Interpretation Functors II

Lorna Gregory

January 2021

Università della Campania

Recap

Let R be a ring. A **pp**-*n*-**formula** (over R) is a formula

$$\varphi(\overline{x}) := \exists \overline{y} \ (\overline{x} \ \overline{y}) A = 0$$

where A is an $(n + m) \times I$ matrix with entries in R, \overline{x} an *n*-tuple of variables and \overline{y} an *m*-tuple of variables. Write pp_R^n for the set of pp-*n*-formulae over R.

For *M* an *R*-module and $\varphi \in pp_R^n$, we write $\varphi(M)$ for the solution set of φ in *M*.

A full subcategory $\mathcal{D}\subseteq {\sf Mod}\text{-}R$ is called a **definable subcategory** if it is the form

$$\mathcal{D} = \{ M \in \mathsf{Mod}\text{-}R \mid \varphi_i(M) = \psi_i(M) \text{ for all } i \in I \}$$

where φ_i, ψ_i are pairs of pp-formulae indexed by *I*.

Interpretation functors

Definition

Let R, S be rings and \mathcal{D} a definable subcategory of Mod-S. Suppose that φ, ψ are pp-n-formulae over S and that for each $r \in R$, $\rho_r(\overline{x_1}, \overline{x_2})$ is a pp-2n-formula in variables $\overline{x_1}, \overline{x_2}$ each of length n.

Suppose that for all $M \in \mathcal{D}$ the following hold:

- 1. $\varphi(M) \supseteq \psi(M)$
- 2. for all $r \in R$, $\rho_r(\overline{x_1}, \overline{x_2})$ defines an endomorphism ρ_r^M of the abelian group $\varphi(M)/\psi(M)$
- 3. $\varphi(M)/\psi(M)$ equipped with the ρ_r^M actions is an *R*-module.

Then $(\varphi, \psi, (\rho_r)_{r \in R})$ defines an additive functor

$$I: \mathcal{D} \longrightarrow \mathsf{Mod-}R, \ M \mapsto (\varphi(M)/\psi(M), (\rho_r^M)_{r \in R}).$$

We call any such functor an interpretation functor.

Let R, S be rings.

Theorem (Krause, Prest)

Let \mathcal{D} be a definable subcategory of Mod-S. An additive functor $I : \mathcal{D} \longrightarrow \text{Mod-}R$ is an interpretation functor if and only if I commutes with direct limits and products.

 \frown

Interpretation functors - Examples coming from algebra.

Let R, S be rings. Let $_RB_S$ be an R-S-bimodule.

- ▶ If B_S is finitely presented then Hom_S(B, -) : Mod-S → Mod-R is an interpretation functor.
- ▶ If $_RB$ is finitely presented then $\otimes_R B$: Mod- $R \rightarrow$ Mod-S is an interpretation functor.
- If B_S ∈ FP₂ then Ext_S(B, −) : Mod-S → Mod-R is an interpretation functor.
- If _RB ∈ FP₂ then Tor_R(B, -) : Mod-R → Mod-S is an interpretation functor.

In particular, the equivalences coming from classical tilting are interpretation functors between definable subcategories.

Let R, S be rings.

Proposition

Let $I : Mod-S \to Mod-R$ be an interpretation functor such that $\langle IMod-S \rangle = Mod-R$. There is an $n \in \mathbb{N}$ and a lattice embedding $i : pp_R^1 \hookrightarrow pp_S^n$.

Reminder: An *R*-module *M* is **pure-injective** if any system of (inhomogeneous) linear equations over R, in arbitrary many variables, which is finitely solvable in *M*, has a solution in *M*.

Remark

Let $I : Mod-S \rightarrow Mod-R$ be an interpretation functor. If $M \in Mod-S$ is pure-injective then IM is pure-injective.

Theorem (G.)

Let $I : Mod-S \rightarrow Mod-R$ be an interpretation functor such that I maps finitely presented S-modules to finitely presented R-modules. If I is full on finitely presented S-modules then I is full on pure-injective S-modules.

Conjecture (Prest 80's)

Let A be a finite-dimensional k-algebra. If A is of wild representation type then the theory of A-modules interprets the theory of $k\langle x, y \rangle$ -modules.

Hence, if k is countable, A has undecidable theory of modules.

Conversely, if A is tame then the theory of A-modules is decidable.

What does "theory of A-modules" mean? A (first order) sentence in the language of A-modules is a statement, which can be assigned a truth value, built up from homogenous linear equations over A in variables $\{x_i \mid i \in \mathbb{N}\}, \exists x_i, \forall x_i, \text{NOT, AND and OR.}$

Examples: Let $r, s \in A$.

$$\operatorname{NOT}(\forall x_1 \exists x_2 \exists x_3 \ x_1 + x_2 \cdot r + x_3 \cdot s = 0)$$

is a sentence in the language of \mathcal{A} -modules.

