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may have offset any learning challenges associated with the 
more dynamically complex virtual muscle model.
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Introduction

The force produced by a muscle in response to neural input 
is dependent on the length and velocity of the muscle fibers, 
as well as the stiffness of the elastic tissue in series with 
the fibers (Hill 1938; Gordon et  al. 1966; Bahler 1967). 
Muscle dynamics, characterized by force–length, force–
velocity, and force–extension relations, play an important 
role in human movement (Hof 2003). Most prominently, 
they allow muscles to provide zero-delay compensation 
for mechanical perturbations, increasing the stability of 
the musculoskeletal system (Gerritsen et al. 1998; Kubow 
and Full 1999). Muscle dynamics also permit the storage 
and release of elastic energy, increasing the efficiency of 
movement (Cavagna 1977; Asmussen and Bonde-Petersen 
2008).

While beneficial in these respects, muscle dynamics 
may pose a challenge for the nervous system in voluntary 
movement control: how to predict the force a muscle will 
produce in response to a neural input (Jordan and Rumel-
hart 1992; Miall et al. 1993), or conversely, determine the 
neural input needed to produce a desired force (Kawato 
1990; Wolpert and Kawato 1998). The ability to perform 
this “neuromuscular transform” (Hooper and Weaver 2000) 
would be particularly advantageous when sensory infor-
mation is delayed and/or unreliable (Wolpert and Ghah-
ramani 2000). However, the transform is not trivial, as it 
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esized that subjects who learned to control a virtual limb 
using virtual muscles would improve performance faster 
and show greater generalization than those who learned 
with a less dynamically complex virtual force generator. 
Healthy adults practiced using their biceps brachii activity 
to move a myoelectrically controlled virtual limb from rest 
to a standard target position with maximum speed and accu-
racy. Throughout practice, generalization was assessed with 
untrained target trials and sensitivity to actuator dynamics 
was probed by unexpected actuator model switches. In a 
muscle model subject group (n =  10), the biceps electro-
myographic signal activated a virtual muscle that pulled on 
the virtual limb with a force governed by muscle dynamics, 
defined by a nonlinear force–length–velocity relation and 
series elastic stiffness. A force generator group (n  =  10) 
performed the same task, but the actuation force was a lin-
ear function of the biceps activation signal. Both groups 
made significant errors with unexpected actuator dynamics 
switches, supporting task sensitivity to actuator dynamics. 
The muscle model group improved performance as fast as 
the force generator group and showed greater generaliza-
tion in early practice, despite using an actuator with more 
complex dynamics. These results are consistent with a pre-
existing neural representation of muscle dynamics, which 
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requires knowledge of muscle dynamics in addition to the 
current state of the musculoskeletal system (Kistemaker 
et al. 2013). Several theories of motor control posit that the 
nervous system has knowledge of muscle dynamics and 
can perform this transform, such as theories involving force 
control (Ostry and Feldman 2003) as well as optimal feed-
back control (Todorov and Jordan 2002b). Other theoretical 
paradigms, such as the equilibrium-point hypothesis (Feld-
man 1966), do not require this transformation and instead 
rely on the control of muscle length-activation thresholds 
and spinal reflexes. Nevertheless, whether the nervous sys-
tem is capable of performing the neuromuscular transform 
remains an open question.

In contrast to muscle dynamics, neural representa-
tions of limb dynamics have been experimentally probed 
by several investigators (e.g., Atkeson 1989; Conditt et al. 
1997). Healthy adults compensate for the effects of joint-
interaction torques when reaching (Kurtzer et  al. 2008) 
and adapt to altered limb dynamics (Sainburg et al. 1999). 
There is also evidence that the nervous system can read-
ily adapt to new dynamic challenges presented by external 
objects, which range from simple rigid objects (Flanagan 
and Wing 1997), to mass-spring objects (Dingwell et  al. 
2002; Svinin et al. 2006), to objects with nonlinear dynam-
ics such as modeled cups of coffee (Hasson et  al. 2012). 
Considering these reports, it is plausible that the nervous 
system also accounts for muscle dynamics; however, there 
is little empirical evidence in support of this inference due 
to the difficulty of manipulating muscle dynamics in liv-
ing humans (Fig. 1a). While it is a relatively simple matter 
to alter limb dynamics, for instance by adding an external 
mass to a limb, changing muscle dynamics properties, such 
as the intrinsic series elasticity of an individual muscle, is 
more difficult.

There are at least two approaches to overcoming the 
challenge of manipulating muscle dynamics in living 
humans. The first is to have humans interface with an arti-
ficial replacement limb that includes models of muscle 
dynamics that can be explicitly defined and manipulated 
to probe neural representations (Fig. 1b). For the artificial 
limb to function as a true “replacement,” the neural con-
nections to the original limb must be disconnected and new 
connections made to the artificial limb. This is conceptu-
ally similar to an amputee with a myoelectrically controlled 
prosthetic limb (Kuiken et al. 2004). However, for the pur-
poses of the present study, this approach is not ideal due 
the variability introduced by cortical reorganization prior 
to receipt of the prosthetic (Hall et  al. 1990). The second 
approach is to connect a virtual myoelectrically controlled 
limb to the human in an additive manner (Fig. 1c), keeping 
the original limbs intact (e.g., Manal et al. 2002; Erdemir 
et  al. 2007; Cheng and Loeb 2008; de Rugy et  al. 2012). 
The latter approach is taken in the present study.

To test for neural representations of muscle dynamics, 
two groups of subjects were tasked with learning to con-
trol the same myoelectrically controlled virtual limb, but 
unknown to the subjects, each group used a different actua-
tor model. In a muscle model group, the measured muscle 
activity served as an activation signal to a virtual muscle 
model, which produced a force that was a nonlinear func-
tion of a contractile element’s (CE) length and velocity and 

Fig. 1   Different approaches to testing the hypothesis that the nerv-
ous system has knowledge of muscle dynamics. a A highly simplified 
diagram of the human neuromotor system showing the most direct 
experimental approach: invasively manipulate muscle dynamics prop-
erties. b A “replacement approach,” in which an artificial or virtual 
limb replaces the actual limb and the properties of the artificial/virtual 
limb’s “muscles” are manipulated. c An additive approach, which was 
taken in the present study. Here, subjects are given a virtual limb to 
control but their actual limb remains intact. Consequently, an addi-
tional sensory feedback channel is created



2107Exp Brain Res (2014) 232:2105–2119	

1 3

the stiffness of a series elastic element (SEE). A second 
force generator group performed the same task, but their 
muscle activity was linearly mapped from an activation sig-
nal to a force that actuated the virtual limb, a mathemati-
cally simpler transformation.

