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0.1. Abstract. This is joint work with Gordana Todorov. Let R = K[[t]] where
K is any field. Given a “recurrent” cyclic poset X and “admissible automorphism”
φ, we construct an R-linear Frobenius category Fφ(X). I will go over the definition
of a Frobenius category and indicate why our construction satisfies each condition.
By a well-known result of Happel, the stable category Cφ(X) will be a triangulated
category overK. In each example in the chart below, Cφ(X) will be a cluster category:

cyclic poset automorphism cluster category comments

X φ Cφ(X)

Zn φ(i) = i+ 1 C(An−3) 2-CY
1 < 2 < · · · < n < σ1

Z φ(i) = i+ 1 C(A∞) 2-CY
( with cyclic order ) infinity-gon

S1 id C not 2-CY but has clusters
continuous cluster category Y [1] ∼= Y

S1 ∗ Z id C̃ not 2-CY (Y [1] ∼= Y )
φ(x, i) = (x, i+ 1) C̃ � 2-CY

contains
Zm ∗ Z φ(i, j) = (i+ 1, j) m-cluster category (m+ 1)-CY

φ(m, j) = (1, j + 1) of type A∞

P(1)/3Z ∗ Z φ3(x, i) = (x, i+ 1)

�
3-cluster category

of type A∞

�3

4-CY

I will go over some of the easier examples of this construction. CY means Calabi-Yau.
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0.2. Cyclic poset. is same as periodic poset X̃. i.e. ∃ poset automorphism σ :
X̃ → X̃ so that x < σx for all x. Also:

• (∀x, y ∈ X̃) x ≤ σjy for some j ∈ Z.

(1) Zn: X̃ = Z, σ(x) = x+ n (n fixed).
(2) X̃ = P(1) (from Schmidmeier’s lecture), σ : go up three steps.
(3) X̃ ∗ Z means X̃ × Z with lexicographic order (from van Roosmalen).

Let X = set of σ orbits. How to describe cyclic poset structure just in terms of
X?

(1) Choose representative x̃ ∈ X̃ for each orbit x ∈ X.
(2) (∀x, y ∈ X) let b = b(x, y) be minimal so that x̃ ≤ σbỹ.
(3) Let c = δb:

c(xyz) := b(xy) + b(yz)− b(xz)

Then c : X3 → N is independent of the choice of representatives x̃.

• X is in cyclic order iff c(xyz) ≤ 1. In that case:

c(xyz) =

�
0 if xyz in cyclic order

1 otherwise
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Proposition 0.2.1. The cyclic poset structure on a set X is uniquely determined
by the function c : X3 → N which is an arbitrary reduced cocycle ( reduced means
c(xxy) = 0 = c(xyy). cocycle means δc = 0.)

0.3. Representations.

Definition 0.3.1. A representation M of (X, c) over R is

(1) An R-module Mx for each x ∈ X̃ so that Mx = Mσx.
(2) An R-linear map My → Mx for x < y so that all diagrams commute and
(3) Mσx → Mx is ·t (multiplication by t).

Definition 0.3.2. Let P(X) be the category of f.g. projective representations of X
over R = K[[t]].

Let Px = indec. projective rep. generated at x ∈ X.
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0.4. Frobenius category.

Definition 0.4.1. Let F(X) denote the category of all pairs (P, d) where P ∈ P(X)
and d : P → P so that d2 = ·t (mult by t). Morphism f : (P, d) → (Q, d) are maps
f : P → Q so that df = fd.

Theorem 0.4.2. In all examples on page 1, F(X) is Krull-Schmidt with indecom-
posable objects:

M(x, y) :=

�
Px ⊕ Py,

�
0 β
α 0

��
: Px α ��

Py

β
��

with αβ = ·t, βα = ·t.

Lemma 0.4.3. The functor G : P(X) → F(X) given by

GP :=

�
P ⊕ P,

�
0 t
1 0

��
: P

id ��P

·t
��

is both left and right adjoint to the forgetful functor F : F(X) → P(X).
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Theorem 0.4.4. For any cyclic poset X, F(X) is a Frobenius category where a
sequence

(A, d) → (B, d) → (C, d)

is defined to be exact in F(X) if A → B → C is (split) exact in P(X). GP are the
projective injective objects. f = g iff f − g = ds+ sd for some s : P → Q.

0.5. Twisted version. An automorphism φ of X is admissible if:

x ≤ φ(x) ≤ φ2(x) ≤ σx

for all x ∈ X̃. Then we get

Px
ηx−→ φPx = Pφ(x)

ξx−→ Px

giving natural transformations

P
ηP−→ φP

ξP−→ P

Definition 0.5.1. Let Fφ(X) be the full subcategory of F(X) of all (P, d) where d
factors through ηP : P → φP .

Theorem 0.5.2. Fφ(X) is a Frobenius category with projective-injective objects

GφP :=

�
P ⊕ φP,

�
0 ξP
ηP 0

��
: P ηP ��

φP

ξP
��
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0.6. m-cluster categories.

Theorem 0.6.1. Let m ≥ 3, let X be a cyclically ordered set (equivalently, c(xyz) ≤
1), and φ is an admissible automorphism of X ∗ Z so that φm(x, i) = (x, i+ 1) then
Fφ(X ∗ Z) is (m+ 1)-Calabi-Yau.

• On Zm ∗ Z let φ(i, j) = (i+ 1, j) for i < m and φ(m, j) = (1, j + 1).
• All objects of Cφ(Zm ∗ Z) are “standard” if m = 3.
• All objects are m+ 1 rigid iff m ≤ 4.

Theorem 0.6.2. The “standard objects” form a thick subcategory Cm
∞ of Cφ(Zm ∗Z).

This subcategory is a true m-cluster category in the following sense.

• All standard objects X are m + 1 rigid in the sense that Hom(X,X[i]) = 0
for 1 ≤ i ≤ m.

• Maximal compatible sets of standard objects form m-clusters (usual sense).
• Isomorphism classes of standard m-clusters are in 1-1 correspondence with
the partitions of the ∞-gon into m+ 2-gons.

Theorem 0.6.3. Maximal compatible sets of m+1 rigid objects (including nonstan-
dard objects) correspond to 2-periodic partitions of the doubled ∞-gon into m+2-gons
(except for the one in the middle).
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Example 0.6.4. (m = 5). Example of a maximal compatible set of 6-rigid objects in
Cφ(Z5∗Z). M(x, y) is arc from x to y (horizontal if standard, vertical if nonstandard).
Compatible arcs do not cross. There is 8-gon in center. Other regions have 7 sides.

1 1 1 1 1 0 0 0 0 0 −1 −1 −1 −1 −1

E D C B A E D C B A

X1

7-gon

�� E D C B A

8-gon

A

Y2 7-gon

B C D E

Y1

A

X1
7-gon

��
B C D E A B C

Y1

D

Y2
7-gon

E

−1 −1 −1 −1 −1 0 0 0 0 0 1 1 1 1 1

Standard: X1 = M(A0, B1) (horizontal).
Y1 = M(C1, E−1), Y2 = M(A−1, D1) are nonstandard but (m+ 1)-rigid (vertical).
Notation: (1, j) = Aj, (2, j) = Bj, etc.

Thank you for you attention!
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