Generalized Gorenstein projective and flat modules

Alina Iacob

Department of Mathematical Sciences Georgia Southern University

November 2020

Alina Iacob (Department of MathemaGeneralized Gorenstein projective and

1 Motivation

- **2** FP_n -injective and FP_n -flat modules
- 3 Gorenstein FP_n -projective modules
- 4 Gorenstein \mathcal{B} -flat modules
- **(5)** The Gorenstein \mathcal{B} -flat stable model category

Based on the following papers:

1. S. Estrada, A. Iacob, M. Perez. "Model structures and relative Gorenstein flat modules and chain complexes", chapter in Contemporary Mathematics, Volume 751, ISBN 978-1-4704-4368-9, pages 135–176.

2. A. Iacob: "Projectively coresolved Gorenstein flat and Ding projective modules", Communications in Algebra, 48(7): 2883 – 2893, 2020.

3. A. Iacob: "Generalized Gorenstein modules", submitted.
4. D. Bravo, S. Estrada, A. Iacob. "FP_n-injective and FP_n-flat covers and preenvelopes and Gorenstein AC-flat covers", Algebra Colloquium, 25(2), pages 319 - 334, 2018.

Definition

We say that a module $G \in Mod(R)$ is **Gorenstein projective** if there is an exact complex of projective modules

 $\mathbf{P} = \ldots \to P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} P_{-1} \to \ldots$ such that $G = Z_0(P)$ and such that the complex stays exact when applying a functor Hom(-,T), where T is any projective module (i.e. the complex

 $\dots \to Hom(P_{-1},T) \to Hom(P_0,T) \to Hom(P_1,T) \to \dots$ is exact for any projective module T).

Any projective module P is Gorenstein projective $(0 \to P \xrightarrow{Id} P \to 0)$

Definition

We say that a module $M \in Mod(R)$ is **Gorenstein flat** if there is an exact complex of flat modules $\mathbf{F} = \ldots \to F_1 \to F_0 \to F_{-1} \to \ldots$ such that $M = Z_0(F)$ and such that the complex stays exact when applying a functor $A \otimes -$, where A is any injective module (i.e. the complex $\ldots \to A \otimes F_1 \to A \otimes F_0 \to A \otimes F_{-1} \to \ldots$ is exact for any injective module A).

A homomorphism $\phi: G \to M$ is a *Gorenstein projective precover* of M if G is Gorenstein projective and if for any Gorenstein projective module G' and any $\phi' \in Hom(G', M)$ there exists $u \in Hom(G', G)$ such that $\phi' = \phi u$.

A precover $g: G \to M$ is said to be a *cover* if any homomorphism $u: G \to G$ such that gu = g, is an isomorphism.

A Gorenstein projective resolution of a module M is a complex

$$\dots \to G_1 \xrightarrow{g_1} G_0 \xrightarrow{g_0} M \to 0$$

such that $G_0 \to M$ and each $G_i \to Ker(G_{i-1} \to G_{i-2})$ for $i \ge 1$ are Gorenstein projective precovers.

Open question: the existence of the Gorenstein projective resolutions. **Generalizations of the Gorenstein modules - the Ding projective modules**

- The *Ding projective modules* are the cycles of the exact complexes of projective modules that remain exact when applying a functor Hom(-, F), with F any flat module.

Open question: is the class of Ding projectives, \mathcal{DP} , precovering over any ring?

FP_n -injective and FP_n -flat modules

Definition

A module M is *n*-finitely presented (FP_n for short) if there exists an exact sequence $F_n \to F_{n-1} \to \ldots \to F_1 \to F_0 \to M \to 0$ with each F_i finitely generated free. A module M is FP_∞ if and only if $M \in FP_n$ for all $n \ge 0$.

