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Abstract
Recurrence quantification analysis (RQA) can extract the dynamics of postural control from center of pressure (CoP) data by quantifying

the system’s repeatability, complexity, and local dynamic stability through several variables. Computation of these variables requires the

selection of suitable embedding parameters for state space reconstruction (i.e. time delay and embedding dimension); however, it is unclear

how the parameters influence RQA variables when examining noisy CoP data. This study evaluated the sensitivity of RQA variables to

embedding parameter values and noise level, and assessed methods of selecting embedding parameters for CoP data. Five healthy male

subjects maintained quiet stance for 30 s while the anterior–posterior CoP was measured. The effect of noise was evaluated by adding

uniform white noise of increasing amplitude to the raw CoP signal. The magnitude of all RQA variables decreased with increasing noise

amplitude for all subjects. A sensitivity analysis was performed by systematically altering the embedding parameters for the raw data with

and without a selected level of added noise. The key result was that, for all subjects, the RQA variables were sensitive to the embedding

parameter values and the level of noise in the CoP data. Finally, the performance of false nearest neighbors and average displacement

algorithms for choosing embedding parameters was evaluated. Both methods gave clear and consistent results for all subjects with either raw

or noisy data. The results suggest that careful selection of embedding parameters is essential when using RQA to examine postural control

based on noisy CoP data.
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Information about the state of the postural control system

can be gained from the ground reaction force center of

pressure (CoP). Traditional analysis methods often utilize

scalar measures of stability, such as the mean and variance of

different CoP measures (e.g. path length, velocity, range,

etc.). These measures offer somewhat limited information

about the postural control system, particularly when the non-
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stationarity of the CoP time series is considered, as the mean

and variance of the signal have been shown to change over

time [1].

Newer techniques, based on nonlinear dynamical systems

models, provide information regarding the patterns and

structure of postural fluctuations. These methods do not

assume stationarity, and are increasingly being applied to

assess changes in the CoP signal. One such technique,

recurrence quantification analysis (RQA) [2], evaluates the

structure present in recurrence plots (Fig. 1), which are

visual representations of the recurrent patterns present in

time series data [3]. RQA quantifies the repeatability,

complexity, and local dynamic stability of dynamical

systems. Various biophysical phenomena have been studied

with RQA, including the dynamics of postural control
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Fig. 1. Plots of the recurrence matrix generated for the anterior–posterior center of pressure time series in the hard-surface-eyes-open quiet stance condition for

the older subject (left) and a young subject (right). Darkened areas represent recurrent points.
reflected in the CoP [4–8]. For example, CoP complexity

increases during quiet stance with eyes closed compared to

eyes open [4].

RQA requires reconstruction of a dynamical system’s

state space from a single scalar time series through the

process of embedding [9,10]. A common method of

embedding is to use time-delayed versions of the original

time series to reconstruct the state space, which entails

selection of a time delay (t) and embedding dimension (m).

The mathematics behind this technique were detailed by

Takens [9]. However, this work was based on noise-free

data, where practically any t and m could be chosen if they

did not violate the embedding theorem. In the presence of

noise, the choice of embedding parameters becomes

important.

If t is too small the coordinates of the vectors in the

reconstructed state space will be almost identical, with the

trajectory flattened along the main diagonal, which yields

little information about the system (i.e. ‘‘redundance’’) [11].

However, if t is too large the delay vectors become

‘‘causally disconnected’’ in time (i.e. ‘‘irrelevance’’) [11]. If

m is too low the trajectory will not be completely unfolded

and therefore will not faithfully represent the dynamics of

the system. If m is increased too much, noise will begin to

dominate the embedded space and computation cost may

become excessive [12]. These issues are important because

proper state space reconstruction is a fundamental require-

ment for meaningful RQA results.

Studies employing RQA to analyze CoP records have used

different methods for embedding parameter selection. Riley,

Balasubramaniam, and Turvey [4] used a combination of

techniques for determining t and m, including autocorrelation

and average mutual information (for t), as well as random

shuffling of the data and sensitivity analyses (for t and m);

however, the rationale behind the final parameter selection

was not clear. This study has since been cited as a basis for

RQA embedding parameter selection by others [6–8].