It was hypothesized that preexisting knowledge of mus-
cle dynamics would allow subjects who learned to control 
a virtual limb using virtual muscles to improve perfor-
mance faster and show greater generalization than those 
who learned with a non-muscle-like virtual force genera-
tor. On the other hand, if subjects approach the task as tab-
ula rasas, i.e., with no existing neural representations or 
knowledge of muscle dynamics, then compared to the mus-
cle model group, the force generator group should learn the 
task faster and show better generalization due to simpler 
dynamics. These expectations are supported by recent evi-
dence that simpler models of dynamics require less time to 
learn than more complex ones (Narain et al. 2013).

Methods

Overview

Subjects practiced a goal-directed task with a virtual limb 
driven by their muscle activity. The virtual limb was an 
intentionally simplified representation of a human limb: a 
single degree-of-freedom limb segment with a single actua-
tor. In a muscle model group (age: 25 ±  5 years; height: 
1.68 ± 0.17 m; weight: 83 ± 18 kg), online measurements 
of muscle activity served as an input to a muscle model 
actuator that drove the virtual limb. In a force generator 
group (age: 23 ± 3 years; height: 1.67 ± 0.22 m; weight: 
78  ±  25  kg), the virtual limb was driven by an actuator 
that produced a force proportional to the muscle activity. 
There were 10 subjects in each group with group assign-
ment randomized. Subjects were told that their muscle 
activity would move the virtual limb, but were not given 
specifics about the actuator dynamics. All subjects were 
healthy and free from cognitive, musculoskeletal, and neu-
rological impairments. Prior to participation, subjects read 
and signed an informed consent form approved by the local 
institutional review board.

Experimental setup

Apparatus

Subjects sat on a chair and faced a computer monitor with 
their right arm at their side, their upper arm aligned ver-
tically with their torso, and their elbow at 90° of flexion 
(0° =  fully extended). All subjects were right-hand domi-
nant. Subjects grasped a bar with their hand supinated in a 

biceps curl position. The bar was fixed and anchored to the 
floor so that subjects could pull against the immobile bar. 
A stiff foam pad was placed under the forearm, supporting 
its weight. Subjects’ arms remained in this fixed position 
throughout the experiment. This fixed position was chosen 
to minimize electromyographic artifacts due to sliding of 
muscles under surface-mounted electrodes, which would 
be exaggerated with actual limb movement (Potvin 1997).

Muscle activity measurement

Biceps muscle activity was monitored with a wireless elec-
tromyography system (Myon AG, Baar, Switzerland; band-
width: 5–1,000 Hz, latency: 16 ms). Prior to placement of 
Ag/AgCl circular disposable electrodes (Kendall™/Arbo™ 
H124SG, Covidien, UK, Commercial Ltd.,), the skin was 
shaved, rubbed with an abrasive gel (NuPrep®, Weaver 
and Company, Aurora, CO, USA), and cleaned with alco-
hol. Electrodes were positioned in a bipolar configuration 
in the center of the biceps muscle belly oriented parallel to 
the fibers with an inter-electrode distance of 2.0 cm. After 
placement, the electrodes were covered with elastic wrap 
(Coban™, 3M™, St. Paul, MN, USA). Amplified muscle 
activity was rectified and filtered using an analog fifth-
order low-pass Butterworth filter (MAX280; Maxim Inte-
grated Products, Inc., San Jose, CA, USA) with a cutoff 
frequency of 4 Hz.

Musculoskeletal model

Virtual limb

A virtual limb was created in Matlab
® (MathWorks®, 

Natick, MA, USA). The limb was a single rigid segment 
that could rotate about a hinge joint (Fig. 2a). Although 
controlled with biceps activity, the virtual limb was not 
intended to be “arm,” i.e., a variety of virtual limb geo-
metrical and inertial properties could be used to test 
the hypothesis. The segment length was 0.435  m, and 
the moment of inertia about the axis of rotation was 
0.5  kg  m2 (Hatze 1975). A lower leg inertial value was 
used because higher inertia (relative to the forearm) 
made the virtual limb easier to control. The virtual limb 
was moved by a torque from an actuator that originated 
from a fixed position 0.423  m to the right of the limb 
axis of rotation, and inserted on the limb 0.04  m along 
its length from the axis of rotation (Fig. 2a). These inser-
tion points were chosen so the actuator would experience 
a physiologically plausible range of length changes, i.e., 
about 30  mm over 60° of limb movement (Fellows and 
Rack 1987); they do not correspond to specific anatomi-
cal landmarks. These virtual limb properties remained 
the same for all subjects.
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Friction model

A frictional torque TF was added to mimic a limb rotating 
on a planar surface, based on the rotational friction model 
used in Matlab

® Simscape™. This allowed the virtual limb 
to slow down, because a single pulling actuator can only 
accelerate the virtual limb in one direction. The friction 
model also prevented the virtual limb from moving from 
rest due to spurious electromyographic signals. The friction 
model was a modified version of that used by Armstrong 
and de Wit (1996). This model assumes that TF is linearly 
proportional to the velocity up until an angular velocity 
threshold ωTH (0.005 rad/s), which makes the virtual limb 
“stick” at very low velocities. Below ωTH

and above ωTH

where ω is the virtual limb angular velocity, TBRK is the 
breakaway friction torque (0.5824 Nm, representing a coef-
ficient of static friction μs of 0.025). TC is the Coulomb 
friction torque (set to 80  % of TBRK; TC  =  0.4659 Nm), 
f is a viscous friction coefficient that was set to 1.5 Nm/
rad/s, in the range of limb damping estimates of Hatze 
(1975), and cv is a coefficient that describes the transi-
tion approximation between static and Coulomb frictions 
(cv =  10  rad/s). Note that for the purposes of the present 
study, the exact values of the friction model coefficients are 
inconsequential. An extremely large coefficient of static 
friction would not be desirable, but a range of values could 
have been used.

