$2 / 23 / 2024$
On the geometry and topology of polynomials

1. Roots of polynomials.

- A polynomial (in a single variable x) of degree n with coefficients in \mathbb{C}

$$
P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}\left(a_{i} \in \mathbb{C}, q_{q} \neq 0\right)
$$

- The coots of P are the solutions to the (polynomial) equation $P(x)=0$.
- To solve such an equation, we may as well divide P by as and only consider monic polynomials,

$$
P(x)=x^{n}+a_{1} x^{n-1}+\cdots 0+a_{n}
$$

- By the Fundamental Theorem of Algebra, every non-coustant polynomial completely factors into a product of linear factors:

$$
P(x)=\left(x-z_{1}\right) \cdots\left(x-z_{n}\right)
$$

where $z_{1},=, z_{n}$ are the roots of P.

- The coefficients of P may be recovered from its roots as the elementary symmetric polynomials in those roots (u pto sign):

$$
\left\{\begin{array}{l}
a_{1}=-\left(z_{1}+z_{2}+\cdots+z_{n}\right) \\
a_{2}=\sum_{i<j} z_{i} z_{j} \\
\vdots \\
a_{n}=(-1)^{n} z_{1} \cdots z_{n}
\end{array}\right.
$$

- These formulas were discovered by Françis Viète in the late 1500 s.

2. Ischirnhaus transformations

- Linear equations!

$$
x+a_{0}=0 \longrightarrow x=-a_{0}
$$

- Quadratic equations (complete the square)

$$
x^{2}+a_{1} x+a_{2}=0 \quad \text { [Babylonians] }
$$

Set $y=x+\frac{a_{1}}{2} \longrightarrow\left(y-\frac{a_{1}}{2}\right)^{2}+a_{1}\left(y-\frac{a_{1}}{2}\right)+a_{2}=0$

$$
\begin{gathered}
\rightarrow y^{2}-\frac{a_{1}^{2}}{4}+a_{2}=0 \rightarrow y= \pm \frac{\sqrt{a_{1}^{2}-4 a_{2}}}{2} \\
\therefore x=-\frac{a_{1}}{2} \pm \frac{\sqrt{a_{1}^{2}-4 a_{2}}}{2}
\end{gathered}
$$

- In general, we may get rid of the coefficient of x^{n-1} by making the substitution

$$
\begin{gathered}
Y=x+\frac{a_{1}}{n} \\
\rightarrow x^{n}+a_{1} x^{n-1}+\cdots=\left(y-\frac{a_{1}}{n}\right)^{n}+a_{1}\left(y-\frac{a}{n}\right)^{n-1}+\cdots \\
=\left(y^{n}-a_{1} y^{n-1}+\cdots{ }^{n}\right)+\left(a_{1} y^{n-1}-\cdots \cdot\right)+\cdots \\
=y^{n}+\left(a_{2}-\frac{n-1}{2 n} a_{1}^{2}\right) y^{n-2}+\cdots
\end{gathered}
$$

- Thus, it is enough to consider "depressed" polynomials,

$$
P(x)=x^{n}+a_{n-2} x^{n-2}+\cdots+a_{n-1} x+a_{n}
$$

- How to solve the depressed cubic equation,

$$
P(x):=x^{3}+a_{2} x+a_{3}=0
$$

- We perform a quadratic Substitution, due to Tschirnhans [1638]

$$
y=s(x)=x^{2}+b_{2} x+b_{3}
$$

- Then y also satisfies a roomier cubic polynomial,

$$
Q(y):=y^{3}+c_{1} y^{2}+c_{2} y+c_{3}=0
$$

- We may compute the coefficients of Q using /Vieta's formulas
- Let x_{1}, x_{2}, x_{3} be the roots of P $y_{i}=S\left(x_{i}\right)$ the roots of Q
- Then:

$$
\begin{cases}x_{1}+x_{2}+x_{3}=0 & y_{1}+y_{2}+y_{3}=-c_{1} \\ x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}=a_{2} & y_{1} y_{2}+y_{1} y_{3}+y_{2} y_{3}=c_{2} \\ x_{1} x_{2} x_{3}=-a_{3} & y_{1} y_{2} y_{3}=-c_{1}\end{cases}
$$

