A Tale of Two Sequences

Vitor Gulisz
Northeastern University

April 12, 2024

Some background

A kernel of a morphism $X \xrightarrow{f} Y$ is a morphism $K_{f} \longrightarrow X$ such that

Some background

A kernel of a morphism $X \xrightarrow{f} Y$ is a morphism $K_{f} \longrightarrow X$ such that

- The composition $K_{f} \longrightarrow X \xrightarrow{f} Y$ is zero.

Some background

A kernel of a morphism $X \xrightarrow{f} Y$ is a morphism $K_{f} \longrightarrow X$ such that

- The composition $K_{f} \longrightarrow X \xrightarrow{f} Y$ is zero.
- $K_{f} \longrightarrow X$ is universal with this property.

Some background

A kernel of a morphism $X \xrightarrow{f} Y$ is a morphism $K_{f} \longrightarrow X$ such that

- The composition $K_{f} \longrightarrow X \xrightarrow{f} Y$ is zero.
- $K_{f} \longrightarrow X$ is universal with this property.

Some background

A kernel of a morphism $X \xrightarrow{f} Y$ is a morphism $K_{f} \longrightarrow X$ such that

- The composition $K_{f} \longrightarrow X \xrightarrow{f} Y$ is zero.
- $K_{f} \longrightarrow X$ is universal with this property.

Some background

A cokernel of a morphism $X \xrightarrow{f} Y$ is a morphism $Y \longrightarrow L_{f}$ such that

Some background

A cokernel of a morphism $X \xrightarrow{f} Y$ is a morphism $Y \longrightarrow L_{f}$ such that

- The composition $X \xrightarrow{f} Y \longrightarrow L_{f}$ is zero.

Some background

A cokernel of a morphism $X \xrightarrow{f} Y$ is a morphism $Y \longrightarrow L_{f}$ such that

- The composition $X \xrightarrow{f} Y \longrightarrow L_{f}$ is zero.
- $Y \longrightarrow L_{f}$ is universal with this property.

Some background

A cokernel of a morphism $X \xrightarrow{f} Y$ is a morphism $Y \longrightarrow L_{f}$ such that

- The composition $X \xrightarrow{f} Y \longrightarrow L_{f}$ is zero.
- $Y \longrightarrow L_{f}$ is universal with this property.

Some background

A cokernel of a morphism $X \xrightarrow{f} Y$ is a morphism $Y \longrightarrow L_{f}$ such that

- The composition $X \xrightarrow{f} Y \longrightarrow L_{f}$ is zero.
- $Y \longrightarrow L_{f}$ is universal with this property.

Snake Lemma. If

is a commutative diagram with exact rows, then there is an exact sequence given by the dashed arrows below.

Snake Lemma. If

is a commutative diagram with exact rows, then there is an exact sequence given by the dashed arrows below.

Snake Lemma. If

is a commutative diagram with exact rows, then there is an exact sequence given by the dashed arrows below.

Snake Lemma. If

is a commutative diagram with exact rows, then there is an exact sequence given by the dashed arrows below.

First proof

By diagram chase

$$
\begin{aligned}
& A \xrightarrow{f} B \longrightarrow C \\
& \downarrow_{r} \\
& D \\
& D \longrightarrow E \\
& \\
& \hline
\end{aligned}
$$

An example for vector spaces over \mathbb{R}

$$
\mathbb{R} \xrightarrow{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)} \mathbb{R}^{3}
$$

$$
\mathbb{R} \xrightarrow{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)} \mathbb{R}^{3}
$$

