On Regular and (Barr-)Exact Categories: ordinary and poset-enriched

Vassilis Aravantinos-Sotiropoulos

Université Catholique de Louvain

NEU Representation Theory and Related Topics Seminar

April 9th 2021

Outline

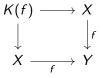
- 1. Regularity & Exactness
- 2. Relations in Regular Categories
- 3. Exact Completion of a Regular Category
- 4. The Pos-enriched context

Regular Categories Naively

- 1. Non-additive version of abelian category (exactness even closer though)
- 2. Good notion of image of a morphism.
- 3. Good calculus of internal relations.
- 4. The fragment of first-order logic on \land, \top, \exists .

Kernel Pairs - Coequalizers

Given $f : X \to Y$ in a category C, the *kernel pair* of f is the pullback



In terms of elements: $K(f) = \{(x, x') \in X \times X | f(x) = f(x')\}$ The *coequalizer* of a pair $X \xrightarrow[g]{f} Y$ is the colimit

$$X \xrightarrow[g]{q} Y \xrightarrow{q} Q \text{, i.e. } qf = qg \text{ and universality:}$$
$$hf = fg \implies (\exists ! u : Q \rightarrow Z)uq = h.$$

c

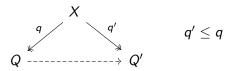
If kernel pairs and their coequalizers exist in a category $\mathcal{C},$ then for every $X\in\mathcal{C}$

$$\operatorname{Eff}(X) \xrightarrow{\cong} \operatorname{Quot}(X)$$

where

Eff(X) is the poset of *effective equivalence relations* on X (=kernel pairs of morphisms $f : X \to Y$).

▶Quot(X) is the poset of *regular* epis $q : X \rightarrow Q$ (=coequalizers of some pair of parallel arrows)



(One) Definition of Regularity

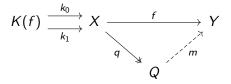
Definition

A finitely complete category C is called *regular* if

- 1. $\ensuremath{\mathcal{C}}$ has coequalizers of kernel pairs.
- 2. Regular epimorphisms are stable under pullback in \mathcal{C} .

Constructing Factorizations

Suppose that C is regular and let $f : X \to Y \in C$. We can then consider the following diagram:



where $q = coeq(k_0, k_1)$.

Stability of regular epis $\implies m$ is a mono

Regularity = Image Factorization

Proposition

A finitely complete category ${\mathcal C}$ is regular iff

- 1. C has (regular epi, mono) factorizations.
- 2. Regular epimorphisms are stable under pullback in C.

Also important: In a regular category C: regular epis=strong epis $e: X \rightarrow Y$ is a *strong* epi if for all monos $m: A \rightarrow B$

$$\begin{array}{ccc} X & \stackrel{e}{\longrightarrow} & Y \\ \downarrow & \downarrow & \downarrow \\ A & \stackrel{\scriptstyle \leftarrow}{\longrightarrow} & B \end{array} \qquad e \perp m$$

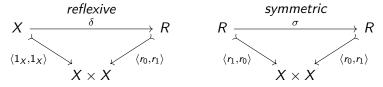
Examples of Regular Categories

- 1. Set, Set_{fin}, any elementary topos.
- 2. Any abelian category.
- 3. Every quasi-variety of Universal Algebra, e.g. Ab_{t.f.}, Ring_{red}
- 4. Every $[\mathcal{C}, \mathcal{E}]$, for regular \mathcal{E} .
- 5. Set^{\mathbb{T}} for any monad \mathbb{T} . e.g. CHaus, *G*-Set
- 6. Stone (*Stone Duality:* Stone \simeq Bool^{op})
- Grp(Top), T(Top) for any sufficiently nice algebraic theory T (e.g. Mal'tsev theories)

Non-examples: Pos, Top, Cat

Barr-exactness

Let C be a finitely complete category. A relation $\langle r_0, r_1 \rangle : R \rightarrow X \times X$ on an object $X \in C$ is:





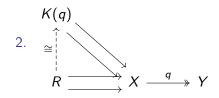
 $(\exists \tau: R \times_X R \to R) r_1 \tau = r_1 d_1^R, r_0 \tau = r_0 d_0^R.$

Definition (M. Barr, 1971)

A category $\mathcal E$ is called *exact* if it is regular and every equivalence relation in $\mathcal E$ is effective.

