Projective dimension of modules over cluster-tilted algebras

Gordana Todorov, Northeastern University, Boston Representation Theory Seminar, Northeastern University October 28, 2011

Abstract: We study the projective dimension of finitely generated modules over cluster-tilted algebras, i.e. algebras $\operatorname{End}_{\mathcal{C}}(T)$ where T is a cluster tilting object in a cluster category \mathcal{C} .

It is well-known that all finitely generated $\operatorname{End}_{\mathcal{C}}(T)$ -modules are of the form $\operatorname{Hom}_{\mathcal{C}}(T, M)$ for objects M in \mathcal{C} , and since $\operatorname{End}_{\mathcal{C}}(T)$ is Gorenstein of dimension 1, the projective dimension of $\operatorname{Hom}_{\mathcal{C}}(T, M)$ is either zero, one or infinity.

We define the ideal I_M of $\operatorname{End}_{\mathcal{C}}(T[1])$ as the ideal of all endomorphisms that factor through M. We show that the $\operatorname{End}_{\mathcal{C}}(T)$ -module $\operatorname{Hom}_{\mathcal{C}}(T, M)$ has projective dimension ≤ 1 precisely when the ideal I_M is zero. Moreover, we apply these results to characterize the location of modules of infinite projective dimension in the Auslander-Reiten quiver.

(This is joint work with Louis Beaudet and Thomas Brüstle.)