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Regular Categories Naively

1. Non-additive version of abelian category (exactness even closer
though)

2. Good notion of image of a morphism.
3. Good calculus of internal relations.
4. The fragment of first-order logic on ∧,>, ∃.
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Kernel Pairs - Coequalizers

IGiven f : X → Y in a category C, the kernel pair of f is the pullback

K (f ) X

X Y

f

f

In terms of elements: K (f ) = {(x , x ′) ∈ X × X |f (x) = f (x ′)}

IThe coequalizer of a pair X Y
f

g
is the colimit

X Y Q
f

g

q , i.e. qf = qg and universality:

hf = fg =⇒ (∃!u : Q → Z )uq = h.
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If kernel pairs and their coequalizers exist in a category C, then for every
X ∈ C

Eff(X) Quot(X)∼=

where

IEff(X) is the poset of effective equivalence relations on X (=kernel
pairs of morphisms f : X → Y ).

IQuot(X) is the poset of regular epis q : X � Q (=coequalizers of
some pair of parallel arrows)

X

Q Q′

q q′ q′ ≤ q
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(One) Definition of Regularity

Definition
A finitely complete category C is called regular if
1. C has coequalizers of kernel pairs.
2. Regular epimorphisms are stable under pullback in C.
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Constructing Factorizations

Suppose that C is regular and let f : X → Y ∈ C. We can then consider
the following diagram:

K (f ) X Y

Q

k0

k1

f

q m

where q = coeq(k0, k1).

Stability of regular epis =⇒ m is a mono
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Regularity = Image Factorization

Proposition
A finitely complete category C is regular iff
1. C has (regular epi, mono) factorizations.
2. Regular epimorphisms are stable under pullback in C.

Also important: In a regular category C: regular epis=strong epis

e : X → Y is a strong epi if for all monos m : A� B

X Y

A B

e

m

e ⊥ m
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Examples of Regular Categories

1. Set, Setfin, any elementary topos.
2. Any abelian category.
3. Every quasi-variety of Universal Algebra, e.g. Abt.f ., Ringred
4. Every [C, E ], for regular E .
5. SetT for any monad T. e.g. CHaus, G-Set
6. Stone (Stone Duality: Stone ' Boolop)
7. Grp(Top), T(Top) for any sufficiently nice algebraic theory T (e.g.

Mal’tsev theories)

Non-examples: Pos, Top, Cat



Regularity & Exactness Relations in Regular Categories Exact Completion of a Regular Category The Pos-enriched context

Barr-exactness

Let C be a finitely complete category. A relation 〈r0, r1〉 : R � X ×X on
an object X ∈ C is:

reflexive
X R

X × X
〈1X ,1X 〉

δ

〈r0,r1〉

symmetric
R R

X × X
〈r1,r0〉

σ

〈r0,r1〉

transitive
R ×X R R

R X

dR
1

dR
0

r0

r1

(∃τ : R ×X R → R) r1τ = r1dR1 , r0τ = r0dR0 .
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Definition (M. Barr, 1971)
A category E is called exact if it is regular and every equivalence relation
in E is effective.

Equivalently, E is regular and for every equivalence relation
R � X × X ∈ E :
1. R has a coequalizer q : X � Y .

2.

K (q)

R X Y

∼=

q
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Examples of Exact Categories

1. Set and any presheaf category [C, Set] are exact. More generally,
every elementary topos is exact.

2. Every abelian category.
3. Every variety of universal algebras, e.g. Grp, Mon, Ring.
4. SetT, for any monad T on Set. Examples: CHaus, G-Set

Non-examples: Abt.f ., Moncan, Ringred , Stone, Grp(Top)
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Why is Abt.f . not exact?
We mentioned that Abt.f . is regular.

It also has coequalizers of equivalence relations. In fact, all colimits.

But consider the relation R on Z defined by

(m, n) ∈ R ⇐⇒ m − n = 2k

Then R is an internal equivalence relation which is not effective

K (q) = Z× Z

R Z 0q
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Exactness + Additivity

In fact, in the additive context exactness characterizes abelian categories:

Theorem (M. Tierney, ∼1970)
A category A is abelian iff it is additive and (Barr-)exact.