- Hence:

$$
\begin{aligned}
C_{1} & =-\left(s\left(x_{1}\right)+s\left(x_{2}\right)+s\left(x_{3}\right)\right) \\
& =-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+b_{2}\left(x_{1}+x_{2}+x_{3}\right)+3 b_{3}\right) \\
& =-\left[\left(x_{1}+x_{2}+x_{3}\right)^{2}-2\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)+b_{2}\left(x_{1}+x_{2}+x_{3}\right)+3 b_{3}\right] \\
& =-\left[0-2 a_{2}+b_{2} 0+b_{0}\right] \\
& =2 a_{2}-3 b_{3}
\end{aligned}
$$

- Similarly:

$$
\begin{aligned}
c_{2}= & a_{2} b_{2}^{2}+a_{2}^{2}+a_{3} b_{2}-4 a_{2} b_{3}+3 b_{3}^{2} \\
c_{3}= & a_{3} b_{2}^{3}-a_{2} b_{2}^{2} b_{3}+a_{2} a_{3} b_{2}-a_{2}^{2} b_{3}-3 a_{3} b_{2} b_{3} \\
& +2 a_{2} b_{3}^{2}-b_{3}^{3}-a_{3}^{2}
\end{aligned}
$$

- The goal is to choose $b_{2} \& b_{3}$ such that the equation $Q(y)=0$ will slepend on a single parameter, i.e: $C_{1}=C_{2}=0$.
- We get:

$$
\begin{aligned}
& b_{3}=\frac{2}{3} a_{2} \\
& b_{2}=\frac{-3 a_{3}-6 \sqrt{\frac{a_{3}^{2}}{4}+\frac{a_{2}^{3}}{27}}}{2 a_{2}}
\end{aligned}
$$

- Plugging these values into C_{3} and solving the equation $y^{3}=-c_{3}$, we get 3 roots

$$
y_{1}=\frac{6}{a_{2}} \sqrt{\left(\frac{a_{3}}{2}\right)^{2}+\left(\frac{a_{2}}{3}\right)^{3}} \cdot \sqrt[3]{-\frac{a_{3}}{2}+\sqrt{\left(\frac{a_{3}}{2}\right)^{2}+\left(\frac{a_{2}}{3}\right)^{3}},}, \begin{aligned}
& y_{2}=y_{1} \cdot 3 \\
& y_{3}=y_{1} 3^{2}
\end{aligned}
$$ where $J=e^{\pi i / 3}=\frac{-1+i \sqrt{3}}{2}$.

- Finally, we go back to the equation $x^{2}+b_{2} x+\left(b_{3}-y\right)=0$ and solve for x.
- In the end, the 3 roots of $P(x)=0$ are:
where

$$
x_{1}=v+v, x_{2}=u s+v s^{2}, x_{3}=u s^{2}+v s
$$

$$
\begin{aligned}
& u=\sqrt[3]{-\frac{a_{3}}{2}+\sqrt{\left(\frac{a_{3}}{2}\right)^{2}+\left(\frac{a_{2}}{3}\right)^{3}}} \\
& v=\sqrt[3]{-\frac{a_{3}}{2}-\sqrt{\left(\frac{a_{3}}{2}\right)^{2}+\left(\frac{a_{2}}{3}\right)^{3}}}
\end{aligned}
$$

are chosen so that $u v=-\frac{a_{3}}{2}$

- These are Carblano's formulas, which he attributed to del Ferro and Tartaglia
- A similar method solves the quartic (Ferrari)
- The method breaks down for the quintic, which cannot be solved by radicals alone: Ruffini (1799-1813), Abel (1824), Galois (1832)

3. The Bring radical

- Using Tschmihaus transformations, a general quintic equation can be brought to the form

$$
P(x):=x^{5}+a_{3} x^{2}+a_{4} x+a_{5}=0
$$

- As shown by Bring (1796) anol Jerard (1852) one can eliminate one more parameter and bring it to the form

$$
y^{5}+b_{4} y+b_{5}=0
$$

via a cubic Tischirnhaus transformation.