 $FP_0 \supseteq FP_1 \supseteq \ldots \supseteq FP_n \supseteq FP_{n+1} \supseteq \ldots \supseteq FP_{\infty}$, with FP_0 the class of all finitely generated modules, and FP_1 the finitely presented modules. A module M is FP_n -injective if $Ext_R^1(F, M) = 0$ for all $F \in FP_n$. From the definition, we get the following ascending chain:

$$Inj = \mathcal{FI}_0 \subseteq \mathcal{FI}_1 \subseteq \cdots \subset \mathcal{FI}_{\infty}.$$

A module N is FP_n -flat if $Tor_1(F, N) = 0$ for all $F \in FP_n$. From the definition, we get the following ascending chain:

$$Flat = \mathcal{FF}_0 = \mathcal{FF}_1 \subseteq \mathcal{FF}_2 \subseteq \cdots \subset \mathcal{FF}_{\infty}.$$

Definition

A module G is Gorenstein FP_n -projective if it a cycle in an exact complex of projective modules that remains exact when applying a functor Hom(-, L) for any $L \in \mathcal{FF}_n$. \mathcal{GP}_n denotes the class of Gorenstein FP_n -projective modules.

We use \mathcal{GP}_n to denote the class of Gorenstein \mathcal{FP}_n -projective modules. - Since $\mathcal{FF}_1 = Flat$, $\mathcal{GP}_1 = \mathcal{DP}$ (the Ding projective modules).

- And $\mathcal{FF}_{\infty} = Level$, so $\mathcal{GP}_{\infty} = \mathcal{GP}_{ac}$ (the Gorenstein AC-projective modules.

By definition we have an ascending chain

$$\mathcal{GP}_{\infty} = \mathcal{GP}_{ac} \subseteq \cdots \subseteq \mathcal{GP}_2 \subseteq \mathcal{GP}_1 = \mathcal{DP} \subseteq \mathcal{GP}.$$

Main result for Gorenstein FP_n -projective modules:

Theorem A: Let R be any ring. For any $n \ge 2$, \mathcal{GP}_n is a precovering class.

A sufficient condition for a class C be precovering is to be the left half of a complete cotorsion pair.

Recall
$$\mathcal{C}^{\perp} = \{M, Ext^{1}(C, M) = 0, \text{ for all } C \in \mathcal{C}\}$$

and $^{\perp}\mathcal{C} = \{L, Ext^{1}(L, C) = 0, \text{ for all } C \in \mathcal{C}\}$
- A pair $(\mathcal{C}, \mathcal{L})$ is a *cotorsion pair* if $\mathcal{C}^{\perp} = \mathcal{L}$ and $^{\perp}\mathcal{L} = \mathcal{C}$.
- A cotorsion pair $(\mathcal{C}, \mathcal{L})$ is *complete* if for every M there are short
exact sequences $0 \to L \to C \to M \to 0$ and $0 \to M \to L' \to C' \to 0$

exact sequences $0 \to L \to C \to M \to 0$ and $0 \to M \to L \to C^* \to 0$ with $C, C' \in \mathcal{C}$ and with $L, L' \in \mathcal{L}$.

A cotorsion pair $(\mathcal{C}, \mathcal{L})$ is hereditary if $Ext^i(C, L) = 0$ for any $C \in \mathcal{C}$, any $L \in \mathcal{L}$, all $i \geq 1$.

Examples: (Proj, Mod), (Mod, Inj).

Known: for $n \geq 2$, $M \in \mathcal{FF}_n \Leftrightarrow M^+ \in \mathcal{FI}_n$ (where $M^+ = Hom_Z(M, Q/Z)$) and $C \in \mathcal{FI}_n \Leftrightarrow C^+ \in \mathcal{FF}_n$.

So, for $n \ge 2$, $(\mathcal{FI}_n, \mathcal{FF}_n)$ is a duality pair in the sense of Bravo - Gillespie - Hovey.

Theorem

(Bravo - Gillespie - Hovey) Let R be a ring and suppose $(\mathcal{C}, \mathcal{D})$ is a duality pair such that \mathcal{D} is closed under pure quotients. Let P be a complex of projective modules. Then $A \otimes P$ is exact for all $A \in \mathcal{C}$ if and only if Hom(P, N) is exact for all $N \in \mathcal{D}$.

Proposition

A module M is Gorenstein FP_n -projective if and only if there is an exact complex of projective modules $P = \ldots \rightarrow P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} P_{-1} \rightarrow \ldots$ such that $M = Z_0(P)$ and such that $A \otimes P$ is exact for all $A \in \mathcal{FI}_n$.

