Pairwise Completability for 2-Simple Minded Collections

Eric J. Hanson

Brandeis University

based on joint works with Emily Barnard and Kiyoshi Igusa

Representation Theory and Related Topics Seminar Northeastern University

October 2, 2020

- 3 Examples and Counterexamples
- The importance of rank 3

5 Future work

- Let Λ be a finite dimensional, basic algebra over an arbitrary field K.
- Denote by mod∧ the category of finitely generate (right) modules
- All subcategories are assumed full and closed under isomorphisms.
- (-)[1] is the shift functor.
- S ∈ modA or D^b(modA) is called a *brick* if End(S) is a division algebra. A collection of Hom-orthogonal bricks is a *semibrick*.

Key Definitions

Definition-Theorem (Brüstle-Yang '13)

Let \mathcal{D} and \mathcal{U} be semibricks in mod Λ . Then $\mathcal{D} \sqcup \mathcal{U}[1]$ is called a *2-term simple minded collection* (2-SMC) if

- Hom $(\mathcal{D}, \mathcal{U}) = 0 = \operatorname{Ext}(\mathcal{D}, \mathcal{U})$
- ② The closure of D ⊔ U[1] under triangles and direct summands is all of D^b(modΛ).
 - We say $\mathcal{D} \sqcup \mathcal{U}[1]$ is a *semibrick pair* if condition (1) holds.
 - We say the semibrick pair $\mathcal{D} \sqcup \mathcal{U}[1]$ is *completable* if there exists a 2-SMC $\mathcal{D}' \sqcup \mathcal{U}'[1]$ so that $\mathcal{D} \subseteq \mathcal{D}'$ and $\mathcal{U} \subseteq \mathcal{U}'$.
 - Natural question: under what conditions is a semibrick pair completable?

Some Examples

$$Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$
$$\Lambda = KQ/(\alpha\beta)$$

• $S_1 \sqcup S_2 \sqcup S_3$ and $S_1[1] \sqcup S_2[1] \sqcup S_3[1]$ are 2-SMCs.

• $P_1 \sqcup S_3 \sqcup S_2[1]$ is a 2-SMC.

• $P_1 \sqcup P_2[1]$ is a semibrick pair which is not completable.

Relationship to Lattices of Torsion Classes

Definition

Let \mathcal{T}, \mathcal{F} be (full, closed under isomorphism) subcategories of modA.

- Then $(\mathcal{T}, \mathcal{F})$ is a *torsion pair* if $\mathcal{T} = {}^{\perp}\mathcal{F}$ and $\mathcal{F} = \mathcal{T}^{\perp}$.
- **2** If $(\mathcal{T}, \mathcal{F})$ is a torsion pair, then \mathcal{T} is called a *torsion class* and \mathcal{F} is called a *torsion-free class*.
 - If \mathcal{T} (resp. \mathcal{F}) is a (full) subcategory which is closed under isomorphisms, extensions, and quotients (resp. submodules), then $(\mathcal{T}, \mathcal{T}^{\perp})$ (resp. $(^{\perp}\mathcal{F}, \mathcal{F})$) is a torsion pair.
 - The torsion classes (resp. torsion free classes) of modΛ form a lattice under containment [IRTT15].
 - A minimal inclusion of torsion classes (resp. torsion free classes is a pair $\mathcal{T} \subseteq \mathcal{T}'$ so that $\mathcal{T} \subsetneq \mathcal{T}'' \subseteq \mathcal{T}'$ if and only if $\mathcal{T}'' = \mathcal{T}'$.

Relationship to Lattices of Torsion Classes

Definition-Theorem (Barnard-Carroll-Zhu '19)

Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair.

- A brick $S \in \text{mod}\Lambda$ is called a *minimal extending module* for \mathcal{T} if there is a minimal inclusion $\mathcal{T} \subseteq \text{Filt}(\mathcal{T} \cup \{S\})$.
- A brick S ∈ modΛ is called a *minimal co-extending module* for *F* if there exists a minimal inclusion *F* ⊆ Filt(*F* ∪ {*S*}). Equivalently, S is a minimal extending module for [⊥]Filt(*F* ∪ {S}).

An Example

Observation: $S_2 \sqcup P_3 \sqcup S_1[1] \sqcup S_4[1]$ is a 2-SMC!