Virtual limb passive dynamics

An elastic torque TP acting in parallel constrained the range 
of motion of the limb, mainly to prevent the virtual limb 
from circling around the axis of rotation, such that

(1)TF = ω
f ωTH +

[

TC + (TBRK − TC) exp (−cvωTH)
]

ωTH

(2)TF =
[

TC + (TBRK − TC) exp (−cv|ω|)
]

sign(ω) + f ω.

(3)TP = ab(θ+c) − ab(−θ+c)

where a =  1.0 ×  10−15, b =  0.65, and c = −10.6. Pilot 
work showed that the virtual limb rarely contacted this 
boundary; at most only a few times throughout a practice 
session. The selected values were found through trial and 
error so that the TP would not interfere with the movement 
until the limb moved close to the right horizontal (120°), 
after which TP rose quickly to prevent the limb from mov-
ing further.

Virtual limb simulation

The hardware rectified and low-pass filtered biceps muscle 
activity was sampled using an analog-to-digital converter 
(PCI-6289; National Instruments, Austin, TX, USA). Data 
were sampled at 75 Hz and synced to the monitor refresh 
rate. The simulation steps, illustrated in Fig.  3, were as 
follows: Step 1: the rectified and low-pass filtered muscle 
activity (FEMG) was converted to a normalized excitation 
signal ranging from zero to one. The resting muscle activ-
ity level (FEMGREST) was the average FEMG at rest (see 
“Calibration” section below for details on calibration pro-
tocol). Because of measurement noise, FEMGREST could 
not be used to define when the muscle was “off” without 
introducing spurious “on” signals. This was avoided using 
a threshold of 35  % above FEMGREST to specify when a 
muscle is “on” or “off,” called FEMGTHRESH

 

Because any activity below FEMGTHRESH was consid-
ered “noise,” it was set equal to FEMGTHRESH, i.e.,

The 35 % excitation threshold was chosen by trial and 
error. A  threshold that is too low  would lead to spurious 
activations of the virtual limb actuator, but a threshold that 
is too high would reduce the ability of subjects to exert fine 
control over the actuators. To scale subject’s muscle activ-
ity, the threshold FEMGTHRESH was subtracted from FEMG 
and this quantity was divided by the maximum FEMG 

(4)FEMGTHRESH = FEMGREST + 0.35 FEMGREST.

(5)

if FEMG < FEMGTHRESH, then

FEMG = FEMGTHRESH.

Fig. 2   a Schematic of virtual 
limb with actuator. b Screenshot 
of visual display with the virtual 
limb in the starting position
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recorded during maximal voluntary contractions FEMG-

MVC (see “Calibration” section for details). For proper scal-
ing, FEMGTHRESH was also subtracted from FEMGMVC. 
This process gave a scaled excitation signal FEMGSCALED 
that ranged from 0 to 1, given by

Step 2: the normalized excitation signal FEMGSCALED was 
converted to activation by excitation-activation dynamics, 
represented as a first-order process with activation and deac-
tivation time constants of 10 and 50 ms, respectively (Win-
ters and Stark 1988). The equations governing this process 
are detailed in Hasson and Caldwell (2012). Step 3: depend-
ing on subject group assignment, the activation signal was 
converted to a force via either a force generator, which gen-
erated a force proportional to the activation signal, or via a 
nonlinear muscle model, which produced force according 
to the muscle dynamics, defined by force–length, force–
velocity, and force–extension relations (see “Muscle model 
details” section). Step 4: the force generator/muscle model 
force was multiplied by a moment arm to produce an active 
torque TA. The moment arm MA is given by MA  =  dL/
dθ (An et  al. 1983), where L is the length of the actuator, 
computed as the distance between the origin and insertion 
of the virtual muscle. Step 5: the virtual limb’s angular 
acceleration was computed by dividing the net joint torque 
(TA +  TP +  TF) by the limb moment of inertia, and Step 
6: numerical integration was performed via a fourth-order 
Runge–Kutta algorithm (Press et  al. 2007) to compute the 
angular velocity and displacement of the virtual limb.

Visual display

A visual display was created with vector-based graphics 
with OpenGL functions from the Psychotoolbox library of 
Matlab

® functions (Brainard 1997). The virtual limb was 
drawn as a simple rotating line segment (Fig. 2b). A hori-
zontal magenta reference line was drawn through the limb 
rotation axis. The starting and target positions were marked 

(6)
FEMGSCALED = (FEMG − FEMGTHRESH)/

(FEMGMVC − FEMGTHRESH).

by yellow circles drawn along the arc of the limb move-
ment path.

Muscle model details

For muscle model actuation, the motive force acting on 
the virtual limb was produced by a classic two-component 
Hill-type muscle model (Hill 1938; Zajac 1989), which 
received an excitatory input based on the measured muscle 
activity (see Fig. 3). This model (Fig. 4) included a CE and 
a SEE. The behavior of the CE was defined by a nonlinear 
force–length and force–velocity relation. The SEE behaved 
as a nonlinear spring according to a force–extension rela-
tion. Equations governing the behavior of the model are 
detailed in Hasson and Caldwell (2012).