More general:

Definition

Let \mathcal{B} be a fixed class of right R-modules. We say that a module M is projectively coresolved Gorenstein \mathcal{B} -flat if $M = Z_0(P)$ for some $B \otimes -$ -acyclic and exact complex P of projective modules.

- $\mathcal{PGF}_{\mathcal{B}}$ denotes the class of projectively coresolved Gorenstein $\mathcal{B}\text{-flat}$ modules.

Question: When is $\mathcal{PGF}_{\mathcal{B}}$ precovering?

- A class of modules \mathcal{D} is *definable* if it is closed under direct products, direct limits and pure submodules.

(X is a pure submodule of Y if there is a pure short exact sequence)

$$\rho \colon 0 \to X \to Y \to Y/X \to 0$$

i.e. an exac sequence such that the induced sequence

 $Hom_{\mathcal{G}}(L,\rho) \colon 0 \to Hom_{\mathcal{G}}(L,X) \to Hom_{\mathcal{G}}(L,Y) \to Hom_{\mathcal{G}}(L,X/Y) \to 0$

in Ab is exact for every finitely presented module L).

- The definable closure of \mathcal{B} , $\langle \mathcal{B} \rangle$, is the smallest definable class containing \mathcal{B} .

- An elementary cogenerator of a definable class \mathcal{D} is a pure-injective module $D_0 \in \mathcal{D}$ such that every $D \in \mathcal{D}$ is a pure submodule of some product of copies of D_0 .

Here, *pure-injective* means injective with respect to pure exact sequences.

Definition

We say that a class \mathcal{B} is **semi-definable** if it is closed under products and contains an elementary cogenerator of its definable closure.

November 2020

12 / 35

Alina Iacob (Department of MathemaGeneralized Gorenstein projective and

Theorem

(joint with Estrada and Perez) If \mathcal{B} is a semi-definable class of right *R*-modules then $(\mathcal{PGF}_{\mathcal{B}}, \mathcal{PGF}_{\mathcal{B}}^{\perp})$ is a complete hereditary cotorsion pair. In particular, the class $\mathcal{PGF}_{\mathcal{B}}$ is precovering.

Since for any n > 1 the class of \mathcal{FP}_n -injective modules, \mathcal{FI}_n , is definable (so semi-definable also), and since $\mathcal{GP}_n = \mathcal{PGF}_{\mathcal{FI}_n}$, we obtain:

Theorem

(Theorem A) Let $n \geq 2$. The class of generalized Gorenstein FP_n -projective modules, \mathcal{GP}_n , is precovering.

Case n = 1Lemma

$$\mathcal{PGF} = \mathcal{DP} \bigcap \mathcal{GF}.$$

Corollary

Over any ring R, $\mathcal{PGF} = \mathcal{DP}$ if and only if $\mathcal{DP} \subseteq \mathcal{GF}$.

Proposition

The Gorenstein flat dimension of a Ding projective module is either zero or infinite.

Proposition

The following are equivalent:

• $\mathcal{DP} = \mathcal{PGF}$

2 Every Ding projective module has finite Gorenstein flat dimension.

Proposition

If R has finite left weak Gorenstein global dimension then DP = PGF.

November 2020

14 / 35

Alina Iacob (Department of MathemaGeneralized Gorenstein projective and

Theorem

Let R be any ring. The following are equivalent:

- (1) $\mathcal{DP} \subseteq \mathcal{GF}$.
- (2) $\mathcal{DP} = \mathcal{PGF}$

(3) For any Ding projective module M, its character module, M^+ , is Gorenstein injective.

(4) The class Inj^+ of all character modules of injective right *R*-modules, is contained in \mathcal{DP}^{\perp} .

Theorem

Let R be a right coherent ring. Then $DP = PGF = GP_{ac}$

The coherence is a sufficient condition, but it is not a necessary condition on the ring. If R has finite global dimension (but it is not coherent) then $\mathcal{DP} = \mathcal{PGF}$.

Example. The ring

$$R = \begin{bmatrix} \mathbb{Q} & \mathbb{Q} & \mathbb{R} \\ 0 & \mathbb{Q} & \mathbb{R} \\ 0 & 0 & \mathbb{Q} \end{bmatrix} / \begin{bmatrix} 0 & 0 & \mathbb{R} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

is noncoherent of finite global dimension. So, $\mathcal{DP} = \mathcal{PGF}$ over R.

