Interpretation functors I

Lorna Gregory

November 2020

Università della Campania

A (first order) formula in the language of *R*-modules is an expression, built up from homogenous linear equations over *R* in variables $\{x_i \mid i \in \mathbb{N}\}, \exists x_i, \forall x_i, \text{NOT, AND and OR which makes sense when appropriate (=free) variables are replaced by elements of a module.$

Example: Let $R := \mathbb{Z}$. Then

(1)
$$(x_1 \cdot 2 = 0)$$
 OR $(\exists x_3 \ x_3 \cdot 3 = x_2)$ and (2) $\forall x_1 \ (x_1 \cdot 4 = 0)$

are formulae.

A formula which has no free variables/can be assigned a truth value in every R-module is called a **sentence in the language of** R-modules.

The **theory of** *R*-**modules** is the set of all sentences in the language of *R*-modules which are true in all *R*-modules.

A **pp**-*n*-formula (over *R*) is a formula $\varphi(\overline{x})$ of the form

$$\exists \overline{y} \bigwedge_{i=1}^{l} \sum_{j=1}^{n} x_j r_{ij} + \sum_{k=1}^{m} y_k s_{ik} = 0$$

where $r_{ij}, s_{ik} \in R$. Write pp_R^n for the set of pp-*n*-formulae over *R*. For $M \in Mod$ -*R*, we write $\varphi(M)$ for the solution set of φ in *M*.

After identifying $\varphi, \psi \in pp_R^n$ such that $\varphi(M) = \psi(M)$ for all $M \in Mod-R$, pp_R^n is a lattice under the order $\psi \leq \varphi$ if $\psi(M) \subseteq \varphi(M)$ for all *R*-modules *M*.

We write $\varphi + \psi$ for the join (l.u.b) in this lattice and $\varphi \wedge \psi$ for the meet (g.l.b).

For
$$M \in \text{Mod-}R$$
, $(\varphi + \psi)(M) = \varphi(M) + \psi(M)$ and $(\varphi \wedge \psi)(M) = \varphi(M) \cap \psi(M)$.

Let
$$\psi \leq \varphi \in \mathsf{pp}^1_R$$
 and $b \in \mathbb{N}$. We write

 $|\varphi/\psi| > b$

for the sentence in the language of R-modules expressing in all modules M that

 $|\varphi(M)/\psi(M)| > b.$

The Baur-Monk Theorem

Every formula in the language of R-modules is equivalent to a boolean combination of pp-formulae and sentences

 $|\varphi/\psi| > \mathbf{b}$

where $\textit{b} \in \mathbb{N}$ and φ, ψ are pp-1-formulae such that $\psi \leq \varphi.$

Definition

An R-module M is **pure-injective** if any system of (inhomogeneous) linear equations over R, in arbitrary many variables, which is finitely solvable in M, has a solution in M.

Theorem

- For every R-module M there exists a pure-injective R-module M' which is elementary equivalent to M, that is, for every sentence χ, χ is true in M if and only if χ is true in M'.
- For every R-module M, there exist indecomposable pure-injective R-modules N_i such that M is elementary equivalent to ⊕_{i∈1} N_i.

Remark

If $\varphi \in pp_R^n$ and $N_i \in Mod-R$ then

$$\varphi(\oplus_i N_i) = \oplus_i \varphi(N_i).$$

Interpretation functors

A full subcategory $\mathcal{D} \subseteq Mod$ -R is called a **definable subcategory** if it is the form

$$\mathcal{D} = \{ M \in \mathsf{Mod}\text{-}R \mid \varphi_i(M) = \psi_i(M) \text{ for all } i \in I \}$$

where φ_i, ψ_i are pairs of pp-formulae indexed by *I*.

An embedding $i : N \to M$ is **pure** if and only if for all $L \in R$ -mod, $i \otimes L : N \otimes L \to M \otimes L$ is an embedding.

Theorem

A full subcategory $\mathcal{D} \subseteq \text{Mod-}R$ is a definable subcategory if and only if \mathcal{D} is closed under products, direct limits and pure-submodules.

Interpretation functors

Definition

Let R, S be rings and \mathcal{D} a definable subcategory of Mod-S. Suppose that φ, ψ are pp-n-formulae over S and that for each $r \in R$, $\rho_r(\overline{x_1}, \overline{x_2})$ is a pp-2n-formula in variables $\overline{x_1}, \overline{x_2}$ each of length n.

Suppose that for all $M \in \mathcal{D}$ the following hold:

- 1. $\varphi(M) \supseteq \psi(M)$
- 2. for all $r \in R$, $\rho_r(\overline{x_1}, \overline{x_2})$ defines an endomorphism ρ_r^M of the abelian group $\varphi(M)/\psi(M)$
- 3. $\varphi(M)/\psi(M)$ equipped with the ρ_r^M actions is an *R*-module.

Then $(\varphi, \psi, (\rho_r)_{r \in R})$ defines an additive functor

$$I: \mathcal{D} \longrightarrow \mathsf{Mod}\text{-}R, \ M \mapsto (\varphi(M)/\psi(M), (\rho_r^M)_{r \in R}).$$

We call any such functor an interpretation functor.

Interpretation functors - An example

Aim: Find a definable subcategory $\mathcal{D} \subseteq \text{Mod-}kQ$ and an interpretation functor $I : \mathcal{D} \to \text{Mod-}k[T]$ such that I is essentially surjective. Let $P_0(x) := \exists y \ ye_0 = x$ and $P_i(x) := \exists y \ y\alpha_i = x$ for $1 \le i \le 4$. Let φ be $P_1(x)$ and ψ be x = 0. Let $\Delta(x_2, x_1) := \exists x_3 \ x_1 + x_2 = x_3 \land P_1(x_1) \land P_2(x_2) \land P_3(x_3).$ Let $\mu(x_1, x_2) := \exists x_4 \ x_1 + x_2 = x_4 \land P_1(x_1) \land P_2(x_2) \land P_4(x_4).$ Let $\rho_{\mathcal{T}}(x, y) := \exists z \ \mu(x, z) \land \Delta(z, y).$ Let \mathcal{D} be the definable subcategory

 $\{M \in \text{Mod-}kQ \mid \rho_T(x, y) \text{ defines a function from } P_1(M) \text{ to } P_1(M) \}.$

Let R, S be rings.

Theorem (Krause, Prest)

Let \mathcal{D} be a definable subcategory of Mod-S. An additive functor $I : \mathcal{D} \longrightarrow \text{Mod-}R$ is an interpretation functor if and only if I commutes with direct limits and products.

Proposition

Let $I : Mod-S \to Mod-R$ be an interpretation functor such that $\langle IMod-S \rangle = Mod-R$. There is an $n \in \mathbb{N}$ and a lattice embedding $i : pp_R^1 \hookrightarrow pp_S^n$.

Remark

Let $I : Mod-S \rightarrow Mod-R$ be an interpretation functor. If $M \in Mod-S$ is pure-injective then IM is pure-injective.

Theorem (G.)

Let I : Mod-S \rightarrow Mod-R be an interpretation functor such that I maps finitely presented S-modules to finitely presented R-modules. If I is full on finitely presented S-modules then I is full on pure-injective S-modules.