For the purpose of testing the hypothesis, the key 
requirement was for a muscle model that reproduced the 
basic behavior of muscle: the exact parameters of the mus-
cle model were not of critical importance. For example, the 
muscle could have been modeled as one that contracts fast 
or slow, is more or less compliant, or is weak or strong. The 
properties of the muscle model were purposely made to be 
dissimilar from those of the muscle subjects used to control 
the virtual limb, the biceps brachii. This more rigorously 
tests whether there is an internal representation of muscle 
dynamics that generalizes across muscles. The gastrocne-
mius was chosen as the muscle model to be consistent with 
the chosen inertial properties (which are of a lower leg) and 
also due to the availability of muscle mechanical property 
estimates. The CE and SEE properties (i.e., force–length, 
force–velocity, and force–extension relations) were based 
on the values reported in Hasson and Caldwell (2012). 
These properties are illustrated in Fig.  4 and include: the 
optimal CE length L0 (5.8  cm), the width of the force–
length relation W (0.8), the SEE slack length LS (0.285 cm), 
three coefficients specifying the CE force–velocity relation 
a/P0, b/L0, and ε (0.29, 3.51  s−1, and 2.48, respectively), 
and two coefficients describing the SEE force–extension 
relation, α and β (409 and 12, respectively). The maximal 
isometric force F0 of the muscle was set to 1,400 N, in the 

Fig. 3   Flowchart depicting simulation procedure for the virtual limb. 
All elements of the simulation were identical for two groups of sub-
jects, except for the model of the actuator that acted on the virtual 

limb. In one group, subjects’ muscle activity served as an input to a 
muscle model, but in the other group, the muscle activity was mapped 
to a force generator (see text for details of each simulation step)
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range of young male gastrocnemius estimates in Hasson 
and Caldwell (2012). Pilot work showed that in the virtual 
limb task, this F0 required peak muscle excitation ampli-
tudes of about 20 % of maximum, which was similar to that 
used by Gordon and Ferris (2004) to prevent fatigue.

Force generator details

For force generator actuation, the virtual limb was moved 
by a force that was a linear function of an activation input 
derived from the measured muscle activity. The maximal 
force capability (F0) of the actuator was the same as the 
muscle model (1,400  N). Aside from the different actua-
tor dynamics, all other aspects of the experimental task and 
virtual limb were the same as for the muscle model group.

Experimental procedures

Calibration

After electrode placement, a calibration procedure was 
performed to scale muscle activity measurements for each 
subject. Two resting trials were captured in which subjects 
relaxed their biceps for 2  s. The average hardware-filtered 
resting muscle activity across these two trials was defined 
as FEMGREST. Next, three maximum voluntary contractions 
were performed with 30-s rest periods. Subjects were told to 
pull against the support bar as hard as possible and maintain 
the effort for 3 s. The highest value of the rectified and fil-
tered data across the three trials gave FEMGMVC. These cal-
ibration factors were then used to calculate FEMGSCALED, 
which activated the muscle model/force generator (Eq. 6).

Virtual limb task

Subjects were instructed to use their biceps muscle 
activity to move the virtual limb clockwise from the 

starting position (0°) and bring it to a stop in a target circle 
(Fig.  2b) as quickly as they could (subjects’ actual limbs 
did not move). Subjects were told to stop the virtual limb 
as close to the target circle center as possible and that the 
trial ends when limb motion ceases (<4°/s for 0.3  s). For 
reinforcement, the target circle turned from yellow to green 
when the angular error was within a success threshold of 
±4° from the target center. If the limb was brought to stop 
within the target (±4°), a “ding” sounded signaling suc-
cess; otherwise a “buzz” sounded indicating that the limb 
was not on-target. After each trial, the movement time was 
displayed, defined as the time from when the limb left the 
starting circle to when the limb stopped. Subjects’ fastest 
successful movement time was also displayed, and if a 
given trial exceeded this time the program “applauded” and 
the fastest time was updated.

Protocol

To test the hypothesis, the experimental protocol assessed 
subject’s learning rate and ability to generalize their skill. 
Subjects were asked to practice the virtual limb task for 
four blocks of 69 trials each (Blocks 1–4; 276 total trials). 
In standard target trials, the target circle was located 60° 
clockwise from the starting circle (Fig.  2a). To evaluate 
generalization, in each block, the target was moved in an 
alternating fashion every 10 trials to a near-target position 
(45°) or a far-target position (75°). A blocked experimen-
tal design, where subjects practice with all standard targets 
and then switch to all near or far targets, was not used as 
this would have eliminated the ability to examine changes 
in generalization as learning progressed—a key focus of 
the present study.

The protocol also tested the sensitivity of task perfor-
mance to the actuator dynamics. This is a check to con-
firm that the differences in the actuator models are not 
trivial, i.e., a failure to plan for the right actuator model 

Fig. 4   Two-component muscle model (a) with force–length (b), 
force–velocity (c), and force–extension relationships (d), which 
together mediate the translation of a neural activation signal into 
force. Several parameters define the relationships: the maximal iso-
metric force F0, the optimal CE length L0 and width of the force–

length relation W, coefficients specifying the CE force–velocity rela-
tion, a/P0, b/L0, and the eccentric plateau ε, coefficients describing 
the shape of the SEE force–extension relation α and β, and the SEE 
slack length LS
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should cause a large error. For this purpose, in each block, 
dynamics-switch trials were inserted on trials 25, 45, and 
65. In these trials, the actuator model was switched: the 
muscle model group was switched to a force generator and 
vice versa (the target remained at 60°). Subjects were not 
informed of the switches, and the virtual limb visual feed-
back remained unchanged. For the entire practice session, 
there were 240 standard target trials, 12 near-target shifts, 
12 far-target shifts, and 12 dynamics-switch trials.

Data analysis

Dependent measures

The three dependent measures were as follows: (1) move-
ment time, (2) absolute angular error, and (3) performance. 
Movement time is the time from when the limb left the 
starting circle to when it came to rest (<4°/s for 0.3 s). The 
absolute angular error is the absolute value of the angular 
difference between the virtual limb’s final position and the 
target center. The performance measure is a composite of 
movement time and error since subjects could trade-off 
either quantity, i.e., they could move slower and be more 
accurate, or vice versa. The performance measure is similar 
in concept to the “skill” measure used by Reis et al. (2009), 
i.e., performance is low for slow and inaccurate move-
ments, and high for fast and accurate movements. However, 
Reis et al. empirically defined the speed-accuracy trade-off 
for each subject, which was not done in the present study. 
The performance measure calculation involved several 
steps: (1) To correct for differing units of measure, move-
ment time and error was scaled to a range covering 95 % 
of the data across practice (error range: 0°–13°; movement 
time range: 0.8–2.3 s). (2) The scaled measures were rep-
resented as two orthogonal axes on a “performance” plot 
(Fig. 5). The scaled movement time and error gives a single 
point for each trial; the distance of this point from the ori-
gin represented performance. (3) The performance measure 
was multiplied by −1 so an increase represented improved 
performance, and (4) the measure was normalized to the 
performance level at the very beginning of practice by 
shifting the measure by an amount equal to the average per-
formance value for the first 5 trials (averaged across both 
groups).

