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Introduction

1. Transpose (see [AB])
Let R be a left and right Northerian ring. For M ∈ mod R,
there exists a projective presentation in mod R:

P1
f→ P0 → M → 0.

Then we get an exact sequence in mod Rop:

0→ M∗ → P∗0
f ∗−→ P∗1 → cokerf ∗ → 0,

where ()∗ = Hom(−,R). cokerf ∗ is called a transpose of M,
and denoted by TrM.
Remark. The transpose of M depends on the choice of
the projective presentation of M, but it is unique up to pro-
jective equivalence.
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Introduction

Gorenstein projective module
Auslander’s original definition([AB]):
Let R be a left and right Noetherian ring and M
a finitely generated R-module. Recall that M has
G-dimension 0 (or G-dimM = 0) if Exti(M,R) =
0 = Exti(M∗,R) for i > 0 and M is reflexive (i.e.
M ∼= M∗∗)
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Introduction

A left R-module M ∈ Mod R is called Gorenstein pro-
jective [EJ] if there is an exact sequence

· · · → P1 → P0 → P0 → P1 → · · ·

of projective left R-modules with M =
coker(P1 → P0) and such that Hom(−,P) leaves the
sequence exact for each projective left R-module P.
Denote the class of all Gorenstein projective left R-
modules by GP(R).
A f.g. module M over a Noetherian ring is Gorenstein
projective iff G-dimM = 0.
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Introduction

A left R-module M is called Gorenstein injec-
tive if there is an exact sequence

· · · → E1 → E0 → E0 → E1 → · · ·

of injective left R-modules with M =
ker(E0 → E1) such that Hom(E,−) leaves the
sequence exact whenever E is an injective
left R-module.
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Introduction

2. Gorenstein Transpose (see [HH])
Let R be a left and right Northerian ring. For M ∈ mod R,
there exists a Gorenstein projective presentation in mod R:

G1
g→ G0 → M → 0.

Then we get an exact sequence in mod Rop:

0→ M∗ → G∗0
g∗−→ G∗1 → cokerg∗ → 0,

where ()∗ = Hom(,R). cokerg∗ is called a Gorenstein trans-
pose of M, and denoted by TrGM.
Question. The Gorenstein transpose of M depends on the
choice of the Gorenstein projective presentation of M, is it
unique up to Gorenstein projective equivalence?
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Motivation

Main results about the Gorenstein transpose
1. Establish a relation between a Gorenstein trans-
pose of a module with a transpose of the same
module.
[HH, Theorem 3.1]
Let M ∈ mod R and A ∈ mod Rop. Then A is
a Gorenstein transpose of M if and only if there
exists an exact sequence 0 → A → TrM → G →
0 in mod Rop with G Gorenstein projective.
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Motivation

2. Provide a method to construct a Gorenstein
transpose of a module from a transpose of the
same module.
[HH, Corollary 3.2]
Let G be a Gorenstein projective module. Then
TrM ⊕ G is a Gorenstein transpose of M.
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2. Provide a method to construct a Gorenstein
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[HH, Corollary 3.2]
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Motivation

However, the following two questions remain un-
known:

Is it true that the Gorenstein transpose of a
module is unique up to Gorenstein projective
equivalence?
Is it true that any Gorenstein transpose of a
module can be obtained by directed sums of
a transpose of the same module and a Goren-
stein projective module?

To resolve the questions above, it maybe needs
the new relations between the Gorenstein trans-
pose and transpose.
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Our main results

Idea Note that in the proof of [HH, Theorem 3.1],
they mainly used the relation between Goren-
stein projective modules and projective modules
(generator).

[ZS, Theorem 2.1]
Let R be a left and right Noetherian ring, M ∈

mod R. Then TrGM is a transpose of N, where
N ∈ Ext(GP(R),M) is an extension of a Goren-
stein projective R-module by M, which means
that there is an exact sequence 0 → M → N →
G→ 0 in mod R with G Gorenstein projective.
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Our main results

[ZS, Theorem 2.3]
Suppose that M ∈ mod R. Then, for any

Gorenstein transpose of M, there exists an exact
sequence 0 → H → TrGM → TrM → 0 in mod
Rop with H Gorenstein projective.