Equivalently, \mathcal{E} is regular and for every equivalence relation $R \rightarrow X \times X \in \mathcal{E}$:

1. *R* has a coequalizer $q: X \rightarrow Y$.



Examples of Exact Categories

- 1. Set and any presheaf category [C, Set] are exact. More generally, every elementary topos is exact.
- 2. Every abelian category.
- 3. Every variety of universal algebras, e.g. Grp, Mon, Ring.
- 4. Set^{\mathbb{T}}, for any monad \mathbb{T} on Set. Examples: CHaus, *G*-Set

Non-examples: Ab_{t.f.}, Mon_{can}, Ring_{red}, Stone, Grp(Top)

Why is $Ab_{t.f.}$ not exact?

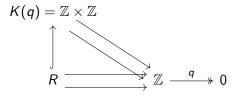
We mentioned that $Ab_{t.f.}$ is regular.

It also has coequalizers of equivalence relations. In fact, all colimits.

But consider the relation R on \mathbb{Z} defined by

$$(m,n) \in R \iff m-n=2k$$

Then R is an internal equivalence relation which is not effective



Exactness + Additivity

In fact, in the additive context exactness characterizes abelian categories:

Theorem (M. Tierney, \sim 1970)

A category A is abelian iff it is additive and (Barr-)exact.

▶ <u>Basic Idea</u>: In an additive category, every reflexive relation is an equivalence relation (*Mal'tsev* property)

Characterizing (Quasi-)varieties

An object P in a regular category \mathcal{E} is:

► (regular) projective if for every regular epi $e: X \twoheadrightarrow Y \in \mathcal{E}$

▶ a (regular) generator if $\mathcal{E}(P, X) \bullet P \twoheadrightarrow X$ is a regular epi $\forall X \in \mathcal{E}$. ▶ finitely presentable if $\mathcal{E}(P, -) : \mathcal{E} \to Set$ preserves filtered colimits.

Theorem (F.W. Lawvere, 1963)

A category \mathcal{E} is equivalent to a variety iff it is exact and has an object P which is a projective, finitely presentable, regular generator.

Theorem (J. Duskin, 1969)

A category \mathcal{E} is equivalent to one of the form $\mathsf{Set}^{\mathbb{T}}$ for a monad \mathbb{T} iff it is exact and has a projective regular generator P.

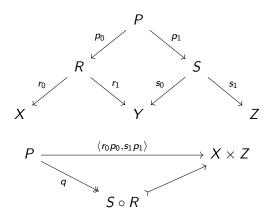
In both cases P = F(1), the free algebra on the singleton.

Theorem

A category C is equivalent to a quasi-variety iff it is regular, has a projective, finitely presentable, regular generator and admits coequalizers of equivalence relations.

Composing Relations in a Regular Category A relation $R : X \hookrightarrow Y$ is a subobject $R \rightarrow X \times Y$. If \mathcal{E} has finite limits and image factorizations, for any $R : X \hookrightarrow Y$ and $S : Y \hookrightarrow Z$ we can define $S \circ R : X \hookrightarrow Z$ as follows:

First construct the pullback square in the center of the diagram below



The bicategory of relations

Then regularity of ${\mathcal E}$ implies the following

Proposition

For any $R: X \hookrightarrow Y$, $S: Y \hookrightarrow Z$ and $T: Z \hookrightarrow W$ in a regular category \mathcal{E}

 $T \circ (S \circ R) = (T \circ S) \circ R$

We thus have the *bicategory of relations* $\operatorname{Rel}(\mathcal{E})$. Identity morphisms are $\Delta_X = \langle 1_X, 1_X \rangle : X \to X \times X$. Every morphism $f : X \to Y \in \mathcal{E}$ defines a relation $f : X \hookrightarrow Y$ via its graph $\langle 1_X, f \rangle : X \to X \times Y$. We thus have a faithful functor $\mathcal{E} \to \operatorname{Rel}(\mathcal{E})$.

```
The Structure of \operatorname{Rel}(\mathcal{E})
```

The locally posetal bicategory $\operatorname{Rel}(\mathcal{E})$ has: > Binary \cap and \top . > An *involution* $(-)^{\circ}$: $\operatorname{Rel}(\mathcal{E})^{\operatorname{op}} \to \operatorname{Rel}(\mathcal{E})$ which preserves \subseteq . > Freyd's *Modular Law*

 $SR \cap T \subseteq S(R \cap S^{\circ}T)$

Terminology: $\operatorname{Rel}(\mathcal{E})$ is an *allegory*.

