Quasi-abelian hearts of twin cotorsion pairs on triangulated categories

Amit Shah

University of Leeds

Northeastern University 01 May 2018

Definition

A triangulated category is an additive category \mathcal{C} , together with a collection of triangles

$$X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$$
,

where Σ is an automorphism of ${\cal C}$ and the triangles satisfy some axioms.

Definition

A triangulated category is an additive category \mathcal{C} , together with a collection of triangles

$$X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$$
,

where Σ is an automorphism of $\mathcal C$ and the triangles satisfy some axioms.

 Σ is called the *shift* or *suspension* functor.

Definition

A triangulated category is an additive category \mathcal{C} , together with a collection of triangles

$$X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$$
,

where Σ is an automorphism of $\mathcal C$ and the triangles satisfy some axioms.

 Σ is called the *shift* or *suspension* functor.

We'll only need the following axiom: any morphism $f\colon X\to Y$ may be completed to a triangle $X\stackrel{f}{\to} Y\to Z\to \Sigma X$.

Definition

A triangulated category is an additive category \mathcal{C} , together with a collection of triangles

$$X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$$
,

where Σ is an automorphism of $\mathcal C$ and the triangles satisfy some axioms.

 Σ is called the *shift* or *suspension* functor.

We'll only need the following axiom: any morphism $f\colon X\to Y$ may be completed to a triangle $X\stackrel{f}{\to} Y\to Z\to \Sigma X$.

Notation:

$$\mathcal{U}*\mathcal{V} \coloneqq \{X \in \mathcal{C} \mid \exists \Delta \colon U \to X \to V \to \Sigma U, \text{ some } U \in \mathcal{U}, V \in \mathcal{V}\}$$

- $m{\circ}$ $\mathcal{C}=$ cluster category (triangulated, Hom-finite, Krull-Schmidt, has Serre duality)
- $\Sigma = \text{shift functor}$

- $m{\circ}$ $\mathcal{C}=$ cluster category (triangulated, Hom-finite, Krull-Schmidt, has Serre duality)
- Σ = shift functor
- R = rigid, i.e. $\operatorname{Ext}^1_{\mathcal{C}}(R, R) \coloneqq \operatorname{Hom}_{\mathcal{C}}(R, \Sigma R) = 0$, object of \mathcal{C}

- $m{\circ}$ $\mathcal{C}=$ cluster category (triangulated, Hom-finite, Krull-Schmidt, has Serre duality)
- Σ = shift functor
- R = rigid, i.e. $\operatorname{Ext}^1_{\mathcal{C}}(R, R) \coloneqq \operatorname{Hom}_{\mathcal{C}}(R, \Sigma R) = 0$, object of \mathcal{C}
- $\Lambda_R := (\operatorname{End}_{\mathcal{C}} R)^{\operatorname{op}}$

- $m{\circ}$ $\mathcal{C}=$ cluster category (triangulated, Hom-finite, Krull-Schmidt, has Serre duality)
- Σ = shift functor
- R = rigid, i.e. $\operatorname{Ext}^1_{\mathcal{C}}(R, R) := \operatorname{Hom}_{\mathcal{C}}(R, \Sigma R) = 0$, object of \mathcal{C}
- $\Lambda_R := (\operatorname{End}_{\mathcal{C}} R)^{\operatorname{op}}$

Aim: to study mod Λ_R

$Hom_{\mathcal{C}}(R, -)$ functor

$$\mathcal{C} \xrightarrow{\mathsf{Hom}_{\mathcal{C}}(R,-)} \mathsf{mod}\,\Lambda_R$$

$$\mathcal{X}_R = \{X \in \mathcal{C} \mid \mathsf{Hom}_{\mathcal{C}}(R, X) = 0\}$$

$Hom_{\mathcal{C}}(R, -)$ functor

$$\begin{array}{c}
\mathcal{C} \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(R,-)} \operatorname{mod} \Lambda_{R} \\
Q \downarrow & \operatorname{Hom}_{\mathcal{C}/\mathcal{X}_{R}}(R,-) \\
\mathcal{C}/\mathcal{X}_{R}
\end{array}$$

where

$$\mathcal{X}_R = \{X \in \mathcal{C} \mid \mathsf{Hom}_\mathcal{C}(R, X) = 0\}$$

Buan-Marsh-Reiten: Cluster-tilted algebras

Definition

 $T \in \mathcal{C}$ is called a *cluster-tilting* object if T is rigid and has a maximal number of non-isomorphic direct summands.