Remark. We do not know whether the converse
is true.
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Our main results

[ZS, Corollary 2.4]
Any two Gorenstein transposes of M ∈ mod R

are Gorenstein projectively equivalent.

[ZS, Corollary 2.5]
If M ∈ mod R has finite projective dimension,

then, for any Gorenstein transpose of M, there
is a Gorenstein projective modules G, such that
TrGM = TrM ⊕ G.
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The dual of the transpose

Let R and S be associative rings with units. We use Mod R (resp.
Mod Sop) to denote the class of left R-modules (resp. right S-
modules).

Definition ([HW])
An (R, S)-bimodule C = RCS is called semidualizing if it satisfies
the following.
(a) RC and CS admit a resolution by finitely generated projective
left R-modules and projective right S-modules, respectively.
(b) The maps R → HomSop(C,C) and S → HomR(C,C) are iso-
morphisms.
(c) Exti>1

R (C,C) = 0 = Exti>1
Sop (C,C).
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The dual of the transpose

Definition ([TH])

Let M ∈ Mod R, and 0→ M → I0 g→ I1 be an injective resolution
of M. We denote either HomR(RCS,−) or HomSop(RCS,−) by ( )∗.
So we get an exact sequence in Mod S:

0→ M∗ → I0
∗

g∗−→ I1
∗ → cokerg∗ → 0.

cokerg∗ is called cotranspose of M with respect to C, and de-
noted by cTrM.
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The dual of the Gorenstein transpose

How to dualize the Gorenstein transpose of modules appro-
priately? Replacing an injective resolution of M by a Goren-
stein injective resolution of M? (Unfortunately)
Idea
{cotranspose} generalizing−→ {a more general concept} =⇒ {to find
an appropriate module instead of Gorenstein injective module}
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Y-cotranspose

Let Y be a subcategory of Mod R, and U = RUS be a fixed (R, S)-
bimodule. For convenience, we denote either HomR(RUS,−) or
HomSop(RUS,−) by ( )∗.

Definition ([Z])
Suppose that A has an Y-copresentation, that is, there exists
an exact sequence 0 → A → Y0 g→ Y1 in Mod R with Y0, Y1

∈ Y. Applying the functor ( )∗ to the sequence above induces
an exact sequence in Mod S:

0→ A∗ → Y0
∗

g∗−→ Y1
∗ → cokerg∗ → 0.

We call cokerg∗ a Y-cotranspose of A with respect to U, and
denoted by cTrU

YA.
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First relation

Let W be a generator or cogenerator for Y, we want to investi-
gate the relations between Y-cotranspose andW-cotranspose.

[Z, Theorem 4.3]
Let A ∈ Mod R and W be a cogenerator for Y. Assume that

Y is closed under extensions and Ext1R(U,Y) = 0.
(1) If M is a Y-cotranspose of A with respect to U, then there is
an exact sequence 0 → M → cTrU

WA → Y∗ → 0 in Mod S with
cTrU
WA aW-cotranspose of A and Y ∈ Y.

(2) If Y is U-coflexive, Y∗ is closed under kernel of epimorphism
and TorS

1(U,Y∗) = 0, then the converse of (1) is true.
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The definition of U-coreflexive

For a left R-module A, let θA : U ⊗S A∗ → A via θA(x ⊗ f ) =
f (x), for any x ∈ U and f ∈ A∗, be the canonical evaluation
homomorphism.

