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Definition

We say that a module G ∈Mod(R) is Gorenstein projective if there
is an exact complex of projective modules

P = . . .→ P1
f1−→ P0

f0−→ P−1 → . . . such that G = Z0(P ) and such that
the complex stays exact when applying a functor Hom(−, T ), where T
is any projective module (i.e. the complex
. . .→ Hom(P−1, T )→ Hom(P0, T )→ Hom(P1, T )→ . . . is exact for
any projective module T ).

Any projective module P is Gorenstein projective (0→ P
Id−→ P → 0)

Definition

We say that a module M ∈Mod(R) is Gorenstein flat if there is an
exact complex of flat modules F = . . .→ F1 → F0 → F−1 → . . . such
that M = Z0(F ) and such that the complex stays exact when applying
a functor A⊗−, where A is any injective module (i.e. the complex
. . .→ A⊗ F1 → A⊗ F0 → A⊗ F−1 → . . . is exact for any injective
module A).
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A homomorphism φ : G→M is a Gorenstein projective precover of M
if G is Gorenstein projective and if for any Gorenstein projective
module G′ and any φ′ ∈ Hom(G′,M) there exists u ∈ Hom(G′, G)
such that φ′ = φu.

G′

G M
��

u

��

h

//
g

A precover g : G→M is said to be a cover if any homomorphism
u : G→ G such that gu = g, is an isomorphism.

A Gorenstein projective resolution of a module M is a complex

. . .→ G1
g1−→ G0

g0−→M → 0

such that G0 →M and each Gi → Ker(Gi−1 → Gi−2) for i ≥ 1 are
Gorenstein projective precovers.

Alina Iacob (Department of Mathematical Sciences Georgia Southern University)Generalized Gorenstein projective and flat modulesNovember 2020 5 / 35



Open question: the existence of the Gorenstein projective resolutions.
Generalizations of the Gorenstein modules - the Ding
projective modules
- The Ding projective modules are the cycles of the exact complexes of
projective modules that remain exact when applying a functor
Hom(−, F ), with F any flat module.
Open question: is the class of Ding projectives, DP, precovering over
any ring?
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FPn-injective and FPn-flat modules

Definition

A module M is n-finitely presented (FPn for short) if there exists an
exact sequence Fn → Fn−1 → . . .→ F1 → F0 →M → 0 with each Fi

finitely generated free. A module M is FP∞ if and only if M ∈ FPn

for all n ≥ 0.

FP0 k FP1 k . . . k FPn k FPn+1 k . . . k FP∞, with FP0 the class of
all finitely generated modules, and FP1 the finitely presented modules.
A module M is FPn-injective if Ext1R(F,M) = 0 for all F ∈ FPn.
From the definition, we get the following ascending chain:

Inj = FI0 ⊆ FI1 ⊆ · · · ⊂ FI∞.

A module N is FPn-flat if Tor1(F,N) = 0 for all F ∈ FPn.

From the definition, we get the following ascending chain:

Flat = FF0 = FF1 ⊆ FF2 ⊆ · · · ⊂ FF∞.
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Definition

A module G is Gorenstein FPn-projective if it a cycle in an exact
complex of projective modules that remains exact when applying a
functor Hom(−, L) for any L ∈ FFn.
GPn denotes the class of Gorenstein FPn-projective modules.

We use GPn to denote the class of Gorenstein FPn-projective modules.
- Since FF1 = Flat, GP1 = DP (the Ding projective modules).
- And FF∞ = Level, so GP∞ = GPac (the Gorenstein AC-projective
modules.
By definition we have an ascending chain

GP∞ = GPac ⊆ · · · ⊆ GP2 ⊆ GP1 = DP ⊆ GP.

Main result for Gorenstein FPn-projective modules:
Theorem A: Let R be any ring. For any n ≥ 2, GPn is a precovering
class.
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A sufficient condition for a class C be precovering is to be the left half
of a complete cotorsion pair.
Recall C⊥ = {M,Ext1(C,M) = 0, for all C ∈ C}
and ⊥C = {L,Ext1(L,C) = 0, for all C ∈ C}
- A pair (C,L) is a cotorsion pair if C⊥ = L and ⊥L = C.
- A cotorsion pair (C,L) is complete if for every M there are short
exact sequences 0→ L→ C →M → 0 and 0→M → L′ → C ′ → 0
with C,C ′ ∈ C and with L,L′ ∈ L.
A cotorsion pair (C,L) is hereditary if Exti(C,L) = 0 for any C ∈ C,
any L ∈ L, all i ≥ 1.
Examples: (Proj,Mod), (Mod, Inj).
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Known: for n ≥ 2, M ∈ FFn ⇔M+ ∈ FIn (where
M+ = HomZ(M,Q/Z))
and C ∈ FIn ⇔ C+ ∈ FFn.