Data reduction

After movement time, absolute error, and performance 
variables were computed, the standard target trials (60°; 
n  =  240) were separated from the interleaved near (45°; 
n  =  12), far (75°; n  =  12), and dynamics-switch (60°; 
n = 12) trials. For the standard trials, data were averaged in 
non-overlapping 20 trial bins (12 bins) for each subject. To 

avoid averaging out differences in the very early trials, in 
which rapid changes occurred, the first five trials were aver-
aged separately, giving 13 total bins. Exponentials were 
fit to each subject’s binned performance data (13 points) 
using a nonlinear least squares method; the time constant 
reflected the rate of performance improvement.

The near-/far-target and dynamics-switch trials were 
compared with the standard trials to assess generalization 
and sensitivity to actuator dynamics, respectively. Changes 
in skill with practice were assessed by comparing the early 
near, far, and dynamics-switch trials with the early standard 
trials, and vice versa for the late trials, i.e., the compari-
son was on a block-by-block basis. In the first block of 69 
practice trials, the three near-target trials were averaged and 
subtracted from the average for the same block of stand-
ard practice trials. This process was repeated for the far-
target and dynamics-switch trials, and for the second, third, 
and fourth practice blocks. Comparing the near, far, and 
dynamics-switch trials on a block-by-block basis reduces 
the bias due to cumulative learning effects.

Dynamics‑switch trial analysis

The muscle model to force generator switch should cause 
subjects to overshoot the target since force rises faster with 
muscle dynamics removed, and there is no way to actively 
brake or pull back the virtual limb. Such errors, if signifi-
cant, would indicate sensitivity to actuator dynamics. In the 
reverse situation, i.e., the force generator to muscle model 
switch, the force produced by the actuator should rise 
slower than expected due to unanticipated muscle dynamics 
and cause an undershoot. However, an undershoot can be 
corrected to reduce end-point errors, masking actuator sen-
sitivity. This asymmetrical behavior of the dynamics-switch 

Fig. 5   Schematic of the performance measure, which combines 
movement time (speed) and error (accuracy). Low performance is 
characterized by long movement times and/or large errors (black cir-
cles); high performance by short movement times and/or small errors 
(gray circles)
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trials is because subjects could see the virtual limb and 
attempt to correct movement errors. Typically, studies that 
use “catch” trials, in which a manipulation is turned off or 
abruptly changed, remove visual feedback of the end-effec-
tor position (Smith et al. 2006; Shmuelof et al. 2012). Vis-
ual feedback was not removed during the dynamics-switch 
trials because it would otherwise be difficult to conclude 
whether an observed error was due to the altered actuator 
dynamics or the sudden absence of sensory feedback. In 
contrast to most human motor learning studies, only visual 
feedback of the virtual limb was available to subjects, and 
therefore, removal of this feedback served as a relatively 
large perturbation.

To address the correctible nature of the force generator 
to muscle model switch, a multistep procedure was used to 
detect the presence of corrective actions and simulate how 
the virtual limb would have moved if corrections were not 
made. This procedure is illustrated in Fig. 6. First, the Mat-
lab

® function findpeaks was used to identify peaks in the 
virtual limb angular velocity profile. A corrective action 
was defined by the presence of more than one peak sepa-
rated by at least 150 ms and 10°/s. If there was a correc-
tion, starting from the time of the second peak (PVEL) and 
moving backward in time, the closest peak in the activation 
signal was selected (PACT). Moving further back in time, 
the next local minimum in the activation signal (LMINACT) 
at least 5  % lower than the activation peak was selected. 
The position and velocity of the virtual limb at LMINACT 
was used as an initial condition and a simulation performed 

to see where the virtual limb would have come to rest if the 
corrective action was not taken (activation was assumed to 
remain at LMINACT). Trials with the corrections removed 
were then incorporated into the statistical analysis.

Statistical analysis

A linear mixed-effects model with repeated measures was 
used to test for differences (p  <  .05) between the muscle 
dynamics and force generator groups. The dependent vari-
ables were movement time, absolute angular error, and per-
formance. Fixed factors were group (muscle model or force 
generator) and practice; the subject identification number 
was a random factor. A Toeplitz covariance structure was 
used as this gave the lowest Akaike and Bayesian infor-
mation criterions (Akaike 1974; Schwarz 1978). For each 
dependent variable, group differences within each block 
were tested with independent samples t tests. Group dif-
ferences in the performance improvement rate, defined by 
the time constant of the exponential fit to the performance 
measure, were tested using an independent samples t test.

Results

The results are presented in three sections. The first presents 
data from individual subjects and describes the raw data. 
The second presents the group learning rate and generaliza-
tion findings, which test the hypothesis. The third shows the 

Fig. 6   Example of force generator to muscle model dynamics-switch 
trials in which the subject made a single uncorrected movement (a) 
and one with a correction (b). A correction was characterized by a 
double-peaked virtual limb angular velocity profile. Working back-
ward in time from the second velocity peak (PVEL), the peak activa-

tion (PACT) was identified, followed by the minimum activation prior 
to the second activation peak (LMINACT). Thresholds were used 
to prevent misidentification. The movement of the virtual limb was 
simulated from LMINACT onward to see where the limb would have 
stopped without the corrective action (dashed lines)
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results from the dynamics-switch trials, which quantified 
the sensitivity of the task to the actuator dynamics.

Muscular activity patterns and virtual limb kinetics 
and kinematics

Figure  7 shows hardware-filtered excitation signals (gray 
lines) recorded from the biceps muscle and corresponding 
activation profiles (black lines) for five trials in early and 
late practice for one subject in the muscle model group. As 
shown, the conversion from excitation to activation has a 
smoothing effect. The conversion to activation was done in 
both muscle model and force generator groups (Fig. 3; Box 
2). Early practice trials (Fig. 7a) are marked by high-var-
iability between-trials in both the amplitude and duration 
of muscle activity. These features became more consist-
ent with practice (Fig.  5b). Virtual limb movement typi-
cally stopped with some delay after activation ceased (limb 
movement onset/offset indicated by vertical dashed lines). 
During this time, the modeled frictional forces acted on the 
virtual limb to bring it to a stop.

