NTNU | Norwegian University of Science and Technology

Higher Koszul duality and connections with *n*-hereditary algebras

Johanne Haugland

Joint work with Mads H. Sandøy

April 16, 2021

Introduction

Joint with Mads H. Sandøy: *Higher Koszul duality and connections with n*-hereditary algebras (2021, arXiv:2101.12743)

Introduction

Higher homological algebra

[I '07...] n-heneditary algs. [ID '11], [IO '13], [HIO '14]

Plan of talk

- 1. *n*-hereditary algebras
- 2. Classical Koszul duality
- 3. Motivation
- 4. Higher Koszul duality and answer to motivating question
- **5.** More results connecting higher Koszul duality and *n*-representation infinite algebras
- 6. (Higher almost Koszulity and *n*-representation finite algebras)

Conventions and notation

- **1.** n = positive integer
- **2.** k = algebraically closed field
- **3.** All algebras are algebras over *k*
- 4. $D(-) = Hom_k(-, k)$
- **5.** A and B = ungraded algebras
- **6.** $\Lambda = \text{positively graded algebra}$
- **7.** mod A = finitely presented right A-modules
- 8. gr $\Lambda =$ finitely presented graded right $\Lambda \text{-modules}$

n-hereditary algebras hereditary alg. A gl. dinh≤
Classical case (n = 1)
rep. finite rep. infinite
V indec. PEprojA ∃i=0
s.t. rEiP indec. iv:
Check: ME modA indec. non-inj.
=>
$$y_i^{-1}M$$
 cons. in degree 0
for i=0

From now, let A be a finite dimensional algebra with gl.dim $A \le n$.

Nakayama functor

$$\nu = D \operatorname{RHom}_{\mathcal{A}}(-, A) \colon \mathcal{D}^{b}(\operatorname{mod} A) \xrightarrow{\simeq} \mathcal{D}^{b}(\operatorname{mod} A)$$
$$\nu^{-1} = \operatorname{RHom}_{\mathcal{A}}(DA, -) \colon \mathcal{D}^{b}(\operatorname{mod} A) \xrightarrow{\simeq} \mathcal{D}^{b}(\operatorname{mod} A)$$

We use the notation $\nu_n = \nu \circ [-n]$.

Auslander-Reiten translation

For n = 1, we have $\tau \simeq H^0(\nu_1)$: mod $A \rightarrow \operatorname{mod} A$

Higher Auslander-Reiten translation

 $au_n = \mathsf{H}^0(
u_n) \colon \operatorname{\mathsf{mod}} A o \operatorname{\mathsf{mod}} A$

Definition

- **1.** *A* is called *n*-representation finite if there for each indecomposable $P \in \text{proj } A$ exists an integer $i \ge 0$ such that $\nu_n^{-i}P$ is indecomposable injective.
- **2.** A is called *n*-representation infinite if $H^i(\nu_n^{-j}A) = 0$ for $i \neq 0$ and $j \ge 0$.
- **3.** *A* is called *n*-*hereditary* if it is either *n*-representation finite or *n*-representation infinite.

Classes of examples of *n*-representation finite algebras

- 1. Higher type A algebras [IO '11]
- 2. Nakayama algebras with homogeneous relations [DI '20, V '19]
- 3. Iterated *n*-APR tilts of higher representation finite algebras [IO '11]
- 4. Tensor products of $\ell\text{-homogeneous}$ higher representation finite algebras [HI '11]

Classes of examples of *n*-representation infinite algebras

- **1.** Higher type \tilde{A} algebras [HIO '14]
- 2. Tensor products of higher representation-infinite algebras [HIO '14]

Higher preprojective algebras

Given an *n*-hereditary algebra A, the (n + 1)-preprojective algebra of A is given by

$$\Pi_{n+1}A = \bigoplus_{i \ge 0} \operatorname{Hom}_{\mathcal{D}^{b}(A)}(A, \nu_{n}^{-i}A).$$

Koszul algebras

A graded algebra $\Lambda = \bigoplus_{i \ge 0} \Lambda_i$ which is generated in degrees 0 and 1 with Λ_0 semisimple is known as a *Koszul algebra* if

$$\mathsf{Ext}^{i}_{\mathsf{gr}\,\mathsf{\Lambda}}(\mathsf{\Lambda}_{0},\mathsf{\Lambda}_{0}\langle j
angle)=0$$

for $i \neq j$.

The *Koszul dual* of Λ is defined as

$$\Lambda^! = \bigoplus_{i \geq 0} \mathsf{Ext}^i_{\mathsf{gr}\,\Lambda}(\Lambda_0, \Lambda_0\langle i \rangle).$$

Koszul duality

Let Λ be a Koszul algebra and $\Lambda^!$ its Koszul dual. Given certain finiteness conditions, we have

$$\mathcal{D}^{b}(\operatorname{gr} \Lambda) \stackrel{\simeq}{\longrightarrow} \mathcal{D}^{b}(\operatorname{gr} \Lambda^{!}).$$

Aim

Generalize the notion of Koszul algebras and get a *higher* version of the Koszul duality equivalence above.

