Big Projective modules and their applications

November 6, 2020

The *stable* category

Let C be a full subcategory of modules closed by finite direct sums. Fix an object X in C. For any pair of modules M, N in C consider the following subgroup of $\operatorname{Hom}_{R}(M, N)$:

 $\mathcal{J}_X(M,N) = \{f \colon M \to N \mid f \text{ factors through } X^{(\Lambda)} \text{ for some set } \Lambda\}$

 \mathcal{J}_X is an ideal of C and we can consider the quotient category C/\mathcal{J}_X which has the same objects as C and

 $\operatorname{Hom}_{\mathcal{C}/\mathcal{J}_X}(M,N)$: = $\operatorname{Hom}_{\mathcal{C}}(M,N)/\mathcal{J}_X(M,N)$

Two objects M and N are isomorphic in this quotient category if and only if there exist a set Λ , P and Q in $\operatorname{Add}_{\Lambda}(X)$ such that $P \oplus M \cong Q \oplus N$ If M, N and X are countably generated, then M and N are isomorphic in the quotient category if and only if $X^{(\omega)} \oplus M \cong X^{(\omega)} \oplus N$.

We extend Dress equivalence to the stable category

Theorem

Let *M* be a finitely generated right module over ANY ring *R*, and let $S = \operatorname{End}_R(M)$. Let *X* be an object of Add(*M*). Let $P_S = \operatorname{Hom}_R(M, X)$, and let $I = \operatorname{Tr}_S(P) = \sum_{f \in \operatorname{Hom}_S(P,S)} f(P)$. Then, the functor $\operatorname{Hom}_R(M, -) \otimes_S S/I$ induces an equivalence between the categories Add(*M*)/ \mathcal{J}_X and Add(*S*/*I*). The equivalence restricts well to countably generated objects.

The key result: Projective modules can be lifted modulo the trace ideal of a projective module.

We emphasize on add (S/I): If X is countably generated, a finitely generated projective right S/I-module Q corresponds via the equivalence to a countably generated object Y of the stable category. We lift it to $Add_{\aleph_0}(M)$ as $Y \oplus X^{(\omega)}$. Such lifting is unique up to isomorphism because it comes from a uniquely determined *I*-big projective *S*-module.

The case of finitely generated noetherian algebras

Recall: All countably generated projective *S*-modules are relatively big in this context and they are determined by a suitable idempotent ideal I (depending on the projective) and a finitely generated projective module of S/I

Recipe to compute the objects of Add(M) for M finitely generated

Remark: Enough to compute countably generated objects.

- Compute $S = \text{End}_R(M)$. When R is a finitely generated noetherian algebra, so is S.
- Compute the idempotent ideals of S. The set idempotent ideals coincides with the set of trace ideals of projective modules.
- For any idempotent ideal I of S, compute the finitely generated projective modules over S/I.
- Glue" everything together.

We get all the information on infinitely generated modules just out of finitely generated data!!

Thanks for your attention!!