Maps in $\operatorname{Rel}(\mathcal{E})$

For every $f: X \to Y \in \mathcal{E}$ we have:

- $f^{\circ}f \supseteq \Delta_X$, (in fact, $f^{\circ}f = K(f)$)
- $ff^{\circ} \subseteq \Delta_Y$

i.e. $f \dashv f^{\circ}$ in $\operatorname{Rel}(\mathcal{E})$. Every $f : X \to Y \in \mathcal{E}$ is a *map* in $\operatorname{Rel}(\mathcal{E})$. Actually,

Proposition

If $R : X \hookrightarrow Y$ is a map in $Rel(\mathcal{E})$, i.e. there exists $S : Y \hookrightarrow X$ such that $R \dashv S$, then there is an $f : X \to Y \in \mathcal{E}$ with R = f.

Compactly: For any regular \mathcal{E} , $\mathcal{E} \simeq \operatorname{Map}(\operatorname{Rel}(\mathcal{E}))$.

(Co)Limit properties via Relations

Consider a square in the regular category \mathcal{E} . $\begin{array}{c}P \longrightarrow Y\\ p \downarrow & \downarrow^g \end{array}$

Then the square is:

▶ Commutative iff $qp^{\circ} \subseteq g^{\circ}f$

Commutative and s.t. $P \to X \times_Z Y$ is a regular epi iff $qp^\circ = g^\circ f$

▶ a pullback iff $qp^\circ = g^\circ f$ and $p^\circ p \cap q^\circ q = \Delta_P$.

Exactness of \mathcal{E} via $\operatorname{Rel}(\mathcal{E})$

When $E: X \hookrightarrow X$ is an effective equivalence relation in \mathcal{E} , then in $\operatorname{Rel}(\mathcal{E})$ we have $E = q^{\circ}q$ and $qq^{\circ} = \Delta_Y$, where q is the coequalizer of E.

<u>Translation</u>: *E* effective \implies *E* is a *split idempotent* in Rel(\mathcal{E}).

Proposition

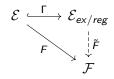
An equivalence relation E in \mathcal{E} is effective iff it is a split idempotent in $\operatorname{Rel}(\mathcal{E})$.

Proof.

Assume E = SR and $RS = \Delta_Y$ for some $R : X \hookrightarrow Y$ and $S : Y \hookrightarrow X$. Then $SR = E \supseteq \Delta_X$ and $RS \subseteq \Delta_Y$, so there is an $f : X \to Y \in \mathcal{E}$ such that R = f, $S = f^\circ$. Now $E = SR = f^\circ f = K(f)$.

The Exact Completion

Given the regular category $\mathcal{E},$ we can construct a free exact category $\mathcal{E}_{ex/reg}$



for every regular $F : \mathcal{E} \to \mathcal{F}$ with \mathcal{F} exact.

Split the equivalence relations as idempotents in $Rel(\mathcal{E})$. (This yields $Rel(\mathcal{E}_{ex/reg})$)

► Take maps in the resulting bicategory.

 $\mathcal{E}_{ex/reg}$ concretely

- Objects: Pairs (X, E) where E is an equivalence relation on the object X in \mathcal{E} .
- Morphisms: A morphism $R : (X, E) \to (Y, G)$ is a relation $\overline{R : X \hookrightarrow Y}$ in \mathcal{E} such that
 - 1. GRE = R.
 - 2. $R^{\circ}R \supseteq E$.
 - 3. $RR^{\circ} \subseteq G$.

