistics
Due to technical issues affecting torque measurement, one of the

young male subjects was excluded from the Th and Tv analysis.

Separate three-way ANOVAs (age [Y,O] x gender [M,F] x muscle

[PF,DF]) were performed on each dependent variable. The

dependent variables included two Th variables (T0, h0) and three

Tv variables (ATv, BTv, and TECC). For the TDL relations, the

three dependent variables were aTDL, bTDL and DLMAX. Separate

two-way ANOVAs (age x gender) were performed for DF and PF

linear stiffness measures (KLow, KMed, KHigh); an additional one-way

ANOVA was performed to test for muscle group difference at the

same absolute torque level (15 Nm). Outliers were defined as data

points that exceeded the mean by more than three times the inter-

quartile range. Statistical significance for all tests was set at p#.05.

Results

Torque-Angle (Th)
Individual subject Th and Tv relations are shown in Figure 3;

summary statistics are given in Table 2, with age group mean

curves shown in Figure 4. For maximal isometric torque T0, there

was a main effect of age, with T0 greater in the young compared to

old (p = .028), and a main effect of muscle, with PF greater then

DF (p,.001). There was also a three-way interaction between age,

gender, and muscle (p = .034) (Figure 5). No age-related differences

were found in females for DF T0 (p = .794) or PF T0 (p = .161), or

for DF T0 in males (p = .587), but older males had significantly

weaker PF compared to younger males (p,.001). There was a

main effect of muscle for optimal angle h0 (p,.001), with h0

occurring at a more plantarflexed position for DF (at +14u of

plantarflexion) than for PF (at 214u of dorsiflexion), but there

were no h0 effects for age (p = .834) or gender (p = .201).

Torque-Angular Velocity (Tv)
Compared to the younger individuals, older adults produced

less torque relative to T0 for concentric velocities, as indicated by

the smaller Tv shape coefficient BTv (Table 2 and Figures 3 and 4;

age main effect p = .003). There were no main effects of gender

(p = .935) or muscle (p = .977). There were no effects of age,

gender, or muscle on the Tv parameters ATv (p..110 for all tests)

or TECC (p..192 for all tests).

Torque-Extension (TDL)
Individual subject TDL relations are shown in Figure 6. For

these second order polynomial relations, older subjects had larger

Figure 2. Methodology for measuring musculotendon series elasticity. A: Ultrasound stills from the start (left) and end (right, at MVC) of a
dorsi- (top) and plantarflexion (bottom) ramped trial. The white dots indicate points of interest, including a set of reference points near the skin, and a
set of points on the aponeurosis of each muscle. The motion of the points was tracked using an automated cross-correlation algorithm. B: Example of
the horizontal displacements of the reference points (top) and aponeurosis points for a dorsiflexion trial (thick line = average). C: The visual torque-
time template (left) and the actual dorsiflexion torque produced (right). D: The resulting torque vs. extension plot. A second order polynomial was fit
to the torque up to 60% MVC, and then extended up to MVC (dashed line).
doi:10.1371/journal.pone.0015953.g002
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aTDL coefficients (Table 3; p = .009), but no differences for bTDL

(p = .457). Both coefficients were larger for PF compared to DF

(aTDL; p = .002; bTDL; p,.001). There were no gender differences

for either coefficient (aTDL; p = .706; bTDL; p,.343). There were no

age effects for DF at any linear stiffness level (KLow, KMed, KHigh)

(p..691), and none for PF at KLow (p = .143) and KMed (p = .058).

However, KHigh was greater for the older subjects (p = .031). There

were no gender differences at any K for DF (p..538) or PF

(p..231). When comparing K at the same absolute torque level

(15 Nm), the PF muscles were stiffer than the DF (p,.001). Older

adults had smaller maximal aponeurosis extensions (5.7 mm) than

the younger subjects (8.8 mm) (DLMAX; p,.001). There was an age

by muscle interaction for maximal extension (p = .015), with PF

DLMAX smaller than DF (p = .017) for the older subjects, but not for

the young (p = .388).