- The Bring - Jerrard form can be further reduced by setting $z=y\left(-b_{9}\right)^{-1 / 4}$. We get:

$$
z^{5}-z+a=0
$$

where $=b_{5}\left(-b_{4}\right)^{-5 / 4}$.

- The Bring radical of a , denoted Br (a), wis any one of the 5 solutions of this equation
- Upshot: One can solve the quintic by using the field operations on \mathbb{C} and the functions $\sqrt{-}, \sqrt[3]{ }, \sqrt[2]{-}$, and Br. For short: the mantic cam be solved by radicals anal the Ing radical.

4. Hilbert's thirteenth problem

- A general polynomial equation of olegreen can be brought to the form.

$$
P(x)=x^{n}+b_{1} x^{n-4}+\cdots+b_{n-4} x+1=0
$$

- Thus, the solutions to such equations can be expressed in terms of functions of at most $n-4$ variables
- For $n \leq 5$, those functions are $\sqrt{3}, 3,4$, Br.
- Hebert asked (at ICM 1900) whether this is an optimal bound, or whether the number of variables can be decreased
- Define the resolvent olegree

$$
\frac{\operatorname{RD}(n)=\min \left\{d \left\lvert\, \begin{array}{c}
\exists \text { formula using only } \\
\text { algebraic frimctivns } \\
\text { of degree } \leq d
\end{array}\right.\right\}}{\text { - RD (n)=1 fur } n \leq 5}
$$

5. Braid groups

Braid on 3 strands

Not a braid

same braids (isotopic)

- Composition of braids:

- With this operation, the set of all bride on n strands, B_{n}, becomes a group.
- Identity: !...!
- Inverse: reversed braid $r^{-1}=Y_{1}$
- The n-th braid group B_{n} is generated by the elementary braids $\sigma_{1}, \ldots, \sigma_{n-1}$:

Subject to the relations
(b)

(2)

$$
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
$$

- Egg.:

$$
\begin{aligned}
& 0 \text { E.g: } \quad B_{2}=\left\{\sigma_{1}^{n}: n \in \mathbb{Z}\right\} \cong \mathbb{Z} \\
& B_{3}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{,} \sigma_{2}\right\rangle \\
& B_{4}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3} \left\lvert\, \begin{array}{ll}
\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2} & \sigma_{1} \sigma_{3}=\sigma_{3} \sigma_{1}
\end{array}\right.\right\rangle
\end{aligned}
$$

6. Ordered configurations

- Let M be a topological space.
- For each $n \geqslant 1$ let $M^{n}=\underbrace{M \times \min \times M}_{n \text { times }}$ (with product topology).
Definition The ordered configuration space of n points in M is the space

$$
\operatorname{Conf}_{n}(M)=\left\{\left(m_{1}, \ldots, m_{n}\right) \in M^{n} \mid m_{i} \neq m_{j} \text { for all } i \neq j\right\}
$$

If M is a manifold of dimension d, then Conf $f_{n}(M)$ is a manifold of dimension dun
Eg:

$$
\begin{aligned}
& \operatorname{Conf}_{1}(M)=M \\
& \operatorname{Conf}_{2}(M)=M \times M>\Delta \quad(\Delta=\text { diagonal }) \\
& M \Delta \Delta \operatorname{Conf}(M)
\end{aligned}
$$

- Suppose M is connected. Then
- If $d=$ and $n \geqslant 2$, then $\operatorname{Conf}_{n}(m)$ is disconnected.
- If $d \geqslant 2$, then Confine (M) is connected.
- Suppose now $M=G$ is a topological group $\left(e, q, \mathbb{Q}=\mathbb{R}^{2}, \mathbb{C}_{;} ; \mathbb{C}^{-x}=\mathbb{C}\{0\}, S^{\prime}\right.$, etc)
Then

$$
\begin{aligned}
& \operatorname{Conf}_{n}(G) \xrightarrow{\rightsquigarrow} G \times \operatorname{Conf}_{n-1}\left(G \backslash\left\{e^{2}\right)\right. \\
& \left(g_{1}, \ldots, g_{n}\right) \xrightarrow{\longrightarrow}\left(g_{1},\left(g_{1}^{-1} g_{2}, \ldots, g_{1}^{-1} g_{n}\right)\right)
\end{aligned}
$$