So, for n ≥ 2, (FIn,FFn) is a duality pair in the sense of Bravo -
Gillespie - Hovey.

Theorem

(Bravo - Gillespie - Hovey) Let R be a ring and suppose (C,D) is a
duality pair such that D is closed under pure quotients. Let P be a
complex of projective modules. Then A⊗ P is exact for all A ∈ C if
and only if Hom(P,N) is exact for all N ∈ D.

Proposition

A module M is Gorenstein FPn-projective if and only if there is an

exact complex of projective modules P = . . .→ P1
f1−→ P0

f0−→ P−1 → . . .
such that M = Z0(P ) and such that A⊗ P is exact for all A ∈ FIn.
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More general:

Definition

Let B be a fixed class of right R-modules. We say that a module M is
projectively coresolved Gorenstein B-flat if M = Z0(P ) for some
B ⊗−-acyclic and exact complex P of projective modules.

- PGFB denotes the class of projectively coresolved Gorenstein B-flat
modules.

Question: When is PGFB precovering?
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- A class of modules D is definable if it is closed under direct products,
direct limits and pure submodules.
(X is a pure submodule of Y if there is a pure short exact sequence

ρ : 0→ X → Y → Y/X → 0

i.e. an exac sequence such that the induced sequence

HomG(L, ρ) : 0→ HomG(L,X)→ HomG(L, Y )→ HomG(L,X/Y )→ 0

in Ab is exact for every finitely presented module L).

- The definable closure of B, < B >, is the smallest definable class
containing B.
- An elementary cogenerator of a definable class D is a pure-injective
module D0 ∈ D such that every D ∈ D is a pure submodule of some
product of copies of D0.
Here, pure-injective means injective with respect to pure exact
sequences.

Definition

We say that a class B is semi-definable if it is closed under products
and contains an elementary cogenerator of its definable closure.
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Theorem

(joint with Estrada and Perez) If B is a semi-definable class of right
R-modules then (PGFB,PGF⊥B ) is a complete hereditary cotorsion
pair. In particular, the class PGFB is precovering.

Since for any n > 1 the class of FPn-injective modules, FIn, is
definable (so semi-definable also), and since GPn = PGFFIn , we
obtain:
Theorem

(Theorem A) Let n ≥ 2. The class of generalized Gorenstein
FPn-projective modules, GPn, is precovering.
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Case n = 1
Lemma

PGF = DP
⋂
GF .

Corollary

Over any ring R, PGF = DP if and only if DP ⊆ GF .

Proposition

The Gorenstein flat dimension of a Ding projective module is either
zero or infinite.

Proposition

The following are equivalent:

1 DP = PGF
2 Every Ding projective module has finite Gorenstein flat dimension.

Proposition

If R has finite left weak Gorenstein global dimension then DP = PGF .
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Theorem

Let R be any ring. The following are equivalent:
(1) DP ⊆ GF .
(2) DP = PGF
(3) For any Ding projective module M , its character module, M+, is
Gorenstein injective.
(4) The class Inj+ of all character modules of injective right
R-modules, is contained in DP⊥.

Theorem

Let R be a right coherent ring. Then DP = PGF = GPac
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The coherence is a sufficient condition, but it is not a necessary
condition on the ring. If R has finite global dimension (but it is not
coherent) then DP = PGF .

Example. The ring

R =

 Q Q R
0 Q R
0 0 Q

 /
 0 0 R

0 0 0
0 0 0


is noncoherent of finite global dimension.
So, DP = PGF over R.
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All the results in this section are joint with S. Estrada and M. Perez

Definition

Let B be a class of right R-modules. We say that a module
M ∈Mod(R) is Gorenstein B-flat if M = Z0(F ) for some
(B ⊗R −)-acyclic and exact complex F of flat modules.

1 Gorenstein flat modules are obtained when B = Inj.
If B ⊇ Inj then any Gorenstein B-flat module is, in particular, a
Gorenstein flat module.

2 Recall that a module M ∈Mod(R) is of type FP∞ if there exists
an exact sequence

· · · → P1 → P0 →M → 0

with Pk finitely generated and projective for every k ≥ 0.
When B = FI∞ = AC = (FP∞)⊥ we obtain the class GFAC(R)
of Gorenstein AC-flat modules.
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Properties of Gorenstein AC-flat modules
1. GFAC is a precovering class over any ring R.
2. If GFAC is closed under extensions then GFAC(R) is a covering class.