IBasic Idea: In an additive category, every reflexive relation is an
equivalence relation (Mal’tsev property)
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Characterizing (Quasi-)varieties

An object P in a regular category E is:

I(regular) projective if for every regular epi e : X � Y ∈ E

P

X Y

f

e

Ia (regular) generator if E(P,X ) • P � X is a regular epi ∀X ∈ E .

Ifinitely presentable if E(P,−) : E → Set preserves filtered colimits.
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Theorem (F.W. Lawvere, 1963)
A category E is equivalent to a variety iff it is exact and has an object P
which is a projective, finitely presentable, regular generator.

Theorem (J. Duskin, 1969)
A category E is equivalent to one of the form SetT for a monad T iff it is
exact and has a projective regular generator P.

In both cases P = F (1), the free algebra on the singleton.

Theorem
A category C is equivalent to a quasi-variety iff it is regular, has a
projective, finitely presentable, regular generator and admits coequalizers
of equivalence relations.
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Composing Relations in a Regular Category
A relation R : X # Y is a subobject R � X × Y . If E has finite limits
and image factorizations, for any R : X # Y and S : Y # Z we can
define S ◦ R : X # Z as follows:
First construct the pullback square in the center of the diagram below

P

R S

X Y Z

p0 p1

r0 r1 s0 s1

P X × Z

S ◦ R
q

〈r0p0,s1p1〉
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The bicategory of relations

Then regularity of E implies the following

Proposition
For any R : X # Y , S : Y # Z and T : Z #W in a regular category E

T ◦ (S ◦ R) = (T ◦ S) ◦ R

We thus have the bicategory of relations Rel(E). Identity morphisms are
∆X = 〈1X , 1X 〉 : X � X × X .
Every morphism f : X → Y ∈ E defines a relation f : X # Y via its
graph 〈1X , f 〉 : X � X × Y . We thus have a faithful functor
E → Rel(E).
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The Structure of Rel(E)

The locally posetal bicategory Rel(E) has:
IBinary ∩ and >.
IAn involution (−)◦ : Rel(E)op → Rel(E) which preserves ⊆.
IFreyd’s Modular Law

SR ∩ T ⊆ S(R ∩ S◦T )

Terminology: Rel(E) is an allegory.
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Maps in Rel(E)

For every f : X → Y ∈ E we have:
• f ◦f ⊇ ∆X , (in fact, f ◦f = K (f ))
• ff ◦ ⊆ ∆Y

i.e. f a f ◦ in Rel(E). Every f : X → Y ∈ E is a map in Rel(E).
Actually,

Proposition
If R : X # Y is a map in Rel(E), i.e. there exists S : Y # X such that
R a S, then there is an f : X → Y ∈ E with R = f .
Compactly: For any regular E , E ' Map(Rel(E)).
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(Co)Limit properties via Relations

Consider a square in the regular category E .
P Y

X Z

q

p g

f
Then the square is:

ICommutative iff qp◦ ⊆ g◦f

ICommutative and s.t. P → X ×Z Y is a regular epi iff qp◦ = g◦f

Ia pullback iff qp◦ = g◦f and p◦p ∩ q◦q = ∆P .
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Exactness of E via Rel(E)

When E : X # X is an effective equivalence relation in E , then in Rel(E)
we have E = q◦q and qq◦ = ∆Y , where q is the coequalizer of E .

Translation: E effective =⇒ E is a split idempotent in Rel(E).

Proposition
An equivalence relation E in E is effective iff it is a split idempotent in
Rel(E).

Proof.
Assume E = SR and RS = ∆Y for some R : X # Y and S : Y # X .
Then SR = E ⊇ ∆X and RS ⊆ ∆Y , so there is an f : X → Y ∈ E such
that R = f , S = f ◦. Now E = SR = f ◦f = K (f ).
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The Exact Completion

Given the regular category E , we can construct a free exact category
Eex/reg

E Eex/reg

F
F

Γ

F̃

for every regular F : E → F with F exact.
ISplit the equivalence relations as idempotents in Rel(E). (This yields
Rel(Eex/reg))
ITake maps in the resulting bicategory.
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Eex/reg concretely

• Objects: Pairs (X ,E ) where E is an equivalence relation on the
object X in E .
• Morphisms: A morphism R : (X ,E )→ (Y ,G) is a relation

R : X # Y in E such that
1. GRE = R.
2. R◦R ⊇ E .
3. RR◦ ⊆ G .