- Most important case is when $M=\mathbb{R}^{2}$, i.e., $M=\mathbb{C}$.
- A point in Conf n (\mathbb{C}) can be viewed as an x-tuple of distinct points in \mathbb{C}

- $\operatorname{Conf},(\mathbb{C})=\mathbb{C} \simeq\{0\}$
- $\operatorname{Conf}_{2}(\mathbb{C}) \cong \mathbb{C} \times(\mathbb{C} \backslash\{0\}) \simeq\{0\} \times S^{1} \simeq S^{1}$
- $\operatorname{Conf}_{3}(\mathbb{C}) \cong \mathbb{C} \times \operatorname{Conf}_{2}(\alpha \backslash\{0\})$

$$
\begin{aligned}
& \simeq \mathbb{C} \times(\mathbb{C} \mid\{0\}) \times(\mathbb{C} \backslash\{0,1\}) \\
& \simeq S^{\prime} \times\left(S^{\prime} V S^{\prime}\right)
\end{aligned}
$$

7. Unordered configmations

- A permutation of a set S is a bijection from S to S.
- For instance, if $S=\{1,2\}$, its permutation's are $\begin{array}{ll}1 \rightarrow 1 \\ 2 \rightarrow 2\end{array}$ and $\frac{1}{2} x_{2}^{\prime \prime}$
- Permutations can be composed. Eg.:
- The symmetric group S_{n} is the group of all permutations of the set $\{1, \rightarrow n\}$. Its order is n !
- Given a space M, the group acts on M^{n} by permuting the coorolinates:

$$
\begin{aligned}
& \operatorname{Sn} \times M^{n} \longrightarrow M^{n} \\
& \left(\sigma,\left(m_{1, \ldots}, m_{n}\right)\right) \longrightarrow\left(m_{\sigma(1)}, \ldots, m_{\sigma(n)}\right)
\end{aligned}
$$

- This action restricts to a free action of S_{n} on $\operatorname{Conf}_{n}(M)$.

Definition The unordered configuration space of n points in a space M is

$$
U \operatorname{Confn}_{n}(M)=\operatorname{Conf}_{n}(M) / S_{n}
$$

(the quotient space of the ordered Configuration space by the above free action).

- UConfn(M) may be viewed as the space of all subsets $\left\{m_{1}, \ldots, m_{n}\right\} \subset M$ of size n.
- The quotient map,

$$
\operatorname{Con}_{n}(M) \longrightarrow U \operatorname{Conf}_{n}(M)
$$

is a (regular) cover, with group of deck transformations S_{n}.

- Egg., $\operatorname{Conf}_{2}(\mathbb{C}) \longrightarrow U \operatorname{Conf}_{2}(\mathbb{C})$ is, up to homotopy, the 2-fold cover

$$
\underset{z \mapsto z^{2}}{S^{\prime}}
$$

8. Fundamental groups of configuration spaces

- Fundamental group of M, based at x_{0} :

$$
\pi_{1}\left(M, x_{0}\right)=\left\{\begin{array}{l}
\text { loops } \gamma \text { in } M \text { based at } x_{0} \\
\text { modulo homotopy ne } x_{0}
\end{array}\right\}
$$

with $\gamma_{1} \cdot \gamma_{2}=$ concatenation of the two loops $x_{1}-\left(x_{0}\right)^{x_{2}}$
" $\gamma^{-1}=\operatorname{loop}$ traversed in opposite direction

- identity $=$ constant loop at x_{0}
- If M is path-connected, then

$$
\pi_{1}\left(M, x_{0}\right) \cong \pi_{1}\left(M, x_{1}\right) \text { for all } x_{0}, x_{1} \in M
$$

So wince it simply as $\pi_{1}(M)$.

$$
\cdot \pi_{1}\left(M_{1} \times M_{2}\right) \cong \pi_{1}\left(M_{1}\right) \times \pi_{1}\left(M_{2}\right)
$$

