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Cluster Structures of Double Bott-Samelson Cells

Motivation: Bott-Samelson Variety

Let G, B, W be defined as usual. Let i = (i1, . . . , il) be a reduced word of
w . The Bott-Samelson variety associated to the reduced word i is

Pi1 ×
B

Pi2 ×
B
. . .×

B
Pil

/
B

where Pi = B t BsiB.

Note that
Pi1 ×

B
. . .×

B
Pil =

⊔
j⊂i

(Bsj1 B)×
B
. . .×

B
(BsjmB)

where j = (j1, . . . , jm) runs over all subwords of i (not necessarily reduced).
These can be thought of as “Bott-Samelson cell”.

Alternatively one can think of an element of (Bsj1 B)×
B
. . .×

B
(BsjmB) as a

sequence of flags that satisfies the relative position conditions imposed by
the simple reflections sj1 , sj2 , . . . , sjm . So a “double Bott-Samelson cell”
will then be two sequences of flags that satisfy two sequences of relative
position conditions imposed by two words i and j.
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Definition

Let G be the Kac-Peterson group (the smallest Kac-Moody group)
associated to a symmetrizable generalized Cartan matrix and let B± be
the two opposite Borel subgroups.

Let B± = {Borel subgroups that are conjugates of B±}. Bruhat
decomposition implies that the G-orbits in B+ × B+ and B− × B− are
parametrized by the Weyl group W.

Notation

We use superscript to denote Borel subgroups in B+, e.g. B0, B1, etc.

We use subscript to denote Borel subgroups in B−, e.g. B0, B1, etc.

We write B0 w // B1 if
(
B0,B1

)
is in the w -orbit in B+ × B+.

We write B0
w // B1 if (B0,B1) is in the w -orbit in B− × B−.

We write B0 B0 if
(
B0,B0

)
= (gB−, gB+) for some g ∈ G.

B+siB+/ B+ can be thought of as the moduli space of B1 satisfying

B0

si // B1 for a fixed B0.
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Definition

Definition

Let b and d be two positive braids in the associated braid group. First choose a
word (i1, i2, . . . , im) for b and a word (j1, j2, . . . , jn) for d . The undecorated
double Bott-Samelson cell Confbd(B) is defined to be

B0
si1 // B1

si2 // . . .
sim // Bm

B0 sj1

// B1 sj2

// . . .
sjn

// Bn


/

G

Remark

The resulting space does not depend on the choice of words for b and d .
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Definition

Let U± := [B±,B±] and define decorated flag varieties A± := G/U±. We
denote decorated flags with a symbol A instead of B.

Definition

The decorated double Bott-Samelson cell Confbd(A