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Quiver Representations
Q = (Q0, Q1) |Q0| = n assume no oriented cycles, k a field, kQ = H

Definition (The category of finitely generated representations of quiver Q)

1 A k -representation of Q is:

a collection of finite dimensional k -vector spaces: {Vi}i2Q0

a collection of k -linear maps: {'V
ji : Vj ! Vi}j!i2Q0

2 A morphism f = (fi ) : V ! W is a collection of linear maps {fi : Vi ! Wi}i2Q0
so that

fj � 'V
ji = 'W

ji � fi .

Example ( Indecomposable representations of Q = A3 : 1 2 3 )

S1 : k  0 0 simple, projective

S2 : 0 k  0 simple

S3 : 0 0 k simple, injective

P2 : k  k  0 projective

P3 : k  k  k projective, injective

I2 : 0 k  k injective
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Auslander-Reiten Theory is a general theory for artin algebras and more.

Definition (Auslander-Reiten quiver - AR quiver)

1 {vertices}$ {indecomposable modules (isomorphism classes)}
2 {arrows}$ {irreducible morphisms}

Example (Auslander-Reiten quiver for the representations of Q = A3 : 1 2 3 )

AR-quiver

P1 S2 S3

P2 I2

P3
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Tilting modules

Tilting modules were intensively studied in representation theory of artin algebras in general, and specially of
hereditary artin algebras by: Brenner, Butler, Bongartz, Happel, Ungar, ....

Definition (Tilting module for hereditary algebra H)

1 Ext1
H (T , T ) = 0

2 T = T1 � · · ·� Tn where n = |Q0|

Definition (Mutation of tilting module)

Mutation ⌫i in direction i of the tilting module T is a new tilting module ⌫i T :

T = T1 � · · ·� Ti � · · ·� Tn

⌫i T = T1 � · · ·� T 0
i � · · ·� Tn.
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Examples of Tilting modules and Mutations

Example (Auslander-Reiten quiver for the representations of Q = A3 : 1 2 3 )

AR-quiver

P1 S2 S3

P2 I2

P3

Example (Tilting modules for
Q = A3 : 1 2 3 )

1 P1 � P2 � P3

2 S2 � P2 � P3
3 S2 � I2 � P3

4 S3 � I2 � P3
5 S3 � P1 � P3

Remark

1 These are all the tilting modules for the
algebra H = kA3
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Since H is hereditary the indecomposable objects in the bounded derived category Db(H) are isomorphic to stalk
complexes, so the derived category can be viewed as the union:

Db(H) =
S

i2Z(modH)[i].

Example (Auslander-Reiten quiver of the derived category of Q = A3 : 1 2 3 )
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Definition (Cluster category)

Let ⌧ is the Auslander-Reiten translate and [1] is the shift functor on the derived category. Then the cluster category
is defined as the orbit category:

CQ = CH := Db(H)/(⌧�1[1])
.

Remark

Cluster category CQ is triangulated category (Keller).

Indecomposable objects in a fundamental domain can be taken as ind(H) [ {Pi [1]}.

Example
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Definition (Cluster tilting objects)

Ext1
CQ

(T , T ) = 0

T = T1 � · · ·� Tn , where n = |Q0|

Example (in modH)

P1 � P2 � P3

S2 � P2 � P3

S2 � I2 � P3

S3 � I2 � P3

S3 � P1 � P3

Example (additional in CQ )

P1 � P2[1]� P3[1]
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S3 � P[1]� I2

S3 � P1[1]� P2[1]

P3[1]� P1[1]� P2[1]
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Semi-invariants on Representation spaces for ↵ 2 Nn

For an acyclic quiver Q with n vertices the theory of semi-invariants on the representation spaces was developed
largely by A.King, A. Schofield, H.Derksen, J.Weyman.

Definition (Representation space Rep(↵, Q) and Gl(g)-action)

Let ↵ 2 Nn . Then the representation space and group action are defined as:

Rep(↵, Q) :=
Q

j!i2Q1
Homk (k

↵j , k↵i ).

The group G :=
Q

i2Q0
Gl(↵i ) acts on Rep(↵, Q) as g' = (gi )('ji ) := (gi � 'ji � (gj )

�1).

Definition (Semi-invariants)

A polynomial function � : Rep(↵, Q)! k is called semi-invariant of weight � = (�i )i2Q0
if

�(g') =
Q

i2Q0
(det(gi ))

�i �(').