- Examples:

$$
\begin{aligned}
& \text { - } \pi_{1}(\text { contractible space })=\{e\} \\
& { }^{\text {a }} \text { ecg. }, \mathbb{R}^{n} \\
& \text { - } \pi_{1}(\mathbb{C} \backslash\{0\}) \hat{=} \pi_{1}\left(S^{1}\right)=\not Z_{0} \\
& \text { - } \pi_{1}(\mathbb{C} \backslash\{n \text { points }\}) \cong \pi_{1}(\underbrace{S^{\prime}, \cdots S^{\prime}}_{n})=F_{n} \\
& \text { tree group } \\
& \text { on n alters }
\end{aligned}
$$

Theorem (Fox \& Fadell - 1962)
(n) $\pi_{1}\left(\operatorname{Conf}_{n}(\mathbb{C})\right) \cong P_{n}$ - pure braid group on unstrings
(2) $\pi_{1}\left(\cup C_{\text {on f }}(\mathbb{C})\right) \cong B_{n}-\underset{\text { braid group }}{\text { pings }}$

Proof (i)

$$
\begin{aligned}
& t=0 \\
& t=1 / 2 \\
& t=1
\end{aligned}
$$

basepait io

(2) Similar

- Now recall the S_{n}-cover

$$
\operatorname{Conf}_{n}(\mathbb{C}) \longrightarrow U \operatorname{Conf}_{n}(\mathbb{C})
$$

Using the relationship between covers and fundamental group, we get exact sequence

$$
\longrightarrow P_{n}=\operatorname{ker}(q) \text { Bn } \xrightarrow{1} S_{n} \longrightarrow 1
$$

where q sends a braid β to the induced permutation of the strands, egg.,

$$
q\left(\begin{array}{ll}
1 & 1_{1}^{2} \\
x_{2} & 1 \\
1 & 3
\end{array}\right)=\left.X_{2}^{2}\right|_{3} ^{3}
$$

- Examples:

$$
\begin{array}{rl}
n=2 & r \longrightarrow P_{2} \longrightarrow B_{2} \longrightarrow S_{2} \longrightarrow 1 \\
& 1 \longrightarrow \mathbb{Z} \xrightarrow{11} \times 2 \mathbb{1 2}_{12} \longrightarrow \mathbb{Z}_{2} \longrightarrow 1 \\
n=3 & 1 \longrightarrow P_{3} \longrightarrow B_{3} \longrightarrow S_{3} \longrightarrow 1 \\
&
\end{array}
$$

- Remark In turn, the braid groups completely determine the homotopy types of the respective configuration spaces:

$$
\begin{aligned}
& \operatorname{Con} f_{n}(\mathbb{C}) \simeq K\left(P_{n}, 1\right) \\
& U \operatorname{Con} f_{n}(\mathbb{C}) \simeq K\left(B_{n}, 1\right)
\end{aligned}
$$

9. Spaces of polynomials

- We may identify \mathbb{C}^{n} with the space of all monic polynomials with coefficients in \mathbb{C} :

$$
\begin{aligned}
\mathbb{C}^{n} \xrightarrow{\approx} & P_{0} l_{y}(\mathbb{C}) \\
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \longrightarrow P(x) & =X^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}
\end{aligned}
$$

- Vieta's formulas provide an identification

$$
\begin{gathered}
\mathbb{C}^{n} / S_{n} \xrightarrow[v_{i l} a_{a} s \text { map }]{\cong} \mathbb{C}^{n} \\
\left(z_{1}, \ldots, z_{n}\right) \xrightarrow{\imath}\left(a_{1, \ldots}, a_{n}\right) \\
P(x)=\left(x-z_{1}\right) \cdots\left(x-z_{n}\right) \quad P(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}
\end{gathered}
$$

- Some of the roots may be repeated. So let.

$$
S P_{0} l_{n}\left(\mathbb{}(\mathbb{})=\left\{\begin{array}{l}
\text { space of polynomials } \\
\text { with no repeated } \\
\text { taction }
\end{array}\right\}\right.
$$ or the space of square -free polynomials.