Remark. Our new results show that Gorenstein AC-flat modules are
always closed under extensions, and so the latter two properties hold
for any ring R.
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Properties of Gorenstein B-flat modules

Lemma

Let B be a class of right R-modules. Then, the class GFB of
Gorenstein B-flat modules is a precovering class.

Proposition

If the class GFB of Gorenstein B-flat modules is closed under
extensions, then it is closed under taking kernels of epimorphisms and
under direct limits. As a consequence, GFB is a covering class.

Proposition

If GFB is closed under extensions, then the pair (GFB,GCB) is a
complete and hereditary cotorsion pair in Mod(R), where GCB be the
right orthogonal class GF⊥B . .

Question: When is the class GFB closed under extensions?
We show that for any semi-definable class B we have
GFB =⊥ (C

⋂
PGF⊥B ), and so GFB is closed under extensions.

Alina Iacob (Department of Mathematical Sciences Georgia Southern University)Generalized Gorenstein projective and flat modulesNovember 2020 19 / 35



We use:
Lemma

The following are equivalent for any R-module M and any class of
right R-modules B:
(a) M is Gorenstein B-flat.
(b) Tori(B,M) = 0 for all i ≥ 1 and B ∈ B, and there exists an exact
and (B ⊗ )-acyclic sequence of modules 0→M → F 0 → F 1 → . . .
where each F i is flat.
(c) There exists a short exact sequence of modules
0→M → F → G→ 0 where F is flat and G is Gorenstein B-flat.
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Theorem

Let B be a semi-definable class of right R-modules. Then, the following
conditions are equivalent for every M ∈ Mod(R):

(a) M is Gorenstein B-flat.

(b) There is a short exact sequence of modules

0→ F → L→M → 0

with F ∈ F lat and L ∈ PGFB, which is also HomR(−, C)-acyclic,
for any cotorsion module C .

(c) Ext1R(M,C) = 0 for every C ∈ C ∩ PGF⊥B .

(d) There is a short exact sequence of modules

0→M → F → L→ 0

with F ∈ F lat and L ∈ PGFB.
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(a) M is Gorenstein B-flat.
(b) There is a short exact sequence of modules

0→ F → L→M → 0

with F ∈ F lat and L ∈ PGFB, which is also HomR(−, C)-acyclic, for
any cotorsion module C .
Proof of (a) ⇒ (b) M = Z0(F ), F an acyclic complex of flat modules,
that is B ⊗− exact.
(dw(Proj), (dwProj)⊥ is complete ⇒ exact 0→ G→ P → F → 0,
P ∈ dw(Proj), G ∈ (dwProj)⊥.
Then G is flat.
F and G are B

⊗
− exact, so P is B

⊗
− exact.

Exact sequence 0→ ZiG→ ZiP → ZiF → 0 with ZiG flat, and
ZiP ∈ PGFB
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0 0 0

0 ZjG ZjP ZjF 0

0 Gj Pj Fj 0

0 Zj−1G Zj−1P Zj−1F 0

0 0 0

�� �� ��

//

��
h

//
f

��

//

��

//

//

��

//
g

��

//

��

//

//

��

//

��

//

��

//

If C is a cotorsion module, both g and h are C-injective, so f is also
C-injective.
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(b) There is a short exact sequence of modules

0→ F → L→M → 0

with F ∈ F lat and L ∈ PGFB, which is also HomR(−, C)-acyclic, for
any cotorsion module C .
(c) Ext1R(M,C) = 0 for every C ∈ C ∩ PGF⊥B .
Proof of (b) ⇒ (c) Consider a short exact sequence as in (b).

0→ F → L→M → 0

Let C ∈ C ∩ (PGFB)⊥. We have an exact sequence

HomR(L,C)
ϕ−→ HomR(F,C)→ Ext1R(M,C)→ Ext1R(L,C)

where Ext1R(L,C) = 0 since L ∈ PGFB, and ϕ is epic. Hence,
Ext1R(M,C) = 0.
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(c) Ext1R(M,C) = 0 for every C ∈ C ∩ PGF⊥B .
(d) There is a short exact sequence of modules

0→M → F → L→ 0

with F ∈ F lat and L ∈ PGFB.
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(c) ⇒ (d):Consider a short exact sequence

0→M → U → T → 0

with U ∈ PGF⊥B and T ∈ PGFB. Let C ∈ PGF⊥B be a cotorsion
module. Then, we have an exact sequence

Ext1R(T,C)→ Ext1R(U,C)→ Ext1R(M,C)

where Ext1R(T,C) = 0 and Ext1R(M,C) = 0. Then, U ∈ ⊥(C ∩ PGF⊥B ).
Then U has a pure special PGFB-precover.
- pure exact sequence

0→ K → L→ U → 0

with K ∈ PGF⊥B and L ∈ PGFB.