Definition (Domains of semi-invariants)

Let � be a real Schur root. Then D(�) := {↵ 2 Nn|Rep(↵, Q) has a semi-invariant of weight �}.
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Pres(↵, Q) := HomH (P(1), P(0)),

where P(1), P(0) are projective H-modules such that ↵ = dimP(0) � dimP(1) ,

G := Gl(�)⇥ (Gl(�))op

where P(0) =
`

P
�i
i and P(1) =

`
P
�i
i , and Gl(�) =

Q
Gl(�i ) and Gl(�) =

Q
Gl(�i )

(g, h)' := g � ' � h,

where g 2 Gl(�), h 2 Gl(�),' 2 Pres(↵, Q).

Definition (Semi-invariants on Pres(↵, Q))
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Definition (Domains of semi-invariants)

Let � be a real Schur root. Then D(�) :=
{↵ 2 Zn|Pres(↵, Q) has a semi-invariant of weight �}.

Theorem (Stability conditions)

D(�) = {↵ 2 Zn|
h↵, �i = 0,

⌦
↵, �0↵  0 for �0 real Schur subroot of � }.

Definition

DR(�) := {↵ 2 Rn|
h↵, �i = 0,

⌦
↵, �0↵0 for �0 real Schur subroot of � }.

Remark (IOTW)

From the joint work: K. Igusa, K. Orr, J. Weyman, G.T.:
Modulated semi-invariants. arXiv:1507.03051

D(�1) = D[100]

D[010]

D[001]

D[110]

D[011]

D[111]

P1
P2

S2

P3

S3

P2[1] P1[1]

P3[1]

I2

Q = 1 2 3

D(�2) = D[010]

D(�3) = D[001]

Gordana Todorov Semi-invariant pictures, c-vectors, maximal green sequences



Introduction

Semi-invariants

Cluster algebras and c-vectors

Maximal green sequences

Theorems about Maximal green sequences

Semi-invariants on Representation spaces (classical) for ↵ 2 Nn

Semi-invariants on Presentation spaces for ↵ 2 Zn

Domains of semi-invariants for ↵ 2 Zn

Definition (Domains of semi-invariants)

Let � be a real Schur root. Then D(�) :=
{↵ 2 Zn|Pres(↵, Q) has a semi-invariant of weight �}.

Theorem (Stability conditions)

D(�) = {↵ 2 Zn|
h↵, �i = 0,

⌦
↵, �0↵  0 for �0 real Schur subroot of � }.

Definition

DR(�) := {↵ 2 Rn|
h↵, �i = 0,

⌦
↵, �0↵0 for �0 real Schur subroot of � }.

Remark (IOTW)

From the joint work: K. Igusa, K. Orr, J. Weyman, G.T.:
Modulated semi-invariants. arXiv:1507.03051

D(�1) = D[100]

D[010]

D[001]

D[110]

D[011]

D[111]

P1
P2

S2

P3

S3

P2[1] P1[1]

P3[1]

I2

Q = 1 2 3

D(�2) = D[010]

D(�3) = D[001]

Gordana Todorov Semi-invariant pictures, c-vectors, maximal green sequences



Introduction

Semi-invariants

Cluster algebras and c-vectors

Maximal green sequences

Theorems about Maximal green sequences

Semi-invariants on Representation spaces (classical) for ↵ 2 Nn

Semi-invariants on Presentation spaces for ↵ 2 Zn

Domains of semi-invariants for ↵ 2 Zn

Definition (Domains of semi-invariants)

Let � be a real Schur root. Then D(�) :=
{↵ 2 Zn|Pres(↵, Q) has a semi-invariant of weight �}.

Theorem (Stability conditions)

D(�) = {↵ 2 Zn|
h↵, �i = 0,

⌦
↵, �0↵  0 for �0 real Schur subroot of � }.

Definition

DR(�) := {↵ 2 Rn|
h↵, �i = 0,

⌦
↵, �0↵0 for �0 real Schur subroot of � }.

Remark (IOTW)

From the joint work: K. Igusa, K. Orr, J. Weyman, G.T.:
Modulated semi-invariants. arXiv:1507.03051

D(�1) = D[100]

D[010]

D[001]

D[110]

D[011]

D[111]

P1
P2

S2

P3

S3

P2[1] P1[1]

P3[1]

I2

Q = 1 2 3

D(�2) = D[010]

D(�3) = D[001]

Gordana Todorov Semi-invariant pictures, c-vectors, maximal green sequences



Introduction

Semi-invariants

Cluster algebras and c-vectors

Maximal green sequences

Theorems about Maximal green sequences

Semi-invariants on Representation spaces (classical) for ↵ 2 Nn

Semi-invariants on Presentation spaces for ↵ 2 Zn

Domains of semi-invariants for ↵ 2 Zn

Definition (Domains of semi-invariants)

Let � be a real Schur root. Then D(�) :=
{↵ 2 Zn|Pres(↵, Q) has a semi-invariant of weight �}.