 $\Gamma : \mathcal{E} \to \mathcal{E}_{ex/reg}$ maps X to (X, Δ_X) and for every $(X, E) \in \mathcal{E}_{ex/reg}$ there is an *exact sequence*

$$\Gamma(E) \xrightarrow[\Gamma_{e_1}]{\Gamma_{e_1}} \Gamma X \xrightarrow[F]{E} (X, E)$$

A few examples

$$(Ab_{t.f.})_{ex/reg} \simeq Ab$$

- $\blacktriangleright (\mathsf{CRing}_{\mathit{red}})_{\mathit{ex/reg}} \simeq \mathsf{CRing}$
- $\blacktriangleright \mathsf{Stone}_{\mathit{ex/reg}} \simeq \mathsf{CHaus}$

Shameless plug: These can also be deduced from a joint result with P. Karazeris (TAC, 2017) which implies that $\Gamma : \mathcal{E} \to \mathcal{E}_{ex/reg}$ is the unique fully faithful, regular $F : \mathcal{E} \to \mathcal{F}$ with \mathcal{F} exact and such that

$$(\forall Y \in \mathcal{F}) \exists FX \twoheadrightarrow Y$$

Sample Application

We can use the ex/reg completion to characterize (nice) reflections of classes of exact categories.

 $\underbrace{ \begin{array}{l} \underline{Simplest \ case:} \\ exact \ category \ if \ it \ has \ coequalizers \ of \ equivalence \ relations. \\ If \ \mathcal{E} \ has \ such \ coequalizers, \ then \ \Gamma : \mathcal{E} \rightarrow \mathcal{E}_{ex/reg} \ has \ a \ left \ adjoint \\ L : \mathcal{E}_{ex/reg} \rightarrow \mathcal{E} \end{array} }$

$$E \xrightarrow{\longrightarrow} X \longrightarrow L(X, E)$$

<u>Next:</u>(S. Mantovani) The coequalizers in \mathcal{E} of equivalence relations are stable iff $L : \mathcal{E}_{ex/reg} \to \mathcal{E}$ is a *semi-localization*.

Corollary

 \mathcal{F} is a torsion-free class in an abelian category iff \mathcal{F} is regular, additive and has stable coequalizers of equivalence relations.

 \mathcal{F} regular additive $\implies \mathcal{F}_{ex/reg}$ additive exact (=abelian)

Pos-enriched Categories

We are interested in Pos-enriched categories, i.e.

Categories \mathcal{C} such that:

- $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is a poset for all $X, Y \in \mathcal{C}$.
- For $f, f': X \to Y$, $f \leq f' \implies hfg \leq hf'g$.

e.g. Ordered (quasi-)varieties, distributive lattices, Priestley spaces, Compact Ordered spaces (Nachbin)

<u>Motivation</u>: *Quasivarieties and varieties of ordered algebras: regularity and exactness.* A. Kurz, J. Velebil, Math. Struct. in Comp. Science (2017)

Pos-enriched Regularity

Regularity for Pos-enriched categories involves:

Kernel congruences: For any $f : X \rightarrow Y$, comma square

In terms of elements, $f/f = \{(x, x') | fx \le fx'\}$.

Coinserters: $X \xrightarrow{f_0} Y \xrightarrow{q} Q$, $qf_0 \leq qf_1$ and q is universal with this property.

ff-morphism (order-mono): m such that $mf \leq mg \implies f \leq g$

A Pos-category C is *regular* if

- 1. C has finite weighted limits.
- 2. C has stable under pullback (coinserter, ff) factorizations.

Pos-enriched Exactness

Exactness involves *congruences*, i.e. internal relations $E \rightarrow X \times X$ such that:

- 1. *E* is *reflexive* and *transitive*.
- 2. E is weakening-closed, i.e. it satisfies

$$x' \leq x, \ (x,y) \in E, \ y \leq y' \implies (x',y') \in E.$$

C is *exact* if every congruence is f/f for some $f : X \to Y$.

 $\operatorname{Rel}(\mathcal{E})$ is still good for calculations, BUT cannot recover morphisms of \mathcal{E} as maps.