Γ : E → Eex/reg maps X to (X ,∆X ) and for every (X ,E ) ∈ Eex/reg there
is an exact sequence

Γ(E ) ΓX (X ,E )
Γe0

Γe1

E
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A few examples

I(Abt.f .)ex/reg ' Ab

I(CRingred)ex/reg ' CRing

IStoneex/reg ' CHaus

Shameless plug: These can also be deduced from a joint result with P.
Karazeris (TAC, 2017) which implies that Γ : E → Eex/reg is the unique
fully faithful, regular F : E → F with F exact and such that

(∀Y ∈ F) ∃ FX � Y
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Sample Application

We can use the ex/reg completion to characterize (nice) reflections of
classes of exact categories.

Simplest case: A regular category E is a reflective subcategory of an
exact category iff it has coequalizers of equivalence relations.
If E has such coequalizers, then Γ : E → Eex/reg has a left adjoint
L : Eex/reg → E

E X L(X ,E )

Next:(S. Mantovani) The coequalizers in E of equivalence relations are
stable iff L : Eex/reg → E is a semi-localization.
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Corollary
F is a torsion-free class in an abelian category iff F is regular, additive
and has stable coequalizers of equivalence relations.

F regular additive =⇒ Fex/reg additive exact (=abelian)
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Pos-enriched Categories

We are interested in Pos-enriched categories, i.e.

Categories C such that:
• HomC(X,Y) is a poset for all X ,Y ∈ C.
• For f , f ′ : X → Y , f ≤ f ′ =⇒ hfg ≤ hf ′g .

e.g. Ordered (quasi-)varieties, distributive lattices, Priestley spaces,
Compact Ordered spaces (Nachbin)

Motivation:Quasivarieties and varieties of ordered algebras: regularity and
exactness. A. Kurz, J. Velebil, Math. Struct. in Comp. Science (2017)



Regularity & Exactness Relations in Regular Categories Exact Completion of a Regular Category The Pos-enriched context

Pos-enriched Regularity

Regularity for Pos-enriched categories involves:

Kernel congruences: For any f : X → Y , comma square

f /f //

��
≤

X

f
��

X
f
// Y

In terms of elements, f /f = {(x , x ′)|fx ≤ fx ′}.

Coinserters: X
f0 //

f1
// Y

q // Q , qf0 ≤ qf1 and q is universal with

this property.
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ff-morphism (order-mono): m such that mf ≤ mg =⇒ f ≤ g

A Pos-category C is regular if
1. C has finite weighted limits.
2. C has stable under pullback (coinserter, ff) factorizations.
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Pos-enriched Exactness

Exactness involves congruences, i.e. internal relations E � X × X such
that:
1. E is reflexive and transitive.
2. E is weakening-closed, i.e. it satisfies

x ′ ≤ x , (x , y) ∈ E , y ≤ y ′ =⇒ (x ′, y ′) ∈ E .

C is exact if every congruence is f /f for some f : X → Y .
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Rel(E) is still good for calculations, BUT cannot recover morphisms of E
as maps.

To capture the enriched nature of E we must consider the bicategory
Relw(E) of weakening-closed relations.
f∗ Y

X Y
≤ 1Y

f

f ∗ X

Y Y
≤ f

1Y

f∗ a f ∗ in Relw(E).

f∗ = {(x , y) ∈ X × Y |f (x) ≤ y} f ∗ = {(y , x) ∈ Y × X |y ≤ f (x)}

Proposition
If R : X # Y and S : Y # X in Relw(E) are such that R a S, then
R = f∗ and S = f ∗ for some f : X → Y ∈ E .
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Pos-enriched Exact Completion

We would like to construct Eex/reg in this context by performing a similar
construction as in the ordinary case.

HOWEVER, Relw(E) doesn’t have as rich a structure as Rel(E) (no
symmetry!) and is also not sufficient for formulating all limit/exactness
properties.
Nevertheless, we have shown that we can make it work: split
idempotents in both Rel(E) and Relw(E) at the same time, take maps in
the second one.

One interesting example: Priesex/reg ' Nach (' Stoneex/reg).

IPreprint: An Exact Completion for Regular Categories Enriched in
Posets
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Thank you for your attention!
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