Theorem (Stability conditions)

D(�) = {↵ 2 Zn|
h↵, �i = 0,

⌦
↵, �0↵  0 for �0 real Schur subroot of � }.

Definition

DR(�) := {↵ 2 Rn|
h↵, �i = 0,

⌦
↵, �0↵0 for �0 real Schur subroot of � }.

Remark (IOTW)

From the joint work: K. Igusa, K. Orr, J. Weyman, G.T.:
Modulated semi-invariants. arXiv:1507.03051

D(�1) = D[100]

D[010]

D[001]

D[110]

D[011]

D[111]

P1
P2

S2

P3

S3

P2[1] P1[1]

P3[1]

I2

Q = 1 2 3

D(�2) = D[010]

D(�3) = D[001]

Gordana Todorov Semi-invariant pictures, c-vectors, maximal green sequences



Introduction

Semi-invariants

Cluster algebras and c-vectors

Maximal green sequences

Theorems about Maximal green sequences

Semi-invariants on Representation spaces (classical) for ↵ 2 Nn

Semi-invariants on Presentation spaces for ↵ 2 Zn

Domains of semi-invariants for ↵ 2 Zn

Definition (Domains of semi-invariants)

Let � be a real Schur root. Then D(�) :=
{↵ 2 Zn|Pres(↵, Q) has a semi-invariant of weight �}.

Theorem (Stability conditions)

D(�) = {↵ 2 Zn|
h↵, �i = 0,

⌦
↵, �0↵  0 for �0 real Schur subroot of � }.

Definition

DR(�) := {↵ 2 Rn|
h↵, �i = 0,

⌦
↵, �0↵0 for �0 real Schur subroot of � }.

Remark (IOTW)

From the joint work: K. Igusa, K. Orr, J. Weyman, G.T.:
Modulated semi-invariants. arXiv:1507.03051

D(�1) = D[100]

D[010]

D[001]

D[110]

D[011]

D[111]

P1
P2

S2

P3

S3

P2[1] P1[1]

P3[1]

I2

Q = 1 2 3

D(�2) = D[010]

D(�3) = D[001]

Gordana Todorov Semi-invariant pictures, c-vectors, maximal green sequences



Introduction

Semi-invariants

Cluster algebras and c-vectors

Maximal green sequences

Theorems about Maximal green sequences

Cluster algebras

Cluster Categories and Cluster Algebras

Cluster algebras - Fomin, Zelevinsky

Remark ( Acyclic quivers Q $ skew symmetric matrices B )

To an acyclic quiver Q associate a skew-symmetric matrix B as
B = Et � E where E is the Euler matrix, i.e.
Eij = dimk HomH (Si , Sj )� dimk Ext1

H (Si , Sj ).

Example (Q = A3 : 1 2 3)

(1 2 3) $

2

4
0 �1 0
1 0 �1
0 1 0

3

5

Definition (Cluster algebra)

Let B be a n⇥n skew-symmetric matrix. The cluster algebra AB is generated by cluster variables as a subalgebra
of the field of rational functions in n variables.

Initial cluster is a transcendence basis: x = {x1, .., xn}. Initial cluster seed is the pair (x, B).

For each i mutate the cluster seed (x, B) using matrix B and get a new cluster seed µi (x, B)=(µi x, µi B).

Mutation of cluster variables: x0
i = ( 1

xi
)(
Q

bij�0 x
|bij |
j +

Q
bij0 x

|bij |
j ).

Mutation of cluster: µi{x1, .., xi , ..., xn} = {x1, .., x0
i , .., xn}

Mutation of matrix B is defined on the columns of matrix B (complicated formula to write).

Continue mutating in all directions, get new cluster variables, new clusters, new cluster seeds.

Cluster algebra AB is generated by all of those cluster variables that occur after any sequence of mutations.
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Relation between Cluster categories and algebras
Theorem

Let Q be an acyclic quiver and let B be the associated skew-symmetric matrix. Let CQ be the associated cluster
category and AB the associate cluster algebra. Then there are bijections which respect the cluster structures:

{isomorphism classes of indecomposable rigid objects in CQ}$ {cluster variables in AB}

{cluster tilting objects in CQ}$ {clusters in AQ}

{mutations in CQ}$ {mutations in AQ}

Example ( Cluster category and cluster algebra for the quiver Q = A3 : 1 2 3 )

Cluster category CQ

Initial cluster tilting object P1[1]� P2[1]� P3[1]

Mutation
⌫1(P1[1]�P2[1]�P3[1]) = P1�P2[1]�P3[1]

Mutation
⌫2(P1 � P2[1]� P3[1]) = P1 � P2 � P3[1]

Cluster algebra AQ

Initial cluster {x1, x2, x3}

Mutation
µ1{x1, x2, x3} = { x2+1

x1
, x2, x3}

Mutation
µ2{

x2+1
x1

, x2, x3} = { x2+1
x1

,
x2+1+x1x3

x1x2
, x3}
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c-vectors

Cluster tilting objects, domains of semi-invariants and c-vectors

Green mutation

c-vectors

Definition

Let B be a skew symmetric matrix. Define the extended matrix B̃ :=


B
In

�
where In is the identity matrix.