Discussion

The hypothesis of lower maximal isometric torques (T0) in the

older adults was supported partially; only the older male subjects

had lower T0, and only in the PF muscle group. There was

stronger support for the hypotheses of decreased concentric force

capabilities and increased series elastic stiffness in the older adults;

however, the latter was observed only for PF. We also expected to

find greater age-related differences for PF compared to DF due to

previous reports of Type II fiber atrophy in the gastrocnemius in

older adults. This was observed for the male PF T0 as well as the

PF stiffness; however, age-related reductions in concentric force

capabilities were found for both DF and PF. No differences were

found between age groups in the optimal joint angle of the Th
relation, or in eccentric torque capabilities.

Torque-Angle
As in prior studies [1,2,41], we found age-related deficits in

maximal isometric joint strength (T0), but only for PF in male

subjects; females showed no age-related differences. Kent-Braun

and Ng [42] reported a similar interaction for DF, with T0 greater

in young men than older, but not in the females. Other support for

an age and gender interaction is provided by Winegard et al. [4],

in which older female subjects had larger PF T0 values than older

males, and did not show significant age-related deficits in strength.

These findings could be related to age-related decreases in male

testosterone concentrations [43], which is associated with

decreased muscle mass and strength [44,45]. We saw no age-

related differences for the angle of peak torque (h0), consistent with

Simoneau and colleagues [46], who found no variations with age

in the DF and PF Th relations. We also observed that the angle at

maximum torque (h0) was not different between the age/gender

Figure 3. Equations representing the best fit between the experimental data and second order polynomials (torque-angle relation;
isometric) and rectangular hyperbolas (torque-angular velocity relation; isovelocity) for young (solid black lines) and older
(dashed gray lines). The solid circles positioned on the isometric curves represent the peak isometric torque. For some subjects, the peak did not
occur within the subject’s range of motion, in these cases the solid circle is positioned at the end of the range of motion. The isovelocity fits are
scaled to the peak isometric torques.
doi:10.1371/journal.pone.0015953.g003
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groups. Relative to neutral (0u), both DF h0 (+14u of plantar-

flexion) and PF h0 (214u of dorsiflexion) were similar to other

studies [2,22,47,48,49,50].

Our estimates of T0 were based on a second order polynomial

that represented the Th relation. Average DF T0 values were

,37 Nm for the younger subjects and ,35 Nm for the older

subjects. These data agree with literature values that range from

,22 to 44 Nm for both young and older adults [1,2,5,46,51,52].

For PF T0, values averaged 93 Nm for young and 70 Nm for older

males, while literature values range from 104 to 232 Nm for young

males and from 100 to 125 Nm for older males [1,4,5,46,51,53].

Our relatively low results could be due to several factors, including

the use of a knee angle of 90u, at which the gastrocnemius is

shorter than optimum length [50], reducing the net plantarflexor

torque. We also report active torque after subtracting for passive

torque contributions, and were stringent concerning proper joint

alignment and/or upper body fixation during the experimental

trials [54].

Torque-Angular Velocity
The Tv relation was characterized by the shape parameters

ATv and BTv, akin to the dynamic constants of the Hill force-

velocity equation [12] and independent of T0. Figure 1 illustrates

that independently increasing ATv produces lower torque at any

given concentric velocity, while increasing BTv leads to greater

concentric, but decreased eccentric force capability.