- There is then an iotentification

$$
\begin{aligned}
& \operatorname{SPD}_{0}(\Phi) \leadsto U \operatorname{Con} f_{n}(\mathbb{C}) \\
& \left(x-z_{1}\right) \cdots\left(x-z_{n}\right) \longleftrightarrow\left(z_{1}, \cdots z_{n}\right)
\end{aligned}
$$

- Therefore, $\pi_{1}\left(S P_{0} l_{n}(\mathbb{C})\right) \cong B_{n}$.
- To conclude, let us olescribe in more concrete terms the space SADly, (C)
- Note that $P(x)=\left(x-z_{1}\right) \cdots\left(x-z_{n}\right)$ has a repeated root preasely when the polynomial

$$
\Delta_{n}(z):=\prod_{1 \leqslant i<j \leqslant n}\left(z_{i}-z_{j}\right)^{2}
$$

Vanishes,

- This polynomial can be re-interpreted as a polynomial in the variables $a=\left(a_{1}, \ldots, a_{4}\right)$

$$
\Delta_{n}(a)
$$

via the Vieta formulas.

- Therefore:

$$
\operatorname{SPol}_{n}(\mathbb{C})=\left\{\left(a_{1, \ldots,}, a_{n}\right) \in \mathbb{C}^{n} \mid \Delta_{n}(a) \neq 0\right\}
$$

i.e, the complement in \mathbb{C}^{n} of the discriminant hypersurface $\Delta_{n}=0$.

- Let us describe these hypersurfaces in low degrees $(n=2,3,4)$.

Quadrics

$$
\text { - Let } \begin{aligned}
P(x) & =\left(x-z_{1}\right)\left(x-z_{2}\right) \\
& =x^{2}+a_{2} x+a_{2}
\end{aligned}
$$

where $a_{1}=-\left(z_{1}+z_{2}\right), \quad a_{2}=z_{1} z_{2}$

$$
\begin{aligned}
& \therefore \Delta_{2}=\left(z_{1}-z_{2}\right)^{2}=\left(z_{1}+z_{2}\right)^{2}-4 z_{1} z_{2} \\
& \therefore \Delta_{2}(a)=a_{1}^{2}-4 a_{2}
\end{aligned}
$$

$$
\begin{aligned}
B_{2} & =\pi_{1}\left(\mathbb{C}^{2}\left\{\Delta_{2}=0\right\}\right) \\
& \cong \mathbb{Z}
\end{aligned}
$$

generated by the loop r around the parabola
That is:

lop braid σ_{1}
cubic

- Let $P(x)=x^{3}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$
- Changing variables via $x=y-\frac{a_{1}}{3}$ replaces $\$$ by the depressed cubic

$$
Q(y)=y^{3}+u y+v
$$

- Up to sign, then, the discriminant is $\Delta(u, v)=4 u^{3}+27 v^{2}$

$$
\begin{aligned}
B_{3} & =\pi\left(\mathbb{C}^{3} \backslash\left\{\Delta_{3}=0\right\}\right) \\
& =\pi_{1}\left(\mathbb{C}^{2} \backslash\left\{\Delta(u, v)=\sigma_{3}\right\}\right) \\
& =\pi_{1}\left(s^{3} \backslash\left(\begin{array}{c}
1 \\
o_{1} \\
k=\text { trefoil } \sigma_{i} \\
\text { knot }
\end{array}\right)\right. \\
& =\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{0} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
\end{aligned}
$$

Quartics

- Let $P(x)=x^{4}+u x^{2}+v x+w$ be a depressed quartic
- The discriminant polynomial becomes

$$
\begin{aligned}
\Delta(u, v, w)= & 8 u^{4} w-4 u^{3} v^{2}-128 u^{2} w^{2}+ \\
& 144 u v^{2} w-27 v^{4}+256 w^{3} .
\end{aligned}
$$

- The corresponding hypersurface (in 3-space) is called the swallowtail singularity.

after this bird:
- Thus: $\quad B_{4}=\pi_{1}\left(\mathbb{C}^{3} \backslash\{\Delta(u, v, v)=0\}\right)$

The Swallow's Tail -by Salvador Dali (1983)