CoP time series contain small-amplitude fluctuations that

may reflect subtle control of the center of mass during quiet
stance, which could be masked by the presence of noise.

None of the CoP time series examined in the literature were

reported as filtered [4–8], even though some are qualitatively

quite noisy (e.g. Fig. 1 in [5]). It has been demonstrated

analytically that even a small amount of noise has the

potential to decrease the reliability of RQA calculations

[13]. However, the combined effects of noise and embedding

parameter values on RQA CoP outcome variables are

unknown.

The primary purpose of this study was to evaluate the

sensitivity of the RQA procedure to the choice of

embedding parameters and noise amplitude when recon-

structing postural control dynamics from the CoP during

quiet stance. A secondary purpose was to evaluate and

recommend methods for selecting embedding parameters

that give clear and consistent results for quiet stance CoP

data.
1. Methods

1.1. Experiment details

During quiet stance, ground reaction forces and moments were

measured from four healthy, young male subjects (age: 30 � 4.8

years, mass: 82.9 � 9.0 kg, height: 177 � 5.6 cm; mean � S.D.)

and a healthy, older male subject (52 years, 86.5 kg, 194 cm) using

a force platform (AMTI, Watertown, MA). Data were amplified

(gain = 4000, anti-alias filtered at 1000 Hz cutoff), and sampled

with a 16-bit analog-to-digital converter at 100 Hz. The position of

the CoP in the anterior–posterior direction was calculated from

these force data.

The subjects stood barefoot with arms hanging at their sides.

The feet were positioned hip-width apart, and turned outwards 108
from the sagittal plane (with the lateral malleoli and anterior–

superior iliac spines in the same sagittal plane). Data were

collected for 30 s for comparison with other studies [4–8]. All

subjects performed the postural experiment on the bare force

platform (hard surface) with the eyes open. The older subject also

performed quiet stance with the eyes closed and on a foam cushion

(soft surface).
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1.2. RQA procedure

All calculations were performed in MATLAB1 (Mathworks,

Inc., Natick, MA). Details regarding the RQA procedure, para-

meters, and variables can be found in Webber and Zbilut [14].

Briefly, the CoP data were embedded in multiple dimensions using

m copies of the original time series, with each copy shifted in time

by integer multiples of t samples. A distance matrix was created by

determining the Euclidean distances between all embedded vec-

tors. The distance matrix was scaled by dividing all elements by the

mean distance. A threshold (radius) of 20% of the mean distance

was applied, where all cells in the scaled distance matrix with

values below this threshold were identified as recurrent points to

create a recurrence matrix (Fig. 1).

Several variables were used to quantify the structure present in

the recurrence matrix. The percent recurrence (%REC) signifies

how often a trajectory visits similar locations in state space (time-

independent), computed as the percentage of recurrent points in the

recurrence matrix. The percent determinism (%DET) relates to

how often the trajectory repeatedly re-visits similar state space

locations (time-dependent), quantified as the percentage of recur-

rent points in diagonal line structures (at least three consecutive

points in length) parallel to the main diagonal. The ratio %DET/

%REC was also computed, as it may be related to changes in

physiological states [15]. Entropy (ENT), a measure of system

complexity, was quantified by the distribution of the lengths of

diagonal line segments parallel to the main diagonal. TREND, a

measure of drift and non-stationarity, was calculated from the slope
Fig. 2. (A) Raw anterior–posterior center of pressure time series measured during

(1–4) and an older subject (5). Note that only the last 10 s of each time series is show

each of the time series is indicated. (B) For the older subject, the raw data with an

factor). (C) Changes in recurrence quantification analysis variables with the additio

beside data reference individual subjects).
of the line-of-best-fit between the percentage of recurrent points in

each diagonal line and the distance of the points from the main

diagonal. MAX LINE, a measure of dynamic stability, is the length

of the longest diagonal line in the recurrence plot and is inversely

proportional to the magnitude of the largest Lyapunov exponent [3].

1.3. Effect of noise on RQA variables

To assess the effects of different amplitudes of noise on RQA

variables, increasing amounts of uniformly distributed white noise

were added to the raw CoP data for each subject (Fig. 2A and B).