The shape of the Tv relation differed between age groups, with

weaker/slower concentric force capabilities (lower BTv) in older

DF and PF, but without a concomitant deficit in eccentric strength

as indicated by the eccentric torque plateau (TECC). These data are

consistent with other reports that concentric capability is reduced

with aging [2,5,6,55], but that eccentric torque production is

preserved [7,8,9,56,57,58]. Because we accounted for individual

subject differences in strength, muscle moment arms, and muscle

torque-angle relations, our Tv findings represent a difference in

the intrinsic force-velocity properties of the ankle muscles. This

may be related to an age-related decrease in the size and/or

number of fast-twitch Type II muscle fibers in the dorsiflexor

tibialis anterior and the plantarflexor gastrocnemius [59]. With

aging the percentage of Type IIa fibers decreases by about 9% in

the tibialis anterior [60]. Although gastrocnemius Type IIa and

Type IIb fiber number remains stable with increased age, these

fibers shrink by about 13–31% in comparison with sedentary

young adults [25].

Series Elasticity
The change in series elastic component length as a function of

joint torque (i.e. the TDL relation) was represented by a second

order polynomial with shape coefficients aTDL and bTDL. The

squared coefficient aTDL has a large influence on the rate of torque

increase with increasing extension, and this coefficient was larger

for the older subjects, indicating greater non-linearity in the TDL

relation. There were no age differences in the bTDL coefficient,

which has a smaller role in determining the shape of the TDL

relation. To determine linear stiffness, we computed the slope of

the non-linear TDL relation at three different relative torque levels

(KLow, KMed, KHigh). Although we found no age differences among

DF linear stiffness values at any torque level, older PF muscles had

greater stiffness when evaluated at the high torque level (KHigh).

Greater PF stiffness in older adults agrees with other studies

[13,14,61], and may offset the age-related decrement in velocity-

dependent force capabilities, as force can rise faster if the

Table 2. Parameters characterizing torque-angle (Th) and torque-angular velocity (Tv) data (mean6between-subjects standard
deviation).

Group Muscle Group Th Tv

T0 (Nm) h0 (6) ATv BTv TECC

Young Male a DF 42.168.70 14.365.28 0.03060.078 2.1260.43 1.4860.31

PF 114628.1 212.762.48 0.35060.585 3.1963.04 1.3760.35

Young Female DF 30.967.40 13.668.25 0.24160.358 2.8161.27 1.4360.20

PF 70.9622.8 214.367.65 0.24060.535 2.1561.58 1.3560.41

Young Average DF 36.568.10 13.966.77 0.13660.218 2.4760.85 1.4660.26

PF 92.5625.5 213.565.07 0.29560.560 2.6762.31 1.3660.38

Older Male DF 35.267.20 16.066.15 0.02960.044 1.3160.28 1.3060.12

PF 61.469.72 212.867.74 0.03460.068 1.5360.82 1.2160.20

Older Female DF 34.1611.5 12.466.74 0.00860.014 1.5960.29 1.3960.27

PF 78.5634.3 213.868.94 0.05060.123 1.4161.05 1.3560.33

Older Average DF 34.769.35 14.266.45 0.01960.029 1.4560.29 1.3560.20

PF 69.9622.0 213.368.34 0.04260.096 1.4760.94 1.2860.27

Main Effectsb A, M M - A -

Interactionsb A X G X M - - G X M -

aOne outlier is excluded.
bSignificant main effects and interactions for age (A), gender (G), and muscle (M).
DF, PF: dorsiflexors, plantarflexors.
T0: maximal isometric joint torque.
h0: ankle angle at T0 (DF = Negative; PF = Positive).
ATv, BTv: shape coefficients for Tv relation; units for BTv are rad/s.
TECC: eccentric plateau of Tv relation (relative to T0).
doi:10.1371/journal.pone.0015953.t002

Ankle Muscular Properties and Aging

PLoS ONE | www.plosone.org 6 January 2011 | Volume 6 | Issue 1 | e15953



contractile component is attached to a stiffer series elastic

component rather than a more compliant one [62].