Trivial extensions

Let A be a finite dimensional algebra. The trivial extension of A is

 $\Delta A = A \oplus DA$

with multiplication $(a, f) \cdot (b, g) = (ab, ag + fb)$ for $a, b \in A$ and $f, g \in DA$.

 ΔA can be graded with A in degree 0 and DA in degree 1.

Graded symmetric algebras

A finite dimensional algebra $\Lambda = \bigoplus_{i \ge 0} \Lambda_i$ is graded symmetric if $D\Lambda \simeq \Lambda \langle -a \rangle$ as graded Λ -bimodules for some integer a.

Note

- 1. Any graded symmetric algebra is self-injective.
- **2.** The integer a must be equal to the highest degree of Λ .

Example

The trivial extension ΔA of a finite dimensional algebra A is graded symmetric.

Motivation

Finiteness condition

The category $gr \Lambda$ is abelian if and only if Λ is *graded right coherent*, i.e. if every finitely generated homogeneous right ideal is finitely presented.

Some known equivalences

Let *A* be an *n*-representation infinite algebra with $\Pi_{n+1}A$ graded right coherent. We then have

$$\underbrace{\operatorname{gr}}_{\operatorname{Happel}} \Delta A \simeq \mathcal{D}^{b}(\operatorname{mod} A) \simeq \mathcal{D}^{b}(\operatorname{qgr} \Pi_{n+1}A).$$
(Happel Minamoto, Uon

Motivating question

Does the equivalence $\underline{\operatorname{gr}} \Delta A \simeq \mathcal{D}^b(\operatorname{qgr} \Pi_{n+1} A)$ remind us of something?

Koszul duality and the BGG-correspondence

Let Λ be a Koszul algebra which is graded symmetric.

Koszul duality and the BGG-correspondence

Let Λ be a Koszul algebra which is graded symmetric.

$$\begin{array}{ccc} \mathcal{D}^{b}(\operatorname{gr} \Lambda) & \stackrel{\simeq}{\longrightarrow} & \mathcal{D}^{b}(\operatorname{gr} \Lambda^{!}) \\ & & \downarrow & & \downarrow \\ & \underline{\operatorname{gr}} \Lambda & \stackrel{\sim}{\dashrightarrow} & \mathcal{D}^{b}(\operatorname{qgr} \Lambda^{!}) \end{array}$$

Motivating question

Is the equivalence $\underline{\text{gr}} \Delta A \simeq \mathcal{D}^b(\operatorname{qgr} \Pi_{n+1} A)$ a consequence of some higher Koszul duality?

Tilting modules

Let A be a finite dimensional algebra. A finitely generated A-module T is called a *tilting module* if the following conditions hold:

- **1.** proj.dim_A $T < \infty$;
- **2.** $\operatorname{Ext}_{A}^{i}(T, T) = 0$ for i > 0;
- 3. There is an exact sequence

$$0 \rightarrow A \rightarrow T^0 \rightarrow T^1 \rightarrow \cdots \rightarrow T' \rightarrow 0$$

with $T^i \in \text{add } T$ for $i = 0, \ldots, I$.

Let $\Lambda = \bigoplus_{i \ge 0} \Lambda_i$ be a positively graded algebra.

Definition

Let T be a finitely generated basic graded Λ -module concentrated in degree 0. We say that T is graded *n*-self-orthogonal if

$$\operatorname{Ext}^{i}_{\operatorname{gr}\Lambda}(T,T\langle j\rangle)=0$$

for $i \neq nj$.

Definition

Assume gl.dim $\Lambda_0 < \infty$ and let T be a graded Λ -module concentrated in degree 0. We say that Λ is *n*-*T*-*Koszul* or *n*-*Koszul with respect to* T if the following conditions hold:

- **1.** T is a tilting Λ_0 -module.
- **2.** *T* is graded *n*-self-orthogonal as a Λ -module.

Definition

Assume gl.dim $\Lambda_0 < \infty$ and let T be a graded Λ -module concentrated in degree 0. We say that Λ is *n*-*T*-*Koszul* or *n*-*Koszul with respect to* T if the following conditions hold:

- **1.** T is a tilting Λ_0 -module.
- **2.** *T* is graded *n*-self-orthogonal as a Λ -module.

Definition

Let Λ be an *n*-*T*-Koszul algebra. The *n*-*T*-Koszul dual of Λ is given by $\Lambda^! = \bigoplus_{i>0} \operatorname{Ext}_{\operatorname{er}\Lambda}^{ni}(\mathcal{T}, \mathcal{T}\langle i \rangle).$

~) AA is 2-Koszul wrt. A

Norwegian University of Science and Technology

Proposition

Let *A* be an *n*-representation infinite algebra. The following statements hold:

- **1.** The trivial extension ΔA is (n + 1)-Koszul with respect to A.
- **2.** We have $(\Delta A)^! \simeq \prod_{n+1} A$ as graded algebras.