Relationship to Lattices of Torsion Classes

Theorem (Barnard-Carroll-Zhu '19)

Suppose D is a collection of bricks. Then D is the set of minimal extending modules (resp. minimal co-extending modules) for a torsion class (resp. torsion-free class) if and only if D is a semibrick.

Relationship to Lattices of Torsion Classes

From now on, we'll assume modA contains only finitely many torsion classes (i.e., A is τ -tilting finite [DIJ17]).

Theorem (Asai '19)

Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair. Let \mathcal{D} be the set of minimal co-extending modules for \mathcal{F} and let \mathcal{U} be the set of minimal extending modules for \mathcal{T} . Then

- **1** $\mathcal{D} \sqcup \mathcal{U}[1]$ is a 2-SMC.
- **2** $\mathcal{T} = \mathsf{FiltFac}(\mathcal{D})$ and $\mathcal{F} = \mathsf{FiltSub}(\mathcal{U})$.
- Solution The association $(\mathcal{T}, \mathcal{F}) \mapsto \mathcal{D} \sqcup \mathcal{U}[1]$ is a bijection between torsion pairs and 2-SMCs.

Obstruction to Completability

Suppose $\mathcal{D} \sqcup \mathcal{U}[1]$ is the 2-SMC corresponding to a torsion pair $(\mathcal{T}, \mathcal{F})$.

- Let $S \in \mathcal{D}$. By the previous results, $Filt(\mathcal{F} \cup \{S\})$ is a torsion-free class. Thus every proper submodule of S is in \mathcal{F} .
- Let T ∈ U. By the previous results, Filt(T ∪ {T}) is a torsion class. Thus every proper quotient of T is in T.
- This implies that every nonzero morphism $T \rightarrow S$ must be mono or epi¹. Otherwise the image would have no canonical exact sequence.

¹This is also proven in [BY13].

Obstruction to Completability

Our non-example from before:

$$Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

$$\Lambda = KQ/(\alpha\beta)$$

We said $P_1 \sqcup P_2[1]$ is a semibrick pair which is not completable. Notice the map $P_2 \to P_1$ has image $S_2!$

Question: Is this the only obstruction?

Answer: Sometimes! (e.g. hereditary algebras [IT] and Nakayama algebras [HIb]), but not always.

Where this Leaves Us

So far, we know that if $\mathcal{D}\sqcup\mathcal{U}[1]$ is a completable semibrick pair, then:

• Hom
$$(\mathcal{D}, \mathcal{U}) = 0 = \operatorname{Ext}(\mathcal{D}, \mathcal{U}).$$

② If *S* ∈ D and *T* ∈ U, then every nonzero map *T* → *S* is mono or epi.

These are both *pairwise conditions*.

Definition

- We say a semibrick pair D ⊔ U[1] is *pairwise completable* if for all S ∈ D and T ∈ U there exists a 2-SMC D' ⊔ U'[1] with S ∈ D' and T ∈ U'.
- We say Λ has the *pairwise completability property* if every pairwise completable semibrick pair is completable.

Known examples of algebras with this property are rep. finite hereditary algebras [IT] and Nakayama algebras [HIb, GM19].

Motivation

- Motivation for studying this pairwise property comes from the study of *picture groups* and *picture spaces*.
- The picture group of an algebra was first defined by Igusa-Todorov-Weyman [ITW] in the (representation finite) hereditary case and later generalized to *τ*-tilting finite algebras in [HIb].
- It is a finitely presented group whose relations encode the structure of the lattice of torsion classes.
- The corresponding picture space is the classifying space of the (τ) -cluster morphism category [IT, BM19] of the algebra.
- We show in [HIb] that the picture group and picture space have isomorphic (co-)homology when Λ has the pairwise completability property (plus one technical condition).

Mutation

Definition (Koenig-Yang '14)

Let $\mathcal{D} \sqcup \mathcal{U}[1]$ be a 2-SMC and let $S \in \mathcal{D}$. Then there is a semibrick pair $\mu_S^+(\mathcal{D}, \mathcal{U}[1])$, called the *left mutation* of $\mathcal{D} \sqcup \mathcal{U}[1]$ at S given as follows:

- Replace S with S[1].
- For all S' ∈ D with S' ≠ S, let g⁺_{SS'} : S'[-1] → E_S be a minimal left (FiltS) approximation. Replace S' with cone(g⁺_{SS'}). Note there is an exact sequence S → μ⁺_S(S') → S'.
- For all $T \in \mathcal{U}$, let $g_{ST}^+: T \to E_S$ be a minimal left (FiltS) approximation. If g_{ST}^+ is mono, replace T[1] with $\operatorname{coker}(g_{ST}^+)$. If g_{ST}^+ is epi, replace T[1] with $\operatorname{ker}(g_{ST}^+)[1]$.