This study also found TDL differences between the muscle

groups. Compared to DF, both aTDL and bTDL polynomial

coefficients and the linear stiffness measure at 15 Nm were greater

for PF. This is supported by literature reports of aponeurosis

stiffness and Young’s modulus (E) (at maximal torque) in vivo, with

lower values (stiffness = 32 N/mm; E = 0.563 Gpa) reported for

DF [63] than for the PF muscles (stiffness = 467 N/mm;

E = 1.474 GPa)[39]. We did not compute E, since it requires

explicit measures of series elastic component length and cross-

sectional area [64]. Our findings of increased PF stiffness are also

supported by evidence that muscle elastic characteristics are

influenced by physiological function [65]; PF would be expected to

have a higher stiffness to support much higher static and dynamic

loads compared to DF [66]. This is one of the first reports on DF

Figure 4. Average young (black solid lines) and older (gray dashed lines) torque-angle (left) and torque-angular velocity (right)
curves. Both measured (thick lines) and co-activation adjusted (thin lines; see Discussion) data fits are shown.
doi:10.1371/journal.pone.0015953.g004

Figure 5. Interaction plots for maximal isometric torque (T0).
doi:10.1371/journal.pone.0015953.g005
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stiffness in older adults, as most studies focus on PF because they

are purported to make a larger contribution to activities of daily

living [67]. On the other hand, DF can generate significant torque

and contribute to ankle joint stiffness that is important for postural

stabilization [68].

It is important to note the limitations associated with these

interpretations of series-elastic stiffness. Although we only

measured aponeurosis extension in the longitudinal direction,

the aponeurosis stretches bi-axially in the longitudinal and

transverse planes [20,69]. This complex behavior results in a

variable aponeurosis stiffness [70], which we characterized with a

second-order polynomial, and made linear approximations of the

stiffness (K) at different torque values to facilitate group

comparisons. Although we assumed that the aponeurosis acts in

series with the muscle fibers and external tendon, the force

expressed across these structures may differ due to the complex

geometry of the musculotendon unit [71]. We did not normalize

the stiffness measures by the cross-sectional area and rest length of

Table 3. Parameters describing the torque-extension (TDL) data (mean6between-subjects standard deviation).

Group Mus. DLMAX (mm) aTDL bTDL KLow KMed KHigh

Young Male DF 8.461.0 0.49160.221 0.57060.643 3.5160.64 5.6260.92 7.7561.42

PF 1163.5 0.83560.697 4.2263.55 8.6162.25 11.162.75 14.664.31

Young Female DF 8.061.8 0.38660.194 0.57760.550 2.8360.59 4.7761.09 6.6961.57

PF 7.863.0 0.80960.733 4.6464.17 8.5963.61 10.864.48 14.166.22

Young Average DF 8.261.4 0.43960.208 0.57460.597 3.1760.62 5.2061.01 7.2261.50

PF 9.463.3 0.82260.715 4.4363.86 8.6062.93 11.063.62 14.465.27

Older Malea DF 8.564.7 0.57860.617 0.89360.816 3.2261.75 5.3463.02 7.4564.28

PF 3.561.4 2.1065.11 1.4261.35 11.361.41 15.961.96 28.5615.2

Older Female DF 6.061.8 0.80960.678 0.19760.403 3.8161.48 6.5762.59 9.2763.67

PF 4.762.0 1.6461.73 5.5265.59 8.5562.67 11.963.40 19.1610.1

Older Average DF 7.363.3 0.69460.648 0.54560.610 3.5261.62 5.9662.81 8.3663.98

PF 4.161.7 1.8763.42 3.4763.47 9.9362.04 13.962.68 23.8612.7

Main Effectsb A A, M M - M A (PF)

Interactionsb A6M - - - - -

aOne outlier is excluded.
bSignificant main effects and interactions for age (A) and muscle (M).
DF, PF: dorsiflexors, plantarflexors.
DLMAX: maximum extension of aponeurosis.
aTDL, bTDL: shape coefficients for the TDL relation.
K: Linear stiffness coefficients at different absolute torque levels; for DF: [KLow, KMed, KHigh] = [5, 15, 30 Nm]; For PF: [KLow, KMed, KHigh] = [15, 30, 60 Nm]. Stiffness units are
Nm/mm.
doi:10.1371/journal.pone.0015953.t003