Higher Koszul duality

Theorem

Let Λ be a finite dimensional *n*-*T*-Koszul algebra and assume that Λ [!] is graded right coherent and has finite global dimension. Then there is an equivalence

$$\mathcal{D}^{b}(\operatorname{\mathsf{gr}} \Lambda) \stackrel{\simeq}{\longrightarrow} \mathcal{D}^{b}(\operatorname{\mathsf{gr}} \Lambda^{!})$$

of triangulated categories.

Higher Koszul duality and BGG-correspondence

Proposition

In the case where our algebra Λ is graded symmetric, the higher Koszul duality equivalence descends to yield an analogue of the BGG-correspondence

Back to our motivating question

Corollary

Let *A* be an *n*-representation infinite algebra with $\Pi_{n+1}A$ graded right coherent. We then have:

In particular, this holds whenever an *n*-representation infinite algebra *A* is *n*-representation tame as defined in [HIO '14].

Tilting object

Let T be a triangulated category. An object T in T is a *tilting object* if the following conditions hold:

- **1.** Hom_T(T, T[i]) = 0 for $i \neq 0$;
- **2.** Thick_{\mathcal{T}}(\mathcal{T}) = \mathcal{T} .

Notation and standing assumptions

- **1.** $\Lambda =$ graded symmetric algebra of highest degree $a \ge 1$
- 2. gl.dim $\Lambda_0 < \infty$
- **3.** $T \in \operatorname{gr} \Lambda$ satisfies:
 - i) T is concentrated in degree 0
 - ii) T is a tilting module over Λ_0

4.
$$\widetilde{T} = \bigoplus_{i=0}^{a-1} \Omega^{-ni} T\langle i \rangle$$

5. $B = \operatorname{End}_{\underline{\operatorname{gr}}\Lambda}(\widetilde{T})$

Theorem

The following statements are equivalent:

- **1.** Λ is *n*-*T*-Koszul.
- **2.** \tilde{T} is a tilting object in gr A and B is (na 1)-representation infinite.

Corollary

There is a bijective correspondence

isomorphism classes of graded symmetric $\begin{cases} \text{isomorphism classes} \\ \text{of } n\text{-representation} \\ \text{infinite algebras} \end{cases} \rightleftharpoons \begin{cases} \text{isomorphism classes of gradients} \\ \text{finite dimensional algebras of highest} \\ \text{degree 1 which are } (n+1)\text{-Koszul with} \\ \text{respect to their degree 0 part} \end{cases}$

$$\begin{array}{c} A & \longrightarrow & \Delta A \\ \Lambda_{o} & \longleftarrow & \Lambda \end{array}$$

Norwegian University of Science and Technology

References

- [BGS '96] A. Beilinson, V. Ginzburg, W. Soergel, *Koszul duality patterns in representation theory*, J. Amer. Math. Soc. 9 (1996), 473–527.
- [BGG '78] J. Bernšteĭn, I. Gelfand, S. Gelfand, *Algebraic vector bundles on* P^{*n*} and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), 66–67.
- [DI '20] E. Darpö, O. Iyama, d-representation-finite self-injective algebras, Adv. Math. 362 (2020).
- [GRS '02] E. L. Green, I. Reiten, Ø. Solberg, *Dualities on generalized Koszul algebras*, Mem. Amer. Math. Soc. 159 (2002), xvi+67.
- [H '87] D. Happel, *On the derived category of a finite-dimensional algebra*, Comment. Math. Helv. 62 (1987), 339–389.
- [HI '11] M. Herschend, O. Iyama, *n*-representation-finite algebras and twisted fractionally Calabi–Yau algebras, Bull. Lond. Math. Soc. 43 (2011), 449–466.
- [HIO '14] M. Herschend, O. Iyama, S. Oppermann, *n-representation infinite algebras*, Adv. Math. 252 (2014), 292–342.

 [I1 '07] O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22–50.

- [I2 '07] O. Iyama, Auslander correspondence, Adv. Math. 210 (2007), no. 1, 51–82.
- [I'11] O. Iyama, *Cluster tilting for higher Auslander algebras*, Adv. Math. 226 (2011), no. 1, 1–61.
- [IO '11] O. Iyama, S. Oppermann, *n-representation-finite algebras and n-APR tilting*, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6575–6614.
- [IO '13] O. Iyama, S. Oppermann, Stable categories of higher preprojective algebras, Adv. Math. 244 (2013), 23–68.
- [M '11] D. O. Madsen, On a common generalization of Koszul duality and tilting equivalence, Adv. Math. 227 (2011), 2327–2348.
- [Mi '12] H. Minamoto, Ampleness of two-sided tilting complexes, Int. Math. Res. Not. IMRN (2012), 67–101.
- [MM '11] H. Minamoto, I. Mori, The structure of AS-Gorenstein algebras, Adv. Math. 226 (2011), 4061–4095.
- [R'89] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), 303–317.
- [V'19] L. Vaso, n-cluster tilting subcategories of representation-directed algebras, J. Pure Appl. Algebra 223 (2019), 2101–2122.

Thank you for your attention

D NTNU | Norwegian University of Science and Technology