 $\forall x_1 \text{ AND } x_2 \cdot r \quad \text{and} \quad x_1 + x_2 \cdot r = 0$

are not sentences in the language of A-modules. The **theory of** A-**modules** is the set of all sentences in the language of A-modules which are true in all A-modules. From now on k is an algebraically closed field.

Definition

A finite-dimensional k-algebra \mathcal{A} is **wild** if: there exists a **representation embedding**

 $F: \mathsf{fin}\text{-}k\langle x, y
angle o \mathsf{fin}\text{-}\mathcal{A}$

i.e. F is an exact k-linear functor which reflects isomorphism classes and sends indecomposable modules to indecomposable modules.

Equivalently, for every finite-dimensional k-algebra ${\cal B}$ there exists a representation embedding

$$F: \mathsf{fin}\text{-}\mathcal{B} \to \mathsf{fin}\text{-}\mathcal{A}.$$

Conjecture (Prest 80's)

Let A be a finite-dimensional k-algebra. If A is of wild representation type then the theory of A-modules interprets the theory of $k\langle x, y \rangle$ -modules.

Hence, if k is countable, A has undecidable theory of modules.

Conversely, if A is tame then the theory of A-modules is decidable.

Definition

A finite-dimensional k-algebra \mathcal{A} is **tame** if, for every dimension $d \in \mathbb{N}$, there is a finite number of \mathcal{A} -k[x]-bimodules $M_1, ..., M_{u(d)}$, which are finitely generated and free as k[x]-modules, such that almost all d-dimensional indecomposable \mathcal{A} -modules are of the form

$$M_i \otimes_{k[x]} k[x]/\langle x-\lambda
angle$$

for some $1 \leq i \leq u(d)$ and some $\lambda \in k$.

Theorem (Drozd)

Every finite-dimensional k-algebra is either tame or wild.

Definition

Let $\mu(d)$ be the least possible value of u(d) in the definition of a tame algebra. The finite-dimensional *k*-algebra \mathcal{A} is **tame domestic** if $\mu(d)$ is bounded.

Theorem (G., Prest)

Let \mathcal{A}, \mathcal{B} be finite-dimensional k-algebras. If $I : Mod-\mathcal{A} \to Mod-\mathcal{B}$ is a k-linear interpretation functor and $\langle IMod-\mathcal{A} \rangle = Mod-\mathcal{B}$ then:

- if \mathcal{A} is tame then \mathcal{B} is tame
- ▶ if *A* is tame domestic then *B* is tame domestic
- ▶ if A is of polynomial growth then B is of polynomial growth
- if A is of non-exponential growth then B is of non-exponential growth

Moreover, if \mathcal{A} is wild then there exists a k-linear interpretation functor $I : \text{Mod}-\mathcal{A} \to \text{Mod}-\mathcal{B}$ such that $\langle I\text{Mod}-\mathcal{A} \rangle = \text{Mod}-\mathcal{B}$.

Corollary

A finite-dimensional k-algebra \mathcal{A} is wild if and only if for every finite-dimensional k-algebra \mathcal{B} there is a k-linear interpretation functor $I : \operatorname{Mod}-\mathcal{A} \to \operatorname{Mod}-\mathcal{B}$ such that $\langle \operatorname{IMod}-\mathcal{A} \rangle = \operatorname{Mod}-\mathcal{B}$.

Wild implies undecidability

A finite dimensional k-algebra \mathcal{A} is **finitely controlled wild** if there is a representation embedding

 $F: \mathsf{fin}\text{-}k\langle x, y \rangle \longrightarrow \mathsf{fin}\text{-}\mathcal{A}$

and $C\in {\operatorname{fin-}} k\langle x,y
angle$ such that for all $N,M\in {\operatorname{fin-}} k\langle x,y
angle$

 $\operatorname{Hom}_{\mathcal{B}}(FM, FN) = F\operatorname{Hom}(M, N) \oplus \operatorname{Hom}(FM, FN)_{\mathcal{C}}$

where $Hom(FM, FN)_C$ is the set of maps which factor through some C^n .

Theorem (G., Prest)

Let \mathcal{A} be a finite-dimensional k-algebra. If \mathcal{A} is finitely controlled wild then there is a k-linear essentially surjective interpretation functor $I : \text{Mod}-\mathcal{A} \to \text{Mod}-k\mathbb{K}_3$.

Corollary

In the above situation, the theory of A-modules interprets the theory of $k\mathbb{K}_3$ -modules. In particular, if k is countable, the theory of A-Mod is undecidable.