All the results in this section are joint with S. Estrada and M. Perez

Definition

Let \mathcal{B} be a class of right *R*-modules. We say that a module $M \in Mod(R)$ is **Gorenstein \mathcal{B}-flat** if $M = Z_0(F)$ for some $(\mathcal{B} \otimes_R -)$ -acyclic and exact complex *F* of flat modules.

- Gorenstein flat modules are obtained when $\mathcal{B} = \mathcal{I}nj$. If $\mathcal{B} \supseteq \mathcal{I}nj$ then any Gorenstein \mathcal{B} -flat module is, in particular, a Gorenstein flat module.
- ② Recall that a module M ∈ Mod(R) is of type FP_{∞} if there exists an exact sequence

$$\cdots \to P_1 \to P_0 \to M \to 0$$

with P_k finitely generated and projective for every $k \ge 0$. When $\mathcal{B} = \mathcal{FI}_{\infty} = \mathcal{AC} = (\mathcal{FP}_{\infty})^{\perp}$ we obtain the class $\mathcal{GF}_{AC}(R)$ of *Gorenstein AC-flat modules*. Properties of Gorenstein AC-flat modules

- 1. \mathcal{GF}_{AC} is a precovering class over any ring R.
- 2. If \mathcal{GF}_{AC} is closed under extensions then $\mathcal{GF}_{AC}(R)$ is a covering class.

Remark. Our new results show that Gorenstein AC-flat modules are always closed under extensions, and so the latter two properties hold for any ring R.

Properties of Gorenstein $\mathcal B\text{-flat}$ modules

Lemma

Let \mathcal{B} be a class of right R-modules. Then, the class $\mathcal{GF}_{\mathcal{B}}$ of Gorenstein \mathcal{B} -flat modules is a precovering class.

Proposition

If the class $\mathcal{GF}_{\mathcal{B}}$ of Gorenstein \mathcal{B} -flat modules is closed under extensions, then it is closed under taking kernels of epimorphisms and under direct limits. As a consequence, $\mathcal{GF}_{\mathcal{B}}$ is a covering class.

Proposition

If $\mathcal{GF}_{\mathcal{B}}$ is closed under extensions, then the pair $(\mathcal{GF}_{\mathcal{B}}, \mathcal{GC}_{\mathcal{B}})$ is a complete and hereditary cotorsion pair in Mod(R), where $\mathcal{GC}_{\mathcal{B}}$ be the right orthogonal class $\mathcal{GF}_{\mathcal{B}}^{\perp}$.

Question: When is the class $\mathcal{GF}_{\mathcal{B}}$ closed under extensions? We show that for any semi-definable class \mathcal{B} we have $\mathcal{GF}_{\mathcal{B}} = {}^{\perp} (\mathcal{C} \bigcap \mathcal{PGF}_{\mathcal{B}}^{\perp})$, and so $\mathcal{GF}_{\mathcal{B}}$ is closed under extensions. Alia lacob (Department of Mathem Generalized Gorenstein projective and November 2020)

19 / 35

We use:

Lemma

The following are equivalent for any R-module M and any class of right R-modules \mathcal{B} :

(a) M is Gorenstein \mathcal{B} -flat.

(b) $Tor_i(B, M) = 0$ for all $i \ge 1$ and $B \in \mathcal{B}$, and there exists an exact and $(B \otimes)$ -acyclic sequence of modules $0 \to M \to F^0 \to F^1 \to \ldots$ where each F^i is flat. (c) There exists a short exact sequence of modules $0 \to M \to F \to G \to 0$ where F is flat and G is Gorenstein \mathcal{B} -flat.

Theorem

Let \mathcal{B} be a semi-definable class of right *R*-modules. Then, the following conditions are equivalent for every $M \in Mod(R)$:

- (a) M is Gorenstein \mathcal{B} -flat.
- (b) There is a short exact sequence of modules

$$0 \to F \to L \to M \to 0$$

with $F \in \mathcal{F}$ lat and $L \in \mathcal{PGF}_{\mathcal{B}}$, which is also $Hom_R(-, \mathcal{C})$ -acyclic, for any cotorsion module C.