To capture the enriched nature of \mathcal{E} we must consider the bicategory $\operatorname{Rel}_w(\mathcal{E})$ of weakening-closed relations.

$$\begin{array}{ll} f_* & \longrightarrow Y & f^* & \longrightarrow X \\ \downarrow & \leq & \downarrow_{1_Y} & \downarrow & \leq & \downarrow_f & f_* \dashv f^* \text{ in } \operatorname{Rel}_w(\mathcal{E}). \\ X & \xrightarrow{f} & Y & Y & \xrightarrow{1_Y} Y \\ f_* = \{(x, y) \in X \times Y | f(x) \leq y\} & f^* = \{(y, x) \in Y \times X | y \leq f(x)\} \end{array}$$

Proposition

If $R : X \hookrightarrow Y$ and $S : Y \hookrightarrow X$ in $Rel_w(\mathcal{E})$ are such that $R \dashv S$, then $R = f_*$ and $S = f^*$ for some $f : X \to Y \in \mathcal{E}$.

Pos-enriched Exact Completion

We would like to construct $\mathcal{E}_{ex/reg}$ in this context by performing a similar construction as in the ordinary case.

HOWEVER, $\operatorname{Rel}_w(\mathcal{E})$ doesn't have as rich a structure as $\operatorname{Rel}(\mathcal{E})$ (no symmetry!) and is also not sufficient for formulating all limit/exactness properties.

Nevertheless, we have shown that we can make it work: split idempetants in both Pol(S) and $Pol_{S}(S)$ at the same time, take

idempotents in both $\operatorname{Rel}(\mathcal{E})$ and $\operatorname{Rel}_w(\mathcal{E})$ at the same time, take maps in the second one.

One interesting example: $Pries_{ex/reg} \simeq Nach \ (\simeq Stone_{ex/reg}).$

▶ Preprint: An Exact Completion for Regular Categories Enriched in Posets

Regularity & Exactness Relations in Regular Categories Exact Completion of a Regular Category The Pos-enriched context

Thank you for your attention!

References

- 📱 V. ARAVANTINOS-SOTIROPOULOS, An exact completion for regular categories enriched in posets, arXiv preprint arXiv:2101.10989, (2021).
- V. ARAVANTINOS-SOTIROPOULOS AND P. KARAZERIS, A property of effectivization and its uses in categorical logic, Theory and Applications of Categories, 32 (2017), pp. 769–779.
- M. BARR, P. A. GRILLET, AND D. H. VAN OSDOL, Exact categories and categories of sheaves, volume 236 of lecture notes in mathematics, 1971.
- F. BORCEUX, Handbook of categorical algebra. 2, vol. 51 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1994. Categories and structures.
- A. CARBONI, G. M. KELLY, AND M. C. PEDICCHIO, Some remarks on Mal'tsev and Goursat categories, Applied Categorical Structures, 1 (1993), pp. 385–421.
- P. J. FREYD AND A. SCEDROV, Categories, Allegories, Elsevier, 1990.
- M. GRAN AND S. LACK, Semi-localizations of semi-abelian categories, Journal of Algebra, 454 (2016), pp. 206–232.
- P. T. JOHNSTONE, Sketches of an elephant: a topos theory compendium. Vol. 1, vol. 43 of Oxford Logic Guides, The Clarendon Press Oxford University Press, New York, 2002.
- A. KURZ AND J. VELEBIL, Quasivarieties and varieties of ordered algebras: regularity and exactness, Mathematical Structures in Computer Science, 27 (2017), pp. 1153–1194.
- F. W. LAWVERE, Functorial semantics of algebraic theories, Proceedings of the National Academy of Sciences of the United States of America, 50 (1963), p. 869.
- S. MANTOVANI, Semilocalizations of exact and leftextensive categories, Cahiers de topologie et géométrie différentielle catégoriques, 39 (1998), pp. 27-44.
- 📱 M. C. PEDICCHIO AND E. VITALE, On the abstract characterization of quasi-varieties, Algebra Universalis, 43 (2000), pp. 269–278.
- E. M. VITALE, On the characterization of monadic categories over set, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 35 (1994), pp. 351–358.
- Localizations of algebraic categories, Journal of Pure and Applied Algebra, 108 (1996), pp. 315–320.