Key observation: These are "pairwise formulas".

- From the perspective of torsion pairs, left mutation corresponds to traveling "down" the torsion lattice.
- In the wall-and-chamber structure, this corresponds to crossing a wall. The 2-SMCs correspond to "*c*-vectors," which are normal to the walls bounding a chamber.

Completability and Mutation

Proposition (H.-Igusa '20)

Let $\mathcal{D} \sqcup \mathcal{U}[1]$ be a semibrick pair and let $S \in \mathcal{D}$.

- If for all T ∈ U the minimal left (FiltS)-approximation T → E_S is mono or epi, then µ⁺_S(D ⊔ U[1]) is a well-defined semibrick pair.
- ② In this case, $\mathcal{D} \sqcup \mathcal{U}[1]$ is (pairwise) completable if and only if $\mu_S^+(\mathcal{D} \sqcup \mathcal{U}[1])$ is (pairwise) completable.

Since A is τ -tilting finite, if we continue to perform left mutations on semibrick pair, one of two things will happen.

- We will reach a semibrick pair which fails to satisfy the mono/epi condition. In this case, our original semibrick pair is not completable.
- We will reach a semibrick pair with D = Ø. In this case, our original semibrick pair is completable.

Preprojective algebras

- Consider a Dynkin diagram W of type A, D, or E.
- Let Q be the quiver obtained by replacing each edge of W with a 2-cycle.
- The preprojective algebra of type W is the algebra
 Π_W := KQ/I, where I is generated by the sums of all 2-cycles sharing a source/target.

 $A_{3}:\alpha\alpha^{*},\beta\beta^{*},\alpha^{*}\alpha+\beta^{*}\beta \qquad D_{4}:\alpha\alpha^{*},\beta\beta^{*},\gamma\gamma^{*},\alpha^{*}\alpha+\beta^{*}\beta+\gamma^{*}\gamma$

Preprojective algebras

Theorem (Barnard-H.)

Let W be a Dynkin diagram of type A, D, or E. Then Π_W has the pairwise completability property if and only if $W = A_n$ with $n \leq 3$.

Idea of the proof:

- Show directly that Π_W has the property if W = A_n with n ≤ 3 (or reference our later result!)
- **2** Reduce to the cases $W = A_4$ and $W = D_4$.
- Substitute the algebra RA₄ (which has all 2-cycles as relations) for Π_{A4}. This is a gentle algebra and has the same torsion lattice as Π_{A4}[BCZ19, Miz14].
- Use the relationship between completability and mutation to find counterexamples for RA_4 and Π_{D_4} .

Counterexample for RA_4

$$1 \xrightarrow{\longleftarrow} 2 \xrightarrow{\longleftarrow} 3 \xrightarrow{\longleftarrow} 4$$

The semibrick pair $\mathcal{X} = (234) \sqcup (4)[1] \sqcup (320)[1]$ is pairwise completable, but not completable².

- Every 2-SMC contains $\operatorname{rk}(\Lambda)$ bricks [KY14], so $\mathcal X$ is not a 2-SMC.
- Mutating at (234) yields (23) □ (234)[1] □ (320)[1] and the map (320) → (23) is neither mono nor epi. This means X is not completable. Similar arguments show that X is pairwise completable.
- Observation: The closure of the bricks in X under triangles is not all of D^b(modΛ), but their closure under extensions, kernels, and cokernels *is* all of modΛ...

 $^{^{2}2}$ is the top and 4 is the socle of (234)

Why this is so strange

Recall that there are mutation-preserving bijections between the set of 2-SMCs and the following classes of objects:

- τ -tilting pairs
- sets of minimal extending modules
- 2-term silting complexes

All three of these classes are characterized by pairwise conditions!

Other known cases

Theorem

- [Igusa-Todorov '17⁺] (Rep. finite) hereditary algebras have the pairwise completability property.
- [H.-Igusa '18⁺] Nakayama algebras have the pairwise completability property.
- [H.-Igusa '20] A (τ-tilting finite) gentle algebra whose quiver contains no loops or 2-cycles has the pairwise completability property if and only if its quiver contains no vertex of degree 3 or 4.