Figure 6. Second order polynomial fits to the young (solid black lines) and older (broken gray lines) torque-extension data from
the ultrasound experiments.
doi:10.1371/journal.pone.0015953.g006
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the elastic structures. Additionally, the gastrocnemius and soleus

aponeuroses are separate structures linked by transverse collagen

fibers, which can move independently during PF torque

production, i.e. there is inter-aponeurosis shear [72]. Our

ultrasound machine had insufficient resolution to make this subtle

distinction. Thus, our PF aponeurosis extension values represent

an average for the gastrocnemius and soleus (the tracking points

spanned both aponeuroses).

Antagonist Co-Activation
In measuring resultant joint torque to assess muscle function, we

made the common assumption of no antagonist co-activation

[2,5,14,22,51]. This assumption is likely false in maximal joint

torque efforts, and could cause agonist torque capabilities to be

underestimated [73], which in turn would lead to inaccurate

muscular properties. To assess possible influences of antagonistic

co-activation, we estimated the percentage of antagonistic co-

activation (%CoAct) from the isometric data of Simoneau et al. [41]

%CoActPF ~0:270 TDF z2

%CoActDF ~0:177 TPF

where TDF and TPF are the agonist DF and PF torques (Nm). For

each muscle group the antagonistic torque contribution (TAntag,

Nm) was computed as

TAntag~T
Antag
0 %CoActAntag

�
100

� �

We found that including antagonistic contributions increased

agonist DF T0 by 35% in young and 26% in older subjects, and

increased agonist PF T0 by 16% in young and 12% in older

subjects. The most pronounced change was for isometric DF, in

which the small differences between the young and old subjects

became much greater with the inclusion of antagonism (Figure 4).

This was because the younger subjects had stronger PF muscles

and therefore greater antagonistic torque during the isometric DF

trials.

Including antagonistic contributions may also influence stiffness

measurements. Agonist muscles produce more torque than the

dynamometer measures when antagonist muscles produce oppos-

ing torques. Magnusson et al. [39] demonstrated that antagonistic

influences are small but significant for PF in male adults (average

age: 37 yrs), such that Achilles tendon force was underestimated

by ,2.6% when antagonist coactivation was ignored. Lower

torques for a given tendinous extension would cause stiffness to be

underestimated. However, in the present study the degree of

underestimation would be smaller for the older subjects and the

DF muscles, since in both cases the magnitudes of the joint torques

were smaller than those measured by Magnusson and colleagues.

Our simple antagonism model assumed that antagonist co-

activation is dictated by agonist torque level alone, is independent

of joint angular velocity [74,75], and that the torque/co-activation

relation was the same for both age groups [41]. However, the

degree of antagonistic co-contraction is likely task-specific, and

may be influenced by joint angle [46,76], angular velocity [77],

and whether the muscular effort is isometric, concentric, or

eccentric [78,79]. One possibility is to use electromyography to

estimate co-activation [80], but some have questioned the

reliability of antagonist torque estimated in this manner [76].

Therefore, the exact magnitude of the co-activation adjusted

results should be viewed with caution, but the simple model used

here demonstrates the importance of including antagonism when

predicting muscular properties.

Conclusions
Many clinical studies use maximal isometric strength as a

marker of functional ability [81,82]. However, the present study

has shown additional age-related differences in the dynamic

properties of the ankle muscles, with slower concentric force

capabilities and stiffer series elasticity in the older adults. This

assessment of static, dynamic, and elastic joint properties affords a

comprehensive view of age-related modifications in muscle

function. Future work should further investigate links between

age-related differences in these properties, which together may

represent adaptations to physiological and lifestyle changes in

older adults. Since the subjects in the present study were all

healthy and active members of the community, we speculate that

these differences represent a normal aging process.
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