Then, L ∈ PGFB ∩ (PGFB)⊥, so L is projective.
Then U is a pure epimorphic image of a projective module, so
U ∈ F lat. (d) ⇒ (a): Follows from the Lemma above.

Alina Iacob (Department of Mathematical Sciences Georgia Southern University)Generalized Gorenstein projective and flat modulesNovember 2020 26 / 35



Corollary

If B is semi-definable then GFB is closed under extensions.

Examples:
1. The class of Gorenstein flat modules is the left half of a complete
hereditary cotorsion pair.
2. Consider the class GFAC of Gorenstein AC-flat modules. The class
AC of absolutely clean right R-modules is semi-definable. Hence, we
have the following properties for Gorenstein AC-flat modules:
- (GFAC , (GFAC)⊥) is a complete hereditary cotorsion pair.
- Every module has a Gorenstein AC-flat cover.
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Example 3. Consider the class FIn( of FPn-injective right R-modules
defined by Bravo-Perez. Recall that this class is the right orthogonal
complement of that of the right R-modules of type FPn, that is, those
N for which there is an exact sequence

Pn → Pn−1 → · · · → P1 → P0 → N → 0

where Pk is finitely generated and projective for every 0 ≤ k ≤ n.
By Bravo-Perez, FIn is a definable class if n > 1. Thus, if GFFIn
denotes the class of Gorenstein FIn-flat modules, we have that GFFIn
is closed under extensions. As a consequence of the previous results, we
have that (GFFIn , (GFFIn)⊥) is a complete hereditary cotorsion pair.
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All the results in this section are joint with S. Estrada and M. Perez
The Gorenstein B-flat stable model category
Given two complete and hereditary cotorsion pairs (Q,R′) and (Q′,R)
in an abelian category C such that Q′ ⊆ Q, R′ ⊆ R and
Q′ ∩R = Q∩R′, then there exists a subcategory W ⊆ C such that
(Q,W,R) is a Hovey triple in C, that is:
(1) (Q,R∩W) and (Q∩W,R) are complete cotorsion pairs in C.
(2) W is thick: it is closed under extensions, kernels of epimorphisms
and cokernels of monomorphisms between its objects.
By Hovey’s correspondence, the existence of such a triple (Q,W,R)
implies the existence of a unique abelian model structure on C such
that:
(1) Q is the class of cofibrant objects.
(2) R is the class of fibrant objects.
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Let B be a class of modules that contains the injective right R-modules.
We show it is possible to apply the previous result in the setting where:
Q := GFB(R),
Q′ := F lat the class of flat left R-modules,
R := C = (F lat)⊥ the class of cotorsion left R-modules,
R′ := GCB,

provided that GFB(R) is closed under extensions (for instance if B is a
semi-definable class).
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Proposition (compatibility between the flat and Gorenstein B-flat
cotorsion pairs)

If GFB is closed under extensions and B contains all injective right
R-modules, then

F lat ∩ C = GFB ∩ GCB

Proof. (⊇). Let M ∈ GFB ∩ GCB. Then M ∈ C. Since M is Gorenstein
B-flat, we have a short exact sequence

0→M → F →M ′ → 0

with F flat, M ′ is Gorenstein B-flat. This sequence splits, since M is
Gorenstein B-cotorsion, so Ext1(M ′,M) = 0. Hence, M is a direct
summand of F , so M ∈ F lat.
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(⊆). Let N ∈ F lat ∩ C. Then N ∈ GFB. Since (GFB,GCB) is complete,
there is a short exact sequence

0→ N → C → F → 0

with C ∈ GCB and F ∈ GFB. Since N and F are Gorenstein B-flat and
GFB is closed under extensions, we have that C ∈ GFB ∩ GCB ⊆ F ∩ C.
It follows that F is a Gorenstein flat module with finite flat dimension,
and so F is flat. Then Ext1(F,N) = 0 since N is cotorsion, and so the
previous exact sequence splits. It follows that N is a direct summand
of C ∈ GCB, and hence N ∈ GCB.
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Thus we have:

Theorem (the Gorenstein B-flat model structure in Mod(R))

Assume GFB is closed under extensions and B contains all injective
right R-modules. Then, there exists a unique abelian model structure
on Mod(R) such that GFB is the class of cofibrant objects

Corollary (the Gorenstein flat model structure over arbitrary
rings)

Over any ring R there exists a unique abelian model structure on
Mod(R) such that GF is the class of cofibrant objects
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Corollary

If B is a semi-definable class of right R-modules that contains the
injectives, then, there exists a unique abelian model structure on
Mod(R) such that GFB is the class of cofibrant objects, C is the class
of fibrant objects, and PGF⊥B is the class of trivial objects.
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