$$
\begin{aligned}
& \mathbb{R} \xrightarrow{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)} \mathbb{R}^{3} \xrightarrow{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} \mathbb{R}^{2} \\
& \mathbb{R}^{2} \xlongequal[\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)]{ } \mathbb{R}^{3} \xrightarrow[\left(\begin{array}{llll}
1 & 0 & 0
\end{array}\right)]{ } \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R} \xrightarrow{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)} \mathbb{R}^{3} \xrightarrow{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} \mathbb{R}^{2} \\
& \mathbb{R}^{2} \xlongequal[\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)]{ } \mathbb{R}^{3} \xrightarrow[\left(\begin{array}{llll}
1 & 0 & 0
\end{array}\right)]{ } \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R}_{z} \xrightarrow{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)} \mathbb{R}^{3} \xrightarrow{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} \mathbb{R}_{x y}^{2} \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \\
& \mathbb{R}^{2} \xlongequal[\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)]{ } \mathbb{R}^{3} \xrightarrow[\left(\begin{array}{llll}
1 & 0 & 0
\end{array}\right)]{ } \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R}_{z} \xrightarrow{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)} \mathbb{R}^{3} \xrightarrow{\left(\begin{array}{ccc}
1 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} \mathbb{R}_{x y}^{2} \\
& \begin{array}{ll}
\left(\begin{array}{lll}
0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \\
\downarrow \\
\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
\end{array} \\
& \mathbb{R}^{3} \xrightarrow[\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)]{ }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R}_{z} \xrightarrow{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)} \mathbb{R}^{3} \xrightarrow{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} \mathbb{R}_{x y}^{2} \\
& \mathbb{R}_{y z}^{2} \xrightarrow[\left(\begin{array}{cc}
1 & 0 \\
0 & 0 \\
0 & \cos \theta \\
0 & \sin \theta \\
\operatorname{cin} \theta
\end{array}\right)]{\substack{\cos \theta}} \begin{array}{l}
\downarrow \\
\left.\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
\end{array} \mathbb{R}^{3} \xrightarrow[\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)]{l} \mathbb{R}_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R}_{z} \xrightarrow{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)} \mathbb{R}^{3} \xrightarrow{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} \mathbb{R}_{x y}^{2} \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \\
& \mathbb{R}_{y z}^{2} \xlongequal[\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)]{ } \mathbb{R}^{3} \xrightarrow[\left(\begin{array}{llll}
1 & 0 & 0
\end{array}\right)]{ } \mathbb{R}_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R}_{z} \xrightarrow{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)} \mathbb{R}^{3} \xrightarrow{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} \mathbb{R}_{x y}^{2} \\
& \binom{-\sin \theta}{\cos \theta} \downarrow \begin{array}{ccc}
1 & \left.\begin{array}{cc}
1 & 0 \\
0 & \cos \theta \\
0 & \sin \theta \\
0 & \sin \theta \\
\hline
\end{array}\right) \\
\downarrow
\end{array} \quad \downarrow\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
& \mathbb{R}_{y z}^{2} \xlongequal[\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)]{ } \mathbb{R}^{3} \xrightarrow[\left(\begin{array}{llll}
1 & 0 & 0
\end{array}\right)]{ } \mathbb{R}_{x}
\end{aligned}
$$

The circular sequence

$$
X \underset{u}{\longrightarrow} Y \underset{v}{\longrightarrow} Z
$$

The circular sequence (aka kernel-cokernel sequence). For every pair of composable morphisms

$$
X \xrightarrow{u} Y \xrightarrow{v} Z,
$$

the induced sequence

$$
0 \longrightarrow K_{u} \longrightarrow K_{v u} \longrightarrow K_{v} \longrightarrow L_{u} \longrightarrow L_{v u} \longrightarrow L_{v} \longrightarrow 0
$$

is exact.

The circular sequence (aka kernel-cokernel sequence). For every pair of composable morphisms

$$
X \xrightarrow{u} Y \xrightarrow{v} Z,
$$

the induced sequence

$$
K_{u} \longmapsto K_{v u} \longrightarrow K_{v} \longrightarrow L_{u} \longrightarrow L_{v u} \longrightarrow L_{v}
$$

is exact.