Buan-Marsh-Reiten: Cluster-tilted algebras

Definition

 $T \in \mathcal{C}$ is called a *cluster-tilting* object if T is rigid and has a maximal number of non-isomorphic direct summands.

Theorem

Let $T \in \mathcal{C}$ be a cluster-tilting object. Then there is an equivalence of categories

$$\mathcal{C}/\mathcal{X}_T \simeq \mathsf{mod}\,\Lambda_T$$
.

Buan-Marsh-Reiten: Cluster-tilted algebras

Definition

 $T \in \mathcal{C}$ is called a *cluster-tilting* object if T is rigid and has a maximal number of non-isomorphic direct summands.

Theorem

Let $T \in \mathcal{C}$ be a cluster-tilting object. Then there is an equivalence of categories

$$\mathcal{C}/\mathcal{X}_T \simeq \mathsf{mod}\,\Lambda_T$$
.

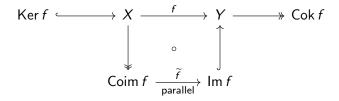
Note that for a cluster-tilting object, we have $\mathcal{X}_T = \operatorname{add} \Sigma T$.

Preabelian categories

• A category is *preabelian* if it admits kernels and cokernels.

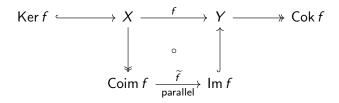
Preabelian categories

A category is preabelian if it admits kernels and cokernels.



Preabelian categories

A category is preabelian if it admits kernels and cokernels.



• Such a category is semi-abelian if \widetilde{f} is regular, i.e. simultaneously monic and epic, for all f.

Buan-Marsh: calculus of fractions

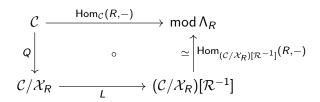
• C/X_R is an *integral* category, i.e. semi-abelian, and PBs of epics are epics and POs of monics are monic.

Buan-Marsh: calculus of fractions

- C/X_R is an *integral* category, i.e. semi-abelian, and PBs of epics are epics and POs of monics are monic.
- \bullet The class ${\cal R}$ of all regular morphisms admits a calculus of fractions. [Rump]

Buan-Marsh: calculus of fractions

- C/X_R is an *integral* category, i.e. semi-abelian, and PBs of epics are epics and POs of monics are monic.
- \bullet The class ${\cal R}$ of all regular morphisms admits a calculus of fractions. [Rump]



Let \mathcal{S}, \mathcal{T} be nice subcategories of \mathcal{C} .

Definition

A cotorsion pair is a pair $(\mathcal{S}, \mathcal{T})$ such that:

Let S, T be nice subcategories of C.

Definition

A cotorsion pair is a pair (S, T) such that:

$$\bullet \ \mathcal{C} = \mathcal{S} * \Sigma \mathcal{T} := \{ X \in \mathcal{C} \mid \exists \Delta: \ S \to X \to \Sigma T \to \Sigma S, \ S \in \mathcal{S}, \ T \in \mathcal{T} \}$$

Let \mathcal{S}, \mathcal{T} be nice subcategories of \mathcal{C} .

Definition

A cotorsion pair is a pair (S, T) such that:

$$\bullet \ \mathcal{C} = \mathcal{S} * \Sigma \mathcal{T} := \{ X \in \mathcal{C} \mid \exists \Delta : \ S \to X \to \Sigma \mathcal{T} \to \Sigma \mathcal{S}, \ S \in \mathcal{S}, \ \mathcal{T} \in \mathcal{T} \}$$

•
$$\operatorname{Ext}^1_{\mathcal{C}}(\mathcal{S},\mathcal{T})=0$$

Let S, T be nice subcategories of C.

Definition

A cotorsion pair is a pair (S, T) such that:

$$\bullet \ \mathcal{C} = \mathcal{S} * \Sigma \mathcal{T} \coloneqq \{X \in \mathcal{C} \mid \exists \Delta: \ S \to X \to \Sigma \mathcal{T} \to \Sigma S, \ S \in \mathcal{S}, \ \mathcal{T} \in \mathcal{T}\}$$

•
$$\operatorname{Ext}^1_{\mathcal{C}}(\mathcal{S},\mathcal{T})=0$$

Note:
$$S = {}^{\perp_1}\mathcal{T} \coloneqq \{X \in \mathcal{C} \mid \operatorname{Ext}^1_{\mathcal{C}}(X, \mathcal{T}) = 0\}$$
, and $\mathcal{T} = S^{\perp_1}$.