(Lack of) Patterns Amongst Examples/Nonexamples

There are both examples and nonexamples of the pairwise completability property in the following classes of algebras:

- Representation finite algebras
- (τ -tilting finite) tame algebras
- (τ -tilting finite) cluster-tilted algebras

Moreover, the property is not stable under quotients.

A Rank 3 Pattern Emerges

The counterexamples appearing in our studies of gentle algebras and preprojective algebras have been semibrick pairs $\mathcal{D} \sqcup \mathcal{U}[1]$ satisfying $|\mathcal{D}| + |\mathcal{U}| = 3 < \mathrm{rk}(\Lambda)$. It turns out this is not an accident:

Theorem (Barnard-H.)

Let Λ be a τ -tilting finite algebra with $rk(\Lambda) \leq 3$. Then Λ has the pairwise 2-simple minded completability property.

Theorem (Barnard-H.)

Let Λ be any τ -tilting finite algebra. Then the following are equivalent.

- **Ο** Λ has the pairwise 2-simple minded completability property.
- ② Every pairwise completable semibrick pair D ⊔ U[1] which satisfies |D| + |U| = 3 is completable.

"Full-size" semibrick pairs

The key to the rank 3 case was that if $rk(\Lambda) = 3$, then any semibrick pair of size 3 is a 2-SMC.

Conjecture

Let Λ be a τ -tilting finite algebra of rank n. Then any semibrick pair $\mathcal{D} \sqcup \mathcal{U}[1]$ with $|\mathcal{D}| + |\mathcal{U}| = n$ is a 2-SMC.

This conjecture would imply that $rk(\Lambda)$ is an upper bound on the size of a semibrick pair (when Λ is τ -tilting finite).

This is (very) false in the τ -tilting infinite case:

- Over a tame hereditary algebra, any finite collection of homogeneous bricks is a semibrick.
- Tame hereditary algebras can even have pairwise completable semibrick pairs of size rk(Λ) which are not completable.

Preliminary result

Theorem (Barnard-H.)

Let $n \in \mathbb{N}$ and let $\mathcal{D} \sqcup \mathcal{U}[1]$ be a semibrick pair for Π_{A_n} with $|\mathcal{D}| + |\mathcal{U}| = n$. Then $\mathcal{D} \sqcup \mathcal{U}[1]$ is a 2-SMC.

Idea of the proof:

- **1** As before, we work over RA_n instead of Π_{A_n} .
- The torsion lattice is isomorphic to the weak order on the Coxeter group A_n (the group of permutations on n+1 letters) [BCZ19].
- The canonical join representations (the bricks in D) and the canonical meet representations (the bricks in U) are separately encoded by arc diagrams [Rea15, BCZ19].

(continued on next slide)

Preliminary result

We define 2-colored arc diagrams to encode both sets of bricks simultaneously and show a collection of n arcs always defines a permutation in A_n (and hence a 2-SMC).

2-colored arc diagram for the counterexample

Recall that a (full, closed under isomorphism) subcategory $W \subseteq \text{mod}\Lambda$ is called *wide* if it is closed under extensions, kernels, and cokernels.

Assume Λ is τ -tilting finite.

- Ringel [Rin76] showed that every wide subcategory of modΛ is of the form Filt(D) for D a semibrick.
- A result of Jasso [Jas14] (see also [DIR⁺]) further shows that $\operatorname{Filt}(\mathcal{D})$ is equivalent to $\operatorname{mod}\Lambda'$ for some τ -tilting finite algebra Λ' of rank $|\mathcal{D}|$.
- This means wide subcategories have their own 2-SMCs and semibrick pairs!

Let $W \subseteq \mathsf{mod}\Lambda$ be a wide subcategory.

- Any semibrick in W is also a semibrick in mod Λ .
- Any semibrick pair for W is also a semibrick pair for mod Λ .
- Natural question: If D ⊔ U[1] is a 2-SMC for W, is it completable as a semibrick pair for modΛ?