Perform a mutation on the extended matrix B̃ and obtain a new matrix µi B̃ :=


µi B
µi In

�
.

Perform sequences of mutations and obtain new matrices


B0

C0

�

c- matrices are the matrices that appear in the lower half of these 2n ⇥ n matrices.

c-vectors are the column vectors of c-matrices.

Theorem (Sign coherence - Nakanishi-Zelevinsky)

The c-vectors are sign coherent, i.e. each vector has all nonnegative entries or all nonpositive entries.
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Green mutation
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Remark ( Initial data )

Initial cluster titling object T0 = P1[1]� ..� Pn [1]

Initial extended matrix B̃ =


B
In

�

Initial c-matix In

Initial c-vectors {e1, .., en}

The walls of the initial simplex with vertices
{P1[1], .., Pn [1]} are given by
{D(e1), .., D(en)}

Remark ( Data after a sequence of mutations )

Cluster tilting object T = T1 � ..� Tn

New extended matrix


B0

C0

�

New c-matrix C0

New c-vectors {c1, .., cn}

The walls of the new simplex with vertices
{T1, .., Tn} are given by
{D(�1), .., D(�n)}
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Green mutation

Theorem (IOTW)

After a sequence of mutations, the c-vectors
corresponding to the cluster tilting object T are
given by the labels of the weights of
semi-invariants which define the walls D(�) of
the new simplex with vertices {T1, .., Tn} and
the sign can be read of the semi-invariant
picture as indicated by the normal orientation
(concavity).

Example

T = P1 � P2[1]� P3[1]
c1 = �[100], c2 = +[010], c3 = +[001]

D(�1) = D[100]

c1 = ±[100]

�+

D[010]

D[001]

D[110]

c = ±[110]

� +

D[011] c = ±[011]

�
+

D[111]c = ±[111]

�
+

P1
P2

S2

P3

S3

P2[1] P1[1]

P3[1]

I2

Q = 1 2 3

D(�2) = D[010]

c2 = ±[010]

�+

D(�3) = D[001]

c3 = ±[001]

�+
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Definition ( green mutation )

Mutation in the direction of a nonnegative
c-vector is called green mutation.

Definition (Maximal green sequence)

A finite sequence of green mutations,
starting from the initial cluster tilting object
P1[1]� ..� Pn [1] which cannot be
extended by another green mutation is
called a maximal green sequence.

Remark

A maximal green sequence, if it exists, it
must stop in the simplex whose vertices
are projective modules, i.e. cluster tilting
object P1 � ..� Pn .
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Sink before source theorem

Finiteness theorem

No gap conjecture/theorem

Sink before source Theorem

Theorem (T. Brustle, S. Hermes, K. Igusa, GT)

Suppose #{j ! i} � 2. Then every maximal
green sequence must mutate at sink i before it
mutates at the source j”.

Theorem (General, BHIT)

For each arrow of infinite representation type,
every maximal green sequence must mutate at
the sink before the source.

Remark

The idea of the proof is coming from this picture
since maximal green sequence cannot cross
infinitely many walls.

maximal green sequence

cannot be completed

to maximal green sequence Q : j ◆ i ! k

j

ik

arXiv:1503.07945
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Sink before source theorem

Finiteness theorem

No gap conjecture/theorem

Finiteness theorem

Theorem (BHIT)

If Q is a quiver which is mutation equivalent to an acyclic tame quiver then Q has at most finitely many maximal
green sequences.
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Sink before source theorem

Finiteness theorem

No gap conjecture/theorem

No gap conjecture/theorem

Conjecture

Let Q be an acyclic quiver. Suppose there are maximal green sequences of lengths m1 and m2. Then for every
integer between m1 and m2 there exists a maximal green sequence of that length.

Theorem (Hermes, Igusa)

Let Q be a simply laced acyclic quiver of tame type. Suppose there are maximal green sequences of lengths m1
and m2. Then for every integer between m1 and m2 there exists a maximal green sequence of that length.

Remark

No gap conjecture is false for valued quivers. For example the quiver B2 has maximal green sequences of lengths 2
and 4 and none of length 3.

Remark

Conjecture is still open in wild case.
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