White noise was used to emulate the background noise level from

the electronics used to collect the data (e.g. strain gauges, ampli-

fiers, analog-to-digital conversion process), which is present in

most CoP data. The magnitude of the added noise was equal to the

smallest difference between points in the CoP time series, multi-

plied by a scaling factor (m), which ranged from 0 to 200. For each

noise scaling level, a new white noise time series was generated and

added to the raw data. The embedding parameters were computed

on an individual basis using the raw data sets, and then were kept

constant for each of the noisy data sets. The raw and noisy data for

each subject were then evaluated using the RQA procedure.

1.4. Embedding parameter sensitivity analysis

RQA was performed on the raw CoP data from each subject

using different combinations of embedding parameters. This pro-

cess was repeated with noise added (m = 120) to approximate the
quiet stance on a hard surface with the eyes open for the four young subjects

n for clarity. The time delay (t) and embedding dimension (m) computed for

d without selected levels of added white noise are shown (m = noise scaling

n of increasing amounts of noise to the raw time series shown in A (numbers
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noise levels of CoP time series reported in the literature [4–8].

Values for t were varied from 1 to 30 samples (0.01–0.3 s) and m

from 2 to 20.

1.5. Embedding parameter selection

Similar to Riley et al. [4] we found that autocorrelation and

mutual information techniques for choosing t values were incon-

sistent, and sometimes gave exceedingly high values (t ranged

from 59 to 831 samples). Therefore, we used the average displace-

ment (AVD) method, which was developed specifically for noisy

data sets by Rosenstein, Collins, and De Luca [16]. This method

quantifies the expansion of the reconstructed trajectory from the

line of identity as a function of t, and attempts to strike a balance

between error associated with redundance and irrelevance. A value

for t was selected where the slope of the AVD curve decreased by

40% of the initial slope, as recommended by Rosenstein et al. [16].
Fig. 3. Sensitivity analysis showing changes in recurrence quantification analysis v

anterior–posterior center of pressure measured during quiet stance on a hard surface

from the analysis of the raw data; the right column shows the results from the same

were found for all subjects.
A false nearest neighbors (FNN) algorithm was used to select an

appropriate m, with Rtol and Atol set to 15 and 2, respectively (see

[12] for details). Both AVD and FNN computations were performed

over a range of different embedding parameters (Figs. 4 and 5).
2. Results and discussion

2.1. Effect of noise on RQA variables

For all subjects, the magnitude of all RQA variables

decreased with increasing noise level (Fig. 2C), supporting

the hypothesis that RQA variables are sensitive to the

amount of noise present in CoP time series. The effect of

noise on %DET values was comparable to those reported by

Thiel and colleagues for experimental laser data [13]. These
ariables as a function of time delay (t) and embedding dimension (m) for the

with the eyes open for the older subject. The left column displays the results

data set with white noise added at a scaling level of m = 120. Similar results



C.J. Hasson et al. / Gait & Posture 27 (2008) 416–422420
results stress the importance of understanding the noise

characteristics of sampled CoP data when using RQA, as

different conclusions may be reached based on differences in

background noise level rather than physiological changes.

The effect of noise is variable-specific; note that noise

amplitude had a discontinuous effect on MAX LINE, which

decreased rapidly, as only a single break at the middle of the

longest line could reduce the MAX LINE value by half.

It should also be noted that the constant radius parameter

used in the present study was chosen based on methods used

in the literature [4]. Thiel and colleagues [13] demonstrated

that the disruption of recurrent structures caused by

measurement noise could be minimized by choosing an

optimal radius. However, if noise levels are too high (>20%

of the standard deviation of the underlying process), the

RQA variables may be affected even with an optimal radius

[13].