- (c) $Ext^1_R(M,C) = 0$ for every $C \in \mathcal{C} \cap \mathcal{PGF}^{\perp}_{\mathcal{B}}$.
- (d) There is a short exact sequence of modules

$$0 \to M \to F \to L \to 0$$

with $F \in \mathcal{F}lat$ and $L \in \mathcal{PGF}_{\mathcal{B}}$.

(a) M is Gorenstein \mathcal{B} -flat.

(b) There is a short exact sequence of modules

 $0 \to F \to L \to M \to 0$

with $F \in \mathcal{F}$ lat and $L \in \mathcal{PGF}_{\mathcal{B}}$, which is also $Hom_R(-, \mathcal{C})$ -acyclic, for any cotorsion module C.

Proof of (a) \Rightarrow (b) $M = Z_0(F)$, F an acyclic complex of flat modules, that is $B \otimes -$ exact.

 $(dw(Proj), (dwProj)^{\perp} \text{ is complete} \Rightarrow \text{ exact } 0 \to G \to P \to F \to 0, P \in dw(Proj), G \in (dwProj)^{\perp}.$

Then G is flat.

F and G are $\mathcal{B} \bigotimes -$ exact, so P is $\mathcal{B} \bigotimes -$ exact. Exact sequence $0 \to Z_i G \to Z_i P \to Z_i F \to 0$ with $Z_i G$ flat, and $Z_i P \in \mathcal{PGF}_{\mathcal{B}}$

If C is a cotorsion module, both g and h are C-injective, so f is also C-injective.

(b) There is a short exact sequence of modules

$$0 \to F \to L \to M \to 0$$

with $F \in \mathcal{F}lat$ and $L \in \mathcal{PGF}_{\mathcal{B}}$, which is also $Hom_R(-, \mathcal{C})$ -acyclic, for any cotorsion module C. (c) $Ext_R^1(M, C) = 0$ for every $C \in \mathcal{C} \cap \mathcal{PGF}_{\mathcal{B}}^{\perp}$. Proof of (b) \Rightarrow (c) Consider a short exact sequence as in (b).

$$0 \to F \to L \to M \to 0$$

Let $C \in \mathcal{C} \cap (\mathcal{PGF}_{\mathcal{B}})^{\perp}$. We have an exact sequence

 $Hom_R(L,C) \xrightarrow{\varphi} Hom_R(F,C) \to Ext^1_R(M,C) \to Ext^1_R(L,C)$

where $Ext_R^1(L, C) = 0$ since $L \in \mathcal{PGF}_{\mathcal{B}}$, and φ is epic. Hence, $Ext_R^1(M, C) = 0$.

(c) $Ext_R^1(M, C) = 0$ for every $C \in \mathcal{C} \cap \mathcal{PGF}_{\mathcal{B}}^\perp$. (d) There is a short exact sequence of modules

$$0 \to M \to F \to L \to 0$$

with $F \in \mathcal{F}lat$ and $L \in \mathcal{PGF}_{\mathcal{B}}$.

(c) \Rightarrow (d):Consider a short exact sequence

$$0 \to M \to U \to T \to 0$$

with $U \in \mathcal{PGF}_{\mathcal{B}}^{\perp}$ and $T \in \mathcal{PGF}_{\mathcal{B}}$. Let $C \in \mathcal{PGF}_{\mathcal{B}}^{\perp}$ be a cotorsion module. Then, we have an exact sequence

$$Ext^1_R(T,C) \to Ext^1_R(U,C) \to Ext^1_R(M,C)$$

where $Ext_R^1(T, C) = 0$ and $Ext_R^1(M, C) = 0$. Then, $U \in {}^{\perp}(\mathcal{C} \cap \mathcal{PGF}_{\mathcal{B}}^{\perp})$. Then U has a pure special $\mathcal{PGF}_{\mathcal{B}}$ -precover.

- pure exact sequence

$$0 \to K \to L \to U \to 0$$

with $K \in \mathcal{PGF}_{\mathcal{B}}^{\perp}$ and $L \in \mathcal{PGF}_{\mathcal{B}}$.

