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Introduction

Koszul duality Higher homological algebra
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Plan of talk

1. n-hereditary algebras
2. Classical Koszul duality
3. Motivation
4. Higher Koszul duality and answer to motivating question
5. More results connecting higher Koszul duality and n-representation

in�nite algebras
6. (Higher almost Koszulity and n-representation �nite algebras)
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Conventions and notation

1. n = positive integer
2. k = algebraically closed �eld
3. All algebras are algebras over k
4. D(�) = Homk(�, k)

5. A and B = ungraded algebras
6. ⇤ = positively graded algebra
7. modA = �nitely presented right A-modules
8. gr⇤ = �nitely presented graded right ⇤-modules
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n-hereditary algebras
Classical case (n = 1)
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n-hereditary algebras
From now, let A be a �nite dimensional algebra with gl.dimA  n.

Nakayama functor
⌫ = D RHomA(�,A) : Db

(modA)
'�! Db

(modA)

⌫�1
= RHomA(DA,�) : Db

(modA)
'�! Db

(modA)

We use the notation ⌫n = ⌫ � [�n].

Auslander–Reiten translation
For n = 1, we have ⌧ ' H

0
(⌫1) : modA ! modA

Higher Auslander–Reiten translation
⌧n = H

0
(⌫n) : modA ! modA
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n-hereditary algebras

De�nition
1. A is called n-representation �nite if there for each indecomposable

P 2 projA exists an integer i � 0 such that ⌫�i
n P is indecomposable

injective.
2. A is called n-representation in�nite if Hi

(⌫�j
n A) = 0 for i 6= 0 and j � 0.

3. A is called n-hereditary if it is either n-representation �nite or
n-representation in�nite.
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n-hereditary algebras

Classes of examples of n-representation �nite algebras
1. Higher type A algebras [IO ’11]
2. Nakayama algebras with homogeneous relations [DI ’20, V ’19]
3. Iterated n-APR tilts of higher representation �nite algebras [IO ’11]
4. Tensor products of `-homogeneous higher representation �nite algebras

[HI ’11]

8



n-hereditary algebras

Classes of examples of n-representation in�nite algebras
1. Higher type eA algebras [HIO ’14]
2. Tensor products of higher representation-in�nite algebras [HIO ’14]
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n-hereditary algebras

Higher preprojective algebras
Given an n-hereditary algebra A, the (n + 1)-preprojective algebra of A is given
by

⇧n+1A =

M

i�0

HomDb(A)(A, ⌫
�i
n A).
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Koszul algebras

A graded algebra ⇤ = �i�0⇤i which is generated in degrees 0 and 1 with ⇤0
semisimple is known as a Koszul algebra if

Ext
i
gr⇤(⇤0,⇤0hji) = 0

for i 6= j .

The Koszul dual of ⇤ is de�ned as

⇤
!
=

M

i�0

Ext
i
gr⇤(⇤0,⇤0hii).
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Koszul duality

Let ⇤ be a Koszul algebra and ⇤
! its Koszul dual. Given certain �niteness

conditions, we have
Db

(gr⇤)
'�! Db

(gr⇤
!
).

Aim
Generalize the notion of Koszul algebras and get a higher version of the Koszul
duality equivalence above.
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Trivial extensions

Let A be a �nite dimensional algebra. The trivial extension of A is

�A = A� DA

with multiplication (a, f ) · (b, g) = (ab, ag + fb) for a, b 2 A and f , g 2 DA.

�A can be graded with A in degree 0 and DA in degree 1.
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Graded symmetric algebras

A �nite dimensional algebra ⇤ = �i�0⇤i is graded symmetric if D⇤ ' ⇤h�ai as
graded ⇤-bimodules for some integer a.

Note
1. Any graded symmetric algebra is self-injective.
2. The integer amust be equal to the highest degree of ⇤.

Example
The trivial extension �A of a �nite dimensional algebra A is graded symmetric.
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Motivation
Finiteness condition
The category gr⇤ is abelian if and only if ⇤ is graded right coherent, i.e. if every
�nitely generated homogeneous right ideal is �nitely presented.

Some known equivalences
Let A be an n-representation in�nite algebra with ⇧n+1A graded right
coherent. We then have

gr�A ' Db
(modA) ' Db

(qgr⇧n+1A).

Motivating question
Does the equivalence gr�A ' Db

(qgr⇧n+1A) remind us of something?
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Koszul duality and the BGG-correspondence

Let ⇤ be a Koszul algebra which is graded symmetric.