The virtual limb kinematics and muscle model CE kin-
ematics and kinetics are shown for one muscle model group 
subject in Fig.  8. Twelve consecutive late standard target 
practice trials (of 240 total trials) are shown (A). For the 
near-target (B), far-target (C), and dynamics-switch (D) 

conditions, there were only 12 trials (all are shown). The sub-
ject shown in Fig. 8 was able to maintain accuracy on most 
trials for the near- and far-target trials (Fig. 8a, b). However, 
a large decrement in accuracy and increase in movement 
speed (steeper slope of angle vs. time) can be seen for many 
of the dynamics-switch trials (Fig.  8d). Of these, only two 
trials made it into the target region; however, these trials 
were associated with slower virtual limb movements.

The data presented in Fig.  8 also show how the CE 
experienced substantial changes in length and velocity, 
and therefore, the muscle model group had to contend 
with the nonlinear aspects of the muscle dynamics. Before 
the virtual muscle was activated, the CE was 27 % longer 
(1.27 L0) than its optimal length. After activation, the CE 
shortened past the optimal length, and continued shorten-
ing throughout the movement, ending at lengths of 0.75, 
0.57, and 0.43 L0 for the near-, standard-, and far-target 
positions, respectively (assuming the limb is at rest on-tar-
get). The average maximum CE velocity was 1.25 ± 0.43, 
2.17 ± 0.21, and 1.82 ± 0.52 L0/s for the near-, standard-, 
and far-target positions, respectively (mean ± SD).

Task performance and generalization

For the standard target position, subjects decreased their 
movement time and absolute angular error with practice, 

Fig. 7   Example of hardware-
filtered biceps excitation (gray 
line) and computed-activation 
(black line) profiles for five 
trials in early (a) and late (b) 
practice for one subject in 
the muscle model group. The 
activation signals were used 
as control inputs to a muscle 
model that actuated a virtual 
limb. For reference, the two 
dashed vertical lines denote the 
onset and offset of virtual limb 
motion. Note that the end of 
virtual limb movement typically 
occurred sometime after the end 
of activation; during this period 
frictional forces brought the 
limb to a stop
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and hence, their performance increased (main effect of 
practice; p < .001 for all three measures; Fig. 9a). In these 
standard target trials, there were no differences between the 
muscle model (black bars) and force generator (gray bars) 
groups for movement time, error, and performance, and in 
neither group, did these measures change faster than the 
other (p > .05). The learning rate time constants for the fit-
ted exponentials for both groups did not differ from each 
other (24.7 ± 11.2 vs. 19.0 ± 13.4 trials for muscle model 
and force generator groups, respectively; p  >  .05). The 
absolute angular speed of the virtual limb did not differ 
between the muscle dynamics and force generator groups 
(36 ± 5 vs. 35 ± 6°/s, respectively; p = .768) over the last 
30 standard target trials. Similarly, the average maximum 
angular speed did not differ between the muscle dynam-
ics and force generator groups (52  ±  6 vs. 52  ±  7°/s, 

respectively; p  =  .889) over the last 30 standard target 
trials.

To test generalization, the target shifted every 10 trials, 
alternating between near and far positions. Performance 
on these trials, relative to the standard target trials on the 
same practice block, is shown in Fig. 9b, c (i.e., the Block 
1 near-target measures are relative to the Block 1 standard 
target measures, Block 2 near target is relative to Block 2 
standard, and so on). For these relative measures, positive 
movement times and errors reflect slower and/or less accu-
rate virtual limb actions compared to the standard target tri-
als. A positive relative performance value reflects improved 
performance relative to the standard trials.

There were several differences in generalization between 
the muscle model and force generator groups in early prac-
tice (Block 1). Specifically, the muscle model group had 

Fig. 8   Exemplar virtual limb angle and muscle model kinetics and 
kinematics for one subject in the muscle dynamics group in each of 
the four conditions. From left to right, each column represents tri-
als with the standard target position (a; 12 consecutive late practice 
trials), interleaved trials with near and far targets (b, c), and trials in 

which the muscle model was unexpectedly replaced with a force gen-
erator (d). The length and velocity of the contractile element (CE) are 
shown, based on the muscle model shown in e. Data are aligned to 
the onset of the virtual limb movement
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smaller relative errors and greater relative performance 
for both near (error: p = .005; performance: p = .048) and 
far targets (error: p = .003; performance: p = .041). There 
were also significant overall practice effects. For the near-
target practice, Block 1 had shorter relative movement 
times than Blocks 2–4 (p =  .004), and for the far target, 
Block 1 had greater relative performance transfer than 
Block 4 (p  =  .004). An overall interaction was observed 
in the near-target condition, such that the relative error for 
the force generator group remained relatively constant, but 
the muscle model group relative error grew over practice 
(p = .028).

Dynamics‑switch trials

Dynamics-switch trials were used to test the degree to 
which the task performance was sensitive to the proper-
ties of the actuators. In these trials, the actuator model was 
unexpectedly switched: muscle model to force generator 
and vice versa. The former switch caused target overshoots 
and the latter undershoots. While an overshoot could not be 
corrected, it was possible to correct an undershoot. Such 
corrective actions may mask the effects of the dynamics 
switch. This was addressed by identifying and removing 
corrective submovements for the force generator to muscle 