Then, $L \in \mathcal{PGF}_{\mathcal{B}} \cap (\mathcal{PGF}_{\mathcal{B}})^{\perp}$, so L is projective. Then U is a pure epimorphic image of a projective module, so $U \in \mathcal{F}lat$. (d) \Rightarrow (a): Follows from the Lemma above.

Corollary

If \mathcal{B} is semi-definable then $\mathcal{GF}_{\mathcal{B}}$ is closed under extensions.

Examples:

1. The class of Gorenstein flat modules is the left half of a complete hereditary cotorsion pair.

2. Consider the class $\mathcal{GF}_{\mathcal{AC}}$ of Gorenstein AC-flat modules. The class \mathcal{AC} of absolutely clean right *R*-modules is semi-definable. Hence, we have the following properties for Gorenstein AC-flat modules:

27 / 35

- $(\mathcal{GF}_{\mathcal{AC}}, (\mathcal{GF}_{\mathcal{AC}})^{\perp})$ is a complete hereditary cotorsion pair.
- Every module has a Gorenstein AC-flat cover.

Example 3. Consider the class \mathcal{FI}_n (of FP_n -injective right *R*-modules defined by Bravo-Perez. Recall that this class is the right orthogonal complement of that of the right *R*-modules of type FP_n , that is, those N for which there is an exact sequence

$$P_n \to P_{n-1} \to \dots \to P_1 \to P_0 \to N \to 0$$

where P_k is finitely generated and projective for every $0 \le k \le n$. By Bravo-Perez, \mathcal{FI}_n is a definable class if n > 1. Thus, if $\mathcal{GF}_{\mathcal{FI}_n}$ denotes the class of Gorenstein \mathcal{FI}_n -flat modules, we have that $\mathcal{GF}_{\mathcal{FI}_n}$ is closed under extensions. As a consequence of the previous results, we have that $(\mathcal{GF}_{\mathcal{FI}_n}, (\mathcal{GF}_{\mathcal{FI}_n})^{\perp})$ is a complete hereditary cotorsion pair.

All the results in this section are joint with S. Estrada and M. Perez The Gorenstein \mathcal{B} -flat stable model category

Given two complete and hereditary cotorsion pairs $(\mathcal{Q}, \mathcal{R}')$ and $(\mathcal{Q}', \mathcal{R})$ in an abelian category \mathcal{C} such that $\mathcal{Q}' \subseteq \mathcal{Q}, \, \mathcal{R}' \subseteq \mathcal{R}$ and

 $\mathcal{Q}' \cap \mathcal{R} = \mathcal{Q} \cap \mathcal{R}'$, then there exists a subcategory $\mathcal{W} \subseteq \mathcal{C}$ such that $(\mathcal{Q}, \mathcal{W}, \mathcal{R})$ is a Hovey triple in \mathcal{C} , that is:

(1) $(\mathcal{Q}, \mathcal{R} \cap \mathcal{W})$ and $(\mathcal{Q} \cap \mathcal{W}, \mathcal{R})$ are complete cotorsion pairs in \mathcal{C} .

(2) \mathcal{W} is *thick*: it is closed under extensions, kernels of epimorphisms and cokernels of monomorphisms between its objects.

By Hovey's correspondence, the existence of such a triple $(\mathcal{Q}, \mathcal{W}, \mathcal{R})$ implies the existence of a unique abelian model structure on \mathcal{C} such that:

- (1) \mathcal{Q} is the class of cofibrant objects.
- (2) \mathcal{R} is the class of fibrant objects.

Let \mathcal{B} be a class of modules that contains the injective right R-modules. We show it is possible to apply the previous result in the setting where: $\mathcal{Q} := \mathcal{GF}_{\mathcal{B}}(R),$ $\mathcal{Q}' := \mathcal{F}lat$ the class of flat left R-modules, $\mathcal{R} := \mathcal{C} = (\mathcal{F}lat)^{\perp}$ the class of cotorsion left R-modules, $\mathcal{R}' := \mathcal{GC}_{\mathcal{B}},$

provided that $\mathcal{GF}_{\mathcal{B}}(R)$ is closed under extensions (for instance if \mathcal{B} is a semi-definable class).