Db
(gr⇤) Db

(gr⇤
!
)

gr⇤ Db
(qgr⇤

!
)

'

'

Motivating question
Is the equivalence gr�A ' Db

(qgr⇧n+1A) a consequence of some higher
Koszul duality?
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Koszul duality and the BGG-correspondence

Let ⇤ be a Koszul algebra which is graded symmetric.

Db
(gr⇤) Db

(gr⇤
!
)

gr⇤ Db
(qgr⇤

!
)

'

'

Motivating question
Is the equivalence gr�A ' Db

(qgr⇧n+1A) a consequence of some higher
Koszul duality?
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Generalized Koszul algebras

Tilting modules
Let A be a �nite dimensional algebra. A �nitely generated A-module T is called
a tilting module if the following conditions hold:

1. proj.dimA T < 1;
2. Ext

i
A(T ,T ) = 0 for i > 0;

3. There is an exact sequence

0 ! A ! T 0 ! T 1 ! · · · ! T l ! 0

with T i 2 addT for i = 0, . . . , l .
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Generalized Koszul algebras

Let ⇤ = �i�0⇤i be a positively graded algebra.

De�nition

Let T be a �nitely generated basic graded ⇤-module concentrated in de-
gree 0. We say that T is graded n-self-orthogonal if

Ext
i
gr⇤(T ,T hji) = 0

for i 6= nj .

18



Generalized Koszul algebras
De�nition

Assume gl.dim⇤0 < 1 and let T be a graded ⇤-module concentrated in
degree 0. We say that ⇤ is n-T -Koszul or n-Koszul with respect to T if the
following conditions hold:
1. T is a tilting ⇤0-module.
2. T is graded n-self-orthogonal as a ⇤-module.

De�nition

Let ⇤ be an n-T -Koszul algebra. The n-T -Koszul dual of ⇤ is given by

⇤
!
= �i�0 Ext

ni
gr⇤(T ,T hii).
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Generalized Koszul algebras
Example
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Generalized Koszul algebras

Proposition

Let A be an n-representation in�nite algebra. The following statements
hold:
1. The trivial extension �A is (n + 1)-Koszul with respect to A.
2. We have (�A)! ' ⇧n+1A as graded algebras.
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Higher Koszul duality

Theorem

Let ⇤ be a �nite dimensional n-T -Koszul algebra and assume that ⇤! is
graded right coherent and has �nite global dimension. Then there is an
equivalence

Db
(gr⇤)

'�! Db
(gr⇤

!
)

of triangulated categories.
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Higher Koszul duality and BGG-correspondence

Proposition

In the case where our algebra ⇤ is graded symmetric, the higher
Koszul duality equivalence descends to yield an analogue of the BGG-
correspondence

Db
(gr⇤) Db

(gr⇤
!
)

gr⇤ Db
(qgr⇤

!
).

'

'
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Back to our motivating question

Corollary

Let A be an n-representation in�nite algebra with ⇧n+1A graded right
coherent. We then have:

Db
(gr�A) Db

(gr⇧n+1A)

gr�A Db
(qgr⇧n+1A)

'

'

In particular, this holds whenever an n-representation in�nite algebra A is
n-representation tame as de�ned in [HIO ’14].
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A characterization

Tilting object
Let T be a triangulated category. An object T in T is a tilting object if the
following conditions hold:
1. HomT (T ,T [i ]) = 0 for i 6= 0;
2. ThickT (T ) = T .
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A characterization

Notation and standing assumptions
1. ⇤ = graded symmetric algebra of highest degree a � 1
2. gl.dim⇤0 < 1
3. T 2 gr⇤ satis�es:

i) T is concentrated in degree 0
ii) T is a tilting module over ⇤0

4. eT =
La�1

i=0 ⌦
�niT hii

5. B = Endgr⇤( eT )
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A characterization

Theorem

The following statements are equivalent:
1. ⇤ is n-T -Koszul.
2. eT is a tilting object in gr⇤ and B is (na� 1)-representation in�nite.
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A characterization

Corollary

There is a bijective correspondence

8
<

:

isomorphism classes
of n-representation
in�nite algebras

9
=

;�

8
>><

>>:

isomorphism classes of graded symmetric
�nite dimensional algebras of highest
degree 1 which are (n + 1)-Koszul with
respect to their degree 0 part

9
>>=

>>;
.
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