Fig. 9   Average movement time, absolute angular error, and perfor-
mance for the muscle model (black bars) and force-generator (gray 
bars) groups. The performance measure combines both movement 
time and accuracy; a higher performance value reflects a movement 
that was faster and/or more accurate. For performance, values are 
normalized to the average performance in the first five trials across 
both groups. Results shown for trials with the standard target posi-
tion (a) and interleaved generalization trials with the target in a near 
position (b) or a far position (c). Also shown are trials in which 
the actuator model in the muscle model group was unexpectedly 
switched to a force generator, and vice versa for the force generator 

group (d). The former switch generally caused target overshoots, and 
the latter undershoots. Because in the task an undershoot was cor-
rectible, the effects of the dynamics switch were masked. This was 
addressed by identifying and removing the corrections and simulating 
how the uncorrected movement would have unfolded. For b–d, the 
data are expressed relative to performance on the standard target tri-
als averaged over the same period. For b–d: *significant main effect 
of group; **significant overall practice effects; ***significant group 
difference in a specific practice block. For the standard trials (a), all 
three measures had main effects of practice, but no group differences. 
Standard errors shown
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model switch, and simulating the uncorrected movements. 
The results, with removed corrections, are shown in 
Fig. 9d. Subjects made significant errors on the dynamics-
switch trials. For both groups, the movement time, error, 
and performance were all different from zero (significant 
model intercepts: p  <  .001). There were no group differ-
ences for error and performance (p =  .108 and p =  .852, 
respectively); however, compared to the muscle model 
group, the force generator group’s movement times became 
shorter after the dynamics switch (group main effect: 
p < .005). Note that this does not necessarily indicate bet-
ter performance because the virtual limb stops sooner on 
undershoots compared to overshoots that move further past 
the target. There were no overall practice effects or interac-
tions for movement time, error, and performance (p > .10).

Discussion

If the nervous system has knowledge of muscle dynam-
ics, it was hypothesized that subjects who practiced con-
trolling a virtual limb with virtual muscle actuators would 
improve performance faster and show greater generaliza-
tion than those who learned with force generator actuators. 
On the other hand, if subjects do not leverage their knowl-
edge of muscle dynamics, the force generator group was 
expected to show faster improvement and better generaliza-
tion because the force generator requires a mathematically 
simpler transformation from neural activation to force. The 
results provided partial support for the hypothesis: there 
were no differences in the learning rate between the groups; 
however, the muscle model group showed better generali-
zation than the force generator group, but only in early skill 
acquisition. Each of these findings and the degree to which 
they are consistent with a neural representation of muscle 
dynamics is now discussed.

Task performance and generalization

Despite using markedly different actuators, there were no 
learning rate differences between the muscle model and 
force generator groups. This is noteworthy because the dif-
ferences between actuator model dynamics were not minor. 
As demonstrated by the dynamics-switch trials, failure to 
plan for the correct actuator model caused (or would have 
caused without corrective actions) significant end-point 
errors. This raises the question: why did subjects who used 
the more complex muscle model learn just as fast as those 
who learned with the simpler force generator?

It was expected that if subjects were truly tabula rasas, 
i.e., they had no prior knowledge of muscle dynamics, sub-
jects who practiced with the muscle model would have had 
more difficulty learning the task compared to subjects who 

used the simpler force generator. This follows Narain et al. 
(2013), who demonstrated that more complex models of 
dynamics require more time to learn than simpler models. 
A preexisting neural representation of muscle dynamics 
may have provided a jump start on the learning process, 
negating the learning rate penalty that would normally be 
expected with more complex dynamics. Note that here 
“complexity” is operationally defined in terms of the input–
output behavior of the two actuator models: the muscle 
model force is dependent on several nonlinear functions but 
the force generator force depends on a single linear func-
tion. What the nervous system views as “complex” cannot 
be answered in the present study.

An alternative explanation for lack of learning rate dif-
ferences is that the intrinsic stabilizing properties of muscle 
could have simplified control (Brown and Loeb 1999), mit-
igating the learning rate penalty associated with more com-
plex dynamics. However, active stabilization of the virtual 
limb did not play a large role in the present study. There 
were no unexpected force perturbations to the virtual limb, 
and end-point stabilization was not necessary because the 
modeled frictional forces brought the limb to a stop. Also, 
since there was only one muscle subjects could not modu-
late the virtual limb’s impedance through co-activation of 
antagonist muscles (Hogan 1984).

Turning now to the generalization of performance, the 
hypothesis was supported as the muscle model group had 
improved performance transfer compared to the force gen-
erator group, but only in early practice. Improved early 
practice generalization suggests that subjects’ prior experi-
ence controlling muscles may have provided an advantage 
in interpolating/extrapolating their muscle activation strate-
gies to new task configurations. However, the group gener-
alization differences were washed-out as subjects became 
more practiced in the task. This could be because the early 
generalization trials were a more accurate reflection of the 
“initial conditions,” i.e., what neural representation(s) sub-
jects possessed before the experiment. Any advantage that 
this may have provided the muscle model group early in 
practice may have been diminished as the force generator 
group continued to practice the task.

Although the critical comparison was between the mus-
cle model and force generator groups, the exceptional per-
formance transfer exhibited by the muscle model group 
in early practice is notable. This is consistent with others 
who have studied relatively simple tasks and showed nearly 
complete generalization of performance (Gordon et  al. 
1994; Morton et  al. 2001). However, for the near target, 
the muscle model group appeared to have greater perfor-
mance compared to the standard trials. This is in part due 
to nonlinearities in the early standard trial practice data, 
i.e., disproportionally large errors were made on the very 
early trials, a typical feature of motor learning. Because the 
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performance measures for the generalization trials were rel-
ative to the standard trials, these larger initial errors inflate 
the average early practice error and exaggerate the degree 
of generalization. When the analysis was redone excluding 
the very early practice trials (first 5 trials), generalization 
for the near and far targets decreased, but the group dif-
ferences remained. Another factor contributing to the high 
degree of generalization for the near target is that subjects 
had less distance to move, which would tend to decrease 
error and therefore increase the performance measure.

It was also observed that as both groups progressed in 
the practice session, performance on the far target steadily 
declined, but near-target performance remained relatively 
flat after the first practice block. This could be because as 
subjects become more skilled they make less overshoot 
errors and therefore pass through the far target less fre-
quently compared to the near target. As practice progresses, 
subjects continue to move through states associated with 
the near target, but have fewer exposures to the far-target 
states. Therefore, subjects maintained comparatively better 
performance on the near-target generalization trials.