Proposition (compatibility between the flat and Gorenstein \mathcal{B} -flat cotorsion pairs)

If $\mathcal{GF}_{\mathcal{B}}$ is closed under extensions and \mathcal{B} contains all injective right R-modules, then

$$\mathcal{F}lat \cap \mathcal{C} = \mathcal{GF}_{\mathcal{B}} \cap \mathcal{GC}_{\mathcal{B}}$$

Proof. (\supseteq). Let $M \in \mathcal{GF}_{\mathcal{B}} \cap \mathcal{GC}_{\mathcal{B}}$. Then $M \in \mathcal{C}$. Since M is Gorenstein \mathcal{B} -flat, we have a short exact sequence

$$0 \to M \to F \to M' \to 0$$

with F flat, M' is Gorenstein \mathcal{B} -flat. This sequence splits, since M is Gorenstein \mathcal{B} -cotorsion, so $Ext^1(M', M) = 0$. Hence, M is a direct summand of F, so $M \in \mathcal{F}lat$.

(⊆). Let $N \in \mathcal{F}lat \cap \mathcal{C}$. Then $N \in \mathcal{GF}_{\mathcal{B}}$. Since $(\mathcal{GF}_{\mathcal{B}}, \mathcal{GC}_{\mathcal{B}})$ is complete, there is a short exact sequence

$$0 \to N \to C \to F \to 0$$

with $C \in \mathcal{GC}_{\mathcal{B}}$ and $F \in \mathcal{GF}_{\mathcal{B}}$. Since N and F are Gorenstein \mathcal{B} -flat and $\mathcal{GF}_{\mathcal{B}}$ is closed under extensions, we have that $C \in \mathcal{GF}_{\mathcal{B}} \cap \mathcal{GC}_{\mathcal{B}} \subseteq \mathcal{F} \cap \mathcal{C}$. It follows that F is a Gorenstein flat module with finite flat dimension, and so F is flat. Then $Ext^{1}(F, N) = 0$ since N is cotorsion, and so the previous exact sequence splits. It follows that N is a direct summand of $C \in \mathcal{GC}_{\mathcal{B}}$, and hence $N \in \mathcal{GC}_{\mathcal{B}}$.

Thus we have:

Theorem (the Gorenstein \mathcal{B} -flat model structure in Mod(R))

Assume $\mathcal{GF}_{\mathcal{B}}$ is closed under extensions and \mathcal{B} contains all injective right R-modules. Then, there exists a unique abelian model structure on Mod(R) such that $\mathcal{GF}_{\mathcal{B}}$ is the class of cofibrant objects

Corollary (the Gorenstein flat model structure over arbitrary rings)

Over any ring R there exists a unique abelian model structure on Mod(R) such that \mathcal{GF} is the class of cofibrant objects

Corollary

If \mathcal{B} is a semi-definable class of right R-modules that contains the injectives, then, there exists a unique abelian model structure on Mod(R) such that $\mathcal{GF}_{\mathcal{B}}$ is the class of cofibrant objects, \mathcal{C} is the class of fibrant objects, and $\mathcal{PGF}_{\mathcal{B}}^{\perp}$ is the class of trivial objects.

References:

1. D. Bravo and J.Gillespie and M. Hovey: *The stable module category* of a general ring, **International Electronic Journal of Algebra**, 18:1–20, 2015.

2. D. Bravo, S. Estrada, A. Iacob. FP_n -injective and FP_n -flat covers and preenvelopes and Gorenstein AC-flat covers, Alg. Colloquium, vol 25, issue 2, pages 319 - 334, 2018.

3. S. Estrada, A. Iacob, M. Perez. Model structures and relative Gorenstein flat modules and chain complexes, chapter in Contemporary Mathematics, Volume 751, Print ISBN 978-1-4704-4368-9, Electronic ISBN: 978-1-4704-5608-5, pages 135–176.
4. A. Iacob: "Projectively coresolved Gorenstein flat and Ding projective modules", Communications in Algebra, 48(7): 2883 – 2893, 2020.

5. A. Iacob: *Generalized Gorenstein modules*, submitted.

6. J. Saroch and J. Stovicek : Singular compactness and definability for Σ -cotorsion and Gorenstein modules. Selecta Math., 26 (2020)