Let S, T be nice subcategories of C.

Definition

A cotorsion pair is a pair (S, T) such that:

$$\bullet \ \mathcal{C} = \mathcal{S} * \Sigma \mathcal{T} \coloneqq \{X \in \mathcal{C} \mid \exists \Delta: \ S \to X \to \Sigma T \to \Sigma S, \ S \in \mathcal{S}, \ T \in \mathcal{T}\}$$

•
$$\operatorname{Ext}^1_{\mathcal{C}}(\mathcal{S},\mathcal{T})=0$$

Note:
$$S = {}^{\perp_1}\mathcal{T} \coloneqq \{X \in \mathcal{C} \mid \mathsf{Ext}^1_{\mathcal{C}}(X,\mathcal{T}) = 0\}$$
, and $\mathcal{T} = \mathcal{S}^{\perp_1}$.

Example

The pair $(\operatorname{add} \Sigma R, \mathcal{X}_R)$ is a cotorsion pair.

Recall
$$\mathcal{X}_R = \{X \in \mathcal{C} \mid \mathsf{Hom}_{\mathcal{C}}(R, X) = 0\}.$$

Let $\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}$ be nice subcategories of \mathcal{C} .

Definition

A twin cotorsion pair is a pair ((S, T), (U, V)) such that:

ullet $(\mathcal{S},\mathcal{T})$ and $(\mathcal{U},\mathcal{V})$ are each cotorsion pairs

Let $\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}$ be nice subcategories of \mathcal{C} .

Definition

A twin cotorsion pair is a pair ((S, T), (U, V)) such that:

- ullet $(\mathcal{S},\mathcal{T})$ and $(\mathcal{U},\mathcal{V})$ are each cotorsion pairs
- \circ $\mathcal{S} \subseteq \mathcal{U}$

Let $\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}$ be nice subcategories of \mathcal{C} .

Definition

A twin cotorsion pair is a pair ((S, T), (U, V)) such that:

- ullet $(\mathcal{S},\mathcal{T})$ and $(\mathcal{U},\mathcal{V})$ are each cotorsion pairs
- \circ $S \subseteq \mathcal{U}$

Example

$$((\mathcal{S},\mathcal{T}),(\mathcal{U},\mathcal{V}))=((\mathsf{add}\,\Sigma R,\mathcal{X}_R),(\mathcal{X}_R,\mathcal{X}_R^{\perp_1}))$$

Let $\mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}$ be nice subcategories of \mathcal{C} .

Definition

A twin cotorsion pair is a pair ((S, T), (U, V)) such that:

- ullet $(\mathcal{S},\mathcal{T})$ and $(\mathcal{U},\mathcal{V})$ are each cotorsion pairs
- \circ $S \subseteq \mathcal{U}$

Example

$$((\mathcal{S},\mathcal{T}),(\mathcal{U},\mathcal{V}))=((\mathsf{add}\,\Sigma R,\mathcal{X}_R),(\mathcal{X}_R,\mathcal{X}_R^{\perp_1}))$$

Example

If (S, T) is a cotorsion pair, then ((S, T), (S, T)) is a *degenerate* twin cotorsion pair.

Nakaoka: the heart

Assume from now that $((\mathcal{S},\mathcal{T}),(\mathcal{U},\mathcal{V}))$ is a twin cotorsion pair, and define

$$\mathcal{W} \coloneqq \mathcal{T} \cap \mathcal{U},$$

$$\mathcal{C}^- \coloneqq \Sigma^{-1} \mathcal{S} * \mathcal{W},$$

$$\mathcal{C}^+ := \mathcal{W} * \Sigma \mathcal{V}.$$

Nakaoka: the heart

Assume from now that $((\mathcal{S},\mathcal{T}),(\mathcal{U},\mathcal{V}))$ is a twin cotorsion pair, and define

$$\mathcal{W} \coloneqq \mathcal{T} \cap \mathcal{U},$$
 $\mathcal{C}^- \coloneqq \Sigma^{-1} \mathcal{S} * \mathcal{W},$ $\mathcal{C}^+ \coloneqq \mathcal{W} * \Sigma \mathcal{V}.$

The associated *heart* is defined to be

$$\overline{\mathcal{H}} \coloneqq \mathcal{C}^- \cap \mathcal{C}^+/\mathcal{W}$$

Nakaoka: the heart

Assume from now that $((\mathcal{S},\mathcal{T}),(\mathcal{U},\mathcal{V}))$ is a twin cotorsion pair, and define

$$\begin{split} \mathcal{W} &\coloneqq \mathcal{T} \cap \mathcal{U}, \\ \mathcal{C}^- &\coloneqq \Sigma^{-1} \mathcal{S} * \mathcal{W}, \\ \mathcal{C}^+ &\coloneqq \mathcal{W} * \Sigma \mathcal{V}. \end{split}$$

The associated *heart* is defined to be

$$\overline{\mathcal{H}} \coloneqq \mathcal{C}^- \cap \mathcal{C}^+/\mathcal{W}$$

and is semi-abelian.