2.2. Embedding parameter sensitivity analysis

The results of the sensitivity analysis were similar across

subjects, and across the different quiet stance conditions

examined in the older subject. Consequently, results for a

representative subject will be examined (Fig. 3). In both the

raw and noisy data, %REC decreased with increasing m and

t. This is because as m increases the trajectory is unfolded

and points become farther apart in space, and as t increases

successive state space vectors become farther apart in time.
Fig. 4. False nearest neighbors (FNN) analysis performed using different combina

unique value for the time delay, which ranged from 1 to 20 samples. Results are

m = 120) for the older subject under different visual conditions. Values for m that gi

for this data set (see insets). Similar results were found for all subjects.
In contrast, %DET was much more sensitive to the selection

of embedding parameters in the presence of added noise. For

example, at t = 15 the range of %DET values for different

embedding dimensions is only a few percent for the raw

data; however, the range is �20% for the noisy data. With

noise, values for ENT shift abruptly at t > 3. The MAX

LINE variable changed linearly with changes in embedding

parameters in the raw data, due to the number of samples

included in the reconstruction, defined by

M ¼ N � ½tðm� 1Þ�

where M is the number of reconstructed state space vectors

and N is the number of samples in the time series (N = 3000).

However, with a noisy signal, MAX LINE was very erratic

when m < 11. In both the raw and noisy data sets, TREND

was highly variable when t > 16 and m > 14. Such high

volatility suggests that caution is needed when interpreting

MAX LINE and TREND values. Although similar trends

were found from the sensitivity analysis of the data from all

subjects, the %DET values decreased more rapidly as t was

increased for the younger subjects.

2.3. Embedding parameter selection

Because of the increased sensitivity of RQA parameters

when noise is present, selection of embedding parameters is

important. The FNN analysis for the selection of m yielded

consistent results for both raw and noisy data for all subjects
tions of time delays and embedding dimensions (m). Each line represents a

shown for the raw data and raw data with added noise (noise scaling level

ve less than 1% FNN are considered acceptable; a value of m = 5 was chosen
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Fig. 5. Results of the average displacement (AVD) analysis using different time delays (t) and embedding dimensions (m) for the older subject under different

quiet stance conditions. Based on a false nearest neighbors analysis, an m of 5 was chosen (thick line). The time delays recommended for m = 5 are indicated by

vertical dashed lines, which represent a 40% decrease from the initial slope. Similar results were found for all subjects.
and conditions (Fig. 4). Kennel, Brown, and Abarbanel [12]

suggest that any m yielding a FNN percentage below 1% is

acceptable. In our data set, an m of 4 met the 1% criterion for

most values of t; we chose m = 5 to be conservative.

For the raw data of the older subject, the AVD analysis

yielded consistent results for selecting t across all conditions

(Fig. 5). Adding noise increased values for t, particularly for

the eyes-open condition (Table 1). In the eyes-closed

condition, t only increased slightly with the addition of

noise, while values for the eyes-open condition increased

more. This may be due to the differing CoP frequency

content in the eyes-closed and eyes-open conditions. Median

CoP frequencies were higher for eyes-closed than eyes-

open. Because the added noise scaling was based on the

smallest difference between two points in each time series,

the relative amount of noise was lower for the eyes-closed

condition (with its higher frequency CoP movements).
Table 1

Results for average displacement analysis for choosing time delay (t) for the

older subject

Variable Eyes open Eyes closed

Hard

surface

Soft

surface

Hard

surface

Soft

surface

t (samples)

Raw data 15 15 14 13

with added noise 31 24 16 14

Median frequency (Hz)a 0.03 0.03 0.30 0.53

a Median frequency values were the same for the raw and noisy data.
Therefore, t should be chosen with caution under high noise

conditions. Values computed for t using the AVD method for

the raw data from the younger subjects ranged from 10 to 25

samples (Fig. 2A).
3. Conclusions

When using RQA to quantify the dynamic structure

present in quiet stance from a noisy CoP time series, the

embedding parameters should be selected carefully

because of the demonstrated greater sensitivity of RQA

variables to noise. This may be due to the folding back of

high-dimensional noise into the lower-dimensional

embedded space during the reconstruction process,

causing changes in the structure of the trajectory. As

the reconstructed state space forms the basis of RQA, this

distortion may be responsible for the increased sensitivity

of RQA variables to noise. The measured CoP time series

will always contain a certain amount of noise; therefore,

researchers who study postural control should be aware of

the effect of noise when computing and interpreting RQA

variables. We also found that the FNN and AVD

techniques for selecting embedding parameters gave clear

and consistent results for the subjects and conditions

investigated in this study. The AVD method may be a

preferred technique for choosing time delays for noisy CoP

data; however, the sensitivity of the AVD method to non-

stationarity is currently unknown.
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