Task sensitivity to actuator dynamics

A prerequisite to testing the hypothesis was to verify that 
performance of the task was sensitive to the properties of 
the actuator models. That is, subjects should make sig-
nificant errors if the actuator dynamics are unexpectedly 
changed after adaptation. When the muscle model actua-
tor was switched to a force generator, subjects made large 
overshoot errors. With the muscle model, force is depressed 
upon initial activation because the CE shortens rapidly as 
it begins to produce force and stretches the series elastic 
element. Since the force generator did not have a force–
velocity relation or series elastic element, force rose faster 
than anticipated after the dynamics switch. This caused 
the virtual limb to accelerate rapidly and quickly pass a 
point where it could not be stopped before passing the tar-
get (e.g., Fig. 8d), as there was no antagonistic actuator to 
actively brake the virtual limb or pull it back to the target 
once passed.

In the force generator to muscle model switch, instead 
of force rising in lockstep with activation, which occurred 
with the force generator model, the shortening of the sud-
denly present CE made the limb respond more sluggishly, 
producing less force initially and throughout limb move-
ment due to force–length–velocity properties. This unex-
pected force depression will cause an undershoot, which 
can be corrected with additional control inputs, reduc-
ing the final end-point error. To address this in trials with 
undershoot corrections, virtual limb movement was simu-
lated to see where the limb would have ended up without 
the correction. This showed that the subjects would have 

indeed made undershoot errors, supporting the conclu-
sion that task performance was sensitive to the actuator 
dynamics.

The observed under/overshoot errors are consistent with 
a motor plan tuned to the dynamics of a particular actua-
tor model, which became inappropriate when the dynam-
ics were altered. In principle, this effect is similar to what 
is observed for catch trials in experiments that apply force 
fields (Gandolfo et  al. 1996) or visuo-motor rotations 
(Caithness et  al. 2004), which cause directionally specific 
movement errors that are gradually eliminated with motor 
adaptation. In those paradigms, when the manipulation is 
turned off, an aftereffect is observed that causes error to 
increase in a direction opposite to the pre-adapted state and 
is cited as evidence for model-based prediction (Shadmehr 
and Mussa-Ivaldi 1994). In the present study, the virtual 
dynamics could not be turned off, only switched from one 
form to another.

Limitations

There are several limitations that should be considered 
when interpreting the results of this study: (1) Although 
the muscle model had force–length, force–velocity, and 
force–extension relations, many other properties were 
not included, e.g., history-dependent force enhancement 
and depression (Edman et al. 1978, 1993). Also, architec-
tural properties such as pennation angle, which influence 
fiber shortening velocities, were not modeled (Spector 
et  al. 1980). (2) The virtual task aimed to mimic actions 
performed in everyday activities that do not involve high 
forces, e.g., comfortable-speed elbow flexion movements 
elicit biceps muscle activation below 10  % of maximum 
(Koo and Mak 2005). Experimental outcomes may be 
different for tasks that drive actuators near their force-
generating limits. (3) Proprioceptive information about 
the state of the virtual muscle and limb was absent. This 
limitation is shared by recent studies using virtual limbs 
(e.g., de Rugy et  al. 2012). Even though the propriocep-
tive information was missing, this was consistent among 
the experimental groups, and subjects in both groups were 
able to significantly improve their control of the virtual 
limb. This supports the ability of humans to acquire inter-
nal models of external dynamics with only visual feedback 
(Radhakrishnan et  al. 2008). (4) Generalization was only 
tested over a limited range. Previous work has shown that 
generalization usually decreases as task conditions deviate 
further from the trained condition (Donchin et al. 2003). It 
is unclear whether the results will hold under more extreme 
generalization tests. (5) Subjects had to learn virtual limb 
dynamics in addition to actuator dynamics. However, any 
group differences in performance can be ascribed to actu-
ator dynamics because the virtual limb dynamics (i.e., 
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inertial properties and passive torques) were identical 
across experimental groups. Removing the limb dynamics, 
for instance, by having subjects learn to control an abstract 
representation of force amplitude (e.g., Gordon and Fer-
ris 2004), would detract from in vivo conditions, in which 
muscles are attached to articulated limbs. (6) The virtual 
limb model was a grossly simplified model of a human 
limb; the results may change with a more complex model. 
Making the virtual limb model more complex, for example, 
by adding more muscles, muscle properties, or kinematic 
degrees-of-freedom, would increase physiological accu-
racy, but may do so at the cost of decreasing the interpret-
ability of the data. Because of these reasons, and because 
this study represents an initial test of the hypothesis, a sim-
ple model was used.

Considerations

There are two considerations related to the experimental 
design that merit discussion. The first is whether simulta-
neous sensory feedback from the actual and virtual limbs 
influenced subjects’ perception of the task, which could 
in turn affect the results. The virtual limb feedback shows 
a moving limb, but feedback from the actual limb signals 
a stationary limb (subjects’ limbs were restrained). While 
this discrepancy would make it difficult to convince par-
ticipants that the virtual limb movements reflected those of 
their actual limb, this was not the goal of the present study 
and was not a requirement for testing the hypothesis. The 
second consideration relates to how subjects used error 
information to improve their performance in the virtual 
limb task. Between the actual and virtual limbs, only the 
virtual limb display provided error information pertinent 
to the task goal, and therefore, only the virtual limb feed-
back should have been used to correct the actions of the 
virtual limb minimum intervention principle; Todorov and 
Jordan 2002a. While subjects also received feedback from 
their own limbs, the states (positions and velocities) of their 
limbs did not affect the task goal. Only the biceps-derived 
activation signal was causally linked to the movement of 
the virtual limb and task goal.

Conclusions

This study represents an initial investigation into whether 
the nervous system accounts for muscle dynamics in volun-
tary movement control. The results demonstrated that when 
learning to control a virtual limb, subjects who used mus-
cle models, in which the actuation force was a function of 
nonlinear force–length–velocity relations and a series elas-
tic stiffness, learned at the same rate as those whose mus-
cle activity was directly translated into a force via a simple 

force generator. In addition, during early skill acquisition, 
subjects using the muscle model were better able to trans-
fer what they learned to different task conditions, but this 
advantage was lost with practice. Together, these results are 
consistent with a preexisting neural representation of mus-
cle dynamics. If subjects had no prior neural representation 
of muscle dynamics, the more challenging muscle model 
dynamics should have taken longer to learn and been more 
difficult to generalize, but familiarity with muscle function 
may have offset this disadvantage.
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