[TH, Definition 2.4]
A is called U-coreflexive if θA is an isomorphism.
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LC-Gorenstein injective module

Motivated by [Z, Theorem 4.3], we introduce the following notion:

Definition
A left R-module M is called LC-Gorenstein injective if there exists
an exact sequence:

· · · → I1 → I0 → I0 → I1 → · · ·

in I(R), such that M ∼= im(I0 → I0) and the sequence is
HomR(I(R),−)-exact and HomR(C,−)-exact.
Denote the class of all LC-Gorenstein injective left R-modules by
LC(R).
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LC-Gorenstein injective module

Fact
(1) LC(R) = GI(R) ∩ BC(R).
(2) There are Foxby equivalences of categories:

IC(S)� _

��

∼
C⊗R− // I(R)� _

��

HomS(C,−)
oo

G(IC(S))� _

��

∼
C⊗R− // LC(R)� _

��

HomS(C,−)
oo

AC(S) ∼
C⊗S− // BC(R)

HomR(C,−)
oo
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Definition [HW]
The Bass class BC(R) with respect to C is the subcategory of left
R-modules M satisfying:
(1) Exti>1

R (C,M) = 0 = TorS
i>1(C,HomR(C,M)) and

(2) The natural evaluation map θM : C⊗S HomR(C,M)→ M is an
isomorphism.

The Auslander class AC(S) with respect to C is the subcategory
of left S-modules N satisfying:
(1) TorS

i>1(C,N) = 0 = Exti>1
R (C,C ⊗S N) and

(2) The natural evaluation map N → HomR(C,C ⊗S N) is an iso-
morphism.
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LC-Gorenstein injective module

Fact
(1) LC(R) is closed under extension and injective resolving.
(2) I(R) are both a generator and cogenerator for LC(R).
(3) For any i > 0, ExtiR(C,LC(R)) = 0.

Fact
(1) BC(R) is closed under extension and injective resolving.
(2) I(R) is a cogenerator for BC(R), but not a generator.
(3) For any i > 0, ExtiR(C,BC(R)) = 0.
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the dual of the Gorenstein transpose

To give the dual counterparts of Gorenstein transposes. Mo-
tivated by Theorem 4.3, we should choose the LC-Gorenstein
injective copresentation instead of the Gorenstein injective cop-
resentation.

Definition
Let A ∈ Mod R. Then there exists an exact sequence 0 → A →
G0 g→ G1 in Mod R with G0, G1 ∈ LC(R). Applying the functor
( )∗ = HomR(RCS,−) to the sequence above induces an exact
sequence in Mod S:

0→ A∗ → G0
∗

g∗−→ G1
∗ → cokerg∗ → 0.

We call cokerg∗ a LC-Gorenstein cotranspose of A with respect
to C.
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the dual of the Gorenstein transpose

The following result can be regarded as a dual of [HH, Theorem
3.1].

[Z, Theorem 4.5]
Let A ∈ Mod R. Then any LC-Gorenstein cotranspose of A
can be embedded into a cotranspose of A with the cokernel in
G(IC(S)).

Remark. We do not know whether the converse is true. But we
have

[Z, Theorem 4.8]
Let A ∈ Mod R and M ∈ Mod S. Then M is a BC(R)-cotranspose
of A with respect to C if and only if there is an exact sequence:
0→ M → cTrA→ L→ 0 with L ∈ AC(S).
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Second relation

[Z, Theorem 4.11]
Let A ∈ Mod R. Assume that V is a generator for Y, and Y is
closed under extensions. If Ext1R(U,Y) = 0, then, for any Y-
cotranspose cTrU

YA of A, there is an isomorphism cTrU
YA ∼= cTrU

VB
for some B ∈ Ext(A,Y).
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the dual of the Gorenstein transpose

[Corollary]
Any LC-Gorenstein cotranspose of A, is a cotranspose of B,
where B ∈ Ext(A,LC(R)).

This can be regarded as a dual of [ZS, Theorem 2.1].
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the dual of the Gorenstein transpose

By Theorem 4.11, we give another relation between a LC-Gorenstein
cotranspose of a module and a cotranspose of the same mod-
ule.

[Z, Theorem 4.12]
Suppose that A ∈ Mod R. Then, for any LC-Gorenstein cotrans-
pose of A, there exists an exact sequence 0 → G → cTrLC A ⊕
E → cTrA→ 0 in Mod S with E ∈ IC(S) and G ∈ G(IC(S)).

This can be regarded as a dual of [ZS, Theorem 2.3].
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