- C. H. Dowker. Composite morphisms in abelian categories. Quart. J. Math. Oxford Ser. (2), 17:98-105, 1966.
- Johann B. Leicht. Über die elementaren Lemmata der homologischen Algebra in quasi-exacten Kategorien. Monatsh. Math., 68:240-254, 1964.
- C. H. Dowker. Composite morphisms in abelian categories. Quart. J. Math. Oxford Ser. (2), 17:98-105, 1966.
- Johann B. Leicht. Über die elementaren Lemmata der homologischen Algebra in quasi-exacten Kategorien. Monatsh. Math., 68:240-254, 1964.

5 Thanks! It surprises me that there are two fundamental diagram chase lemmas concerning the kernel and cokernel of maps, but that one of them is substantially more famous than the other... I had never encountered the kernel-cokernel exact sequence before, but have been exposed to the snake lemma countless times. - Terry Tao Dec 23, 2023 at 22:02
mathoverflow.net/questions/460926

Proposition. Any morphism

$$
\begin{array}{cccc}
X \xrightarrow{u} & Y & \\
\downarrow & & & \\
\downarrow & & \\
X^{\prime} \xrightarrow[u^{\prime}]{\longrightarrow} & Y^{\prime} \xrightarrow[v^{\prime}]{ } & Z^{\prime}
\end{array}
$$

from $v u$ to $v^{\prime} u^{\prime}$ induces a morphism for the corresponding circular sequences

$K_{u^{\prime}} \longrightarrow K_{v^{\prime} u^{\prime}} \longrightarrow K_{v^{\prime}} \longrightarrow L_{u^{\prime}} \longrightarrow L_{v^{\prime} u^{\prime}} \longrightarrow L_{v^{\prime}}$

Snake Lemma. If

is a commutative diagram with exact rows, then there is an exact sequence given by the dashed arrows below.

Snake Lemma. If

is a commutative diagram with exact rows, then there is an exact sequence given by the dashed arrows below.

Second proof

Element-free, by using the circular sequence

$$
\begin{aligned}
& A \xrightarrow{f} B \longrightarrow C \\
& \downarrow_{r} \\
& D \longmapsto \\
& D \longrightarrow E \\
& \hline
\end{aligned}
$$

$$
h g f=0
$$

$$
\begin{aligned}
A \xrightarrow{f} & B \longrightarrow L_{f} \\
& \downarrow g \\
& K_{h} \longmapsto E \xrightarrow[h]{ } \longrightarrow F
\end{aligned}
$$

$$
h g f=0
$$

$$
h g f=0
$$

$$
\begin{aligned}
& A \xrightarrow{f} \\
& B \\
& \\
& \\
& \\
& E \xrightarrow[h]{ } g \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& \text { Possible compositions for } \\
& \downarrow g \\
& E \underset{h}{\longrightarrow} F \\
& \text { gf } \quad A \xrightarrow{f} B \xrightarrow{g} E
\end{aligned}
$$

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& \text { Possible compositions for } \\
& \underset{h}{\stackrel{\downarrow}{\longrightarrow}} \underset{ }{\text { g }} F \\
& g f \\
& A \xrightarrow{f} B \xrightarrow{g} E \\
& (h g) f \quad A \xrightarrow{f} B \xrightarrow{h g} F
\end{aligned}
$$

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& \text { Possible compositions for } \\
& g f \\
& A \xrightarrow{f} B \xrightarrow{g} E \\
& \text { (hg)f } \\
& A \xrightarrow{f} B \xrightarrow{h g} F \\
& h(g f) \quad A \xrightarrow{g f} E \xrightarrow{h} F
\end{aligned}
$$

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& \text { Possible compositions for } \\
& g f \\
& A \xrightarrow{f} B \xrightarrow{g} E \\
& (h g) f \quad A \xrightarrow{f} B \xrightarrow{h g} F \\
& h(g f) \quad A \xrightarrow{g f} E \xrightarrow{h} F \\
& \text { hg }
\end{aligned}
$$

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& \text { Possible compositions for } \\
& \downarrow g \\
& E \underset{h}{\longrightarrow} F
\end{aligned}
$$

Thank you!