- Observation: Suppose $\mathcal{D} \sqcup \mathcal{U}[1]$ and $\mathcal{D}' \sqcup \mathcal{U}'[1]$ are semibrick pairs (for modA) related by a sequence of mutations. Then any wide subcategory containing the bricks in $\mathcal{D} \sqcup \mathcal{U}$ also contains the bricks in $\mathcal{D}' \sqcup \mathcal{U}'$
- Consequence: Suppose D ⊔ U[1] is completable (as a semibrick pair for modΛ) and let W be the smallest wide subcategory which contains the bricks in D ⊔ U. Then D ⊔ U[1] is a 2-SMC for W.

Putting this together, our conjecture about full-rank semibrick pairs would imply the following:

Conjecture

- Let D ⊔ U[1] be a semibrick pair for modΛ and let W be the smallest wide subcategory containing the bricks in D ⊔ U. Then the following are equivalent.
 - $\mathcal{D} \sqcup \mathcal{U}[1]$ is completable.
 - **2** $\mathcal{D} \sqcup \mathcal{U}[1]$ is a 2-SMC for W.
 - 3 $\operatorname{rk}(W) = |\mathcal{D}| + |\mathcal{U}|.$

2 The following are equivalent for all τ -tilting finite algebras Λ .

- **1** Λ has the pairwise completability property.
- If D ⊔ U[1] is a semibrick pair (for modΛ) of rank 3 and for S ∈ D and T ∈ U the smallest wide subcategory containing S and T has rank 2, then the smallest wide subcategory containing the bricks in D ⊔ U has rank 3.

Thank you!!

Pairwise Completability for 2-Simple Minded Collections

Eric J. Hanson

Brandeis University

based on joint works with Emily Barnard and Kiyoshi Igusa

Representation Theory and Related Topics Seminar Northeastern University

October 2, 2020

References I

- Sota Asai, *Semibricks*, Int. Math. Res. Not. IMRN rny150 (2018).
- Emily Barnard, Andrew T. Carroll, and Shijie Zhu, Minimal inclusions of torsion classes, Algebraic Combin. 2 (2019), no. 5, 879–901.
- Aslak Bakke Buan and Bethany R. Marsh, *A category of wide subcategories*, Int. Math. Res. Not. IMRN **rnz082** (2019).
- Thomas Brüstle and Dong Yang, *Ordered exchange graphs*, Advances in Representation Theory of Algebras (David J. Benson, Hennig Krause, and Andrzej Skowroński, eds.), EMS Series of Congress Reports, vol. 9, European Mathematical Society, 2013.
- Laurent Demonet, Osamu Iyama, and Gustavo Jasso, τ-tilting finite algebras, bricks, and g-vectors, Int. Math. Res. Not. IMRN rnx135 (2017).
- Laurent Demonet, Osamu Iyama, Nathan Reading, Idun Reiten, and Hugh Thomas, *Lattice theory of torsion classes*, arXiv:1711.01785.

References II

- Alexander Garver and Thomas McConville, Oriented flip graphs, noncrossing tree partitions, and representation theory of tiling algebras, Glasg. Math. J. (2019).
- Eric J. Hanson and Kiyoshi Igusa, *Pairwise compatibility for 2-simple minded collections*, J. Pure Appl. Algebra, to appear.
 - _____, τ -cluster morphism categories and picture groups, arXiv:1809.08989.

- Osamu Iyama, Idun Reiten, Hugh Thomas, and Gordana Todorov, *Lattice structure of torsion classes for path algebras*, B. Lond. Math. Soc. **47** (2015), no. 4, 639–650.
- Kiyoshi Igusa and Gordana Todorov, *Signed exceptional sequences and the cluster morphism category*, arXiv:1706.02041.

Kiyoshi Igusa, Gordana Todorov, and Jerzy Weyman, *Picture groups of finite type and cohomology in type A*_n, arXiv:1609.02636.

References III

- Gustavo Jasso, *Reduction of τ*-*tilting modules and torsion pairs*, Int. Math. Res. Not. IMRN **2015** (2014), no. 16, 7190–7237.
- Steffen Koenig and Dong Yang, Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras, Documenta Math. 19 (2014), 403–438.
- Yuya Mizuno, Classifying τ-tilting modules over preprojective algebras of Dynkin type, Math. Z. 277 (2014), no. 3-4, 665–690.
- Nathan Reading, Noncrossing arc diagramss and canonical join representations, SIAM J. Discrete Math. 29 (2015), no. 2, 736–750.
- C. M. Ringel, Representations of k-species and bimodules, J. Algebra 41 (1976), no. 2, 269–302.