Recall: Buan-Marsh show $\mathcal{C}/\mathcal{X}_R$ is integral.

Recall: Buan-Marsh show C/X_R is integral.

• If
$$((\mathcal{S},\mathcal{T}),(\mathcal{U},\mathcal{V}))=((\operatorname{\mathsf{add}}\Sigma R,\mathcal{X}_R),(\mathcal{X}_R,\mathcal{X}_R^{\perp_1})),$$

Recall: Buan-Marsh show C/X_R is integral.

• If
$$((S,T),(U,V))=((\operatorname{add}\Sigma R,\mathcal{X}_R),(\mathcal{X}_R,\mathcal{X}_R^{\perp_1}))$$
, then
$$\overline{\mathcal{H}}=\mathcal{C}/\mathcal{X}_R.$$

Recall: Buan-Marsh show C/\mathcal{X}_R is integral.

• If
$$((S,T),(\mathcal{U},\mathcal{V}))=((\operatorname{add}\Sigma R,\mathcal{X}_R),(\mathcal{X}_R,\mathcal{X}_R^{\perp_1}))$$
, then
$$\overline{\mathcal{H}}=\mathcal{C}/\mathcal{X}_R.$$

• If $\mathcal{U} \subseteq \mathcal{S} * \mathcal{T}$ or $\mathcal{T} \subseteq \mathcal{U} * \mathcal{V}$, then $\overline{\mathcal{H}}$ is integral.

Main Result

A *quasi-abelian* category is a semi-abelian category in which PBs of cokernels are cokernels and POs of kernels are kernels.

Main Result

A *quasi-abelian* category is a semi-abelian category in which PBs of cokernels are cokernels and POs of kernels are kernels.

Theorem (S.)

Let $((S, \mathcal{T}), (\mathcal{U}, \mathcal{V}))$ be a twin cotorsion pair on a triangulated category \mathcal{C} . If $\mathcal{U} \subseteq \mathcal{T}$ or $\mathcal{T} \subseteq \mathcal{U}$, then $\overline{\mathcal{H}}$ is quasi-abelian.

Main Result

A *quasi-abelian* category is a semi-abelian category in which PBs of cokernels are cokernels and POs of kernels are kernels.

Theorem (S.)

Let ((S, T), (U, V)) be a twin cotorsion pair on a triangulated category C. If $U \subseteq T$ or $T \subseteq U$, then $\overline{\mathcal{H}}$ is quasi-abelian.

Setting $((S, T), (U, V)) = ((\text{add } \Sigma R, \mathcal{X}_R), (\mathcal{X}_R, \mathcal{X}_R^{\perp_1}))$, we get

Corollary

 $\mathcal{C}/\mathcal{X}_R$ is quasi-abelian.

An interesting consequence!

• $\mathcal{C}/\mathcal{X}_R$ is quasi-abelian: a bunch of Auslander-Reiten theory applies! [S.]

E.g. irreducible maps must be proper epic or proper monic.

An interesting consequence!

• $\mathcal{C}/\mathcal{X}_R$ is quasi-abelian: a bunch of Auslander-Reiten theory applies! [S.]

E.g. irreducible maps must be proper epic or proper monic.

 \bullet $\mathcal{C}/\mathcal{X}_R$ is Krull-Schmidt: a bunch of Auslander-Reiten theory applies! [Liu]

E.g. the AR theory of C induces the AR theory of C/\mathcal{X}_R .

Quasi-abelian meets Krull-Schmidt

Theorem (S.)

Let \mathcal{A} be a Krull-Schmidt quasi-abelian category, and $\xi\colon X\stackrel{f}{\to}Y\stackrel{g}{\to}Z$ an exact sequence in \mathcal{A} . The following are equivalent:

- (i) ξ is an Auslander-Reiten sequence;
- (ii) $End_A(X)$ is local and g is right almost split;
- (iii) End_A(Z) is local and f is left almost split;
- (iv) f is minimal left almost split; and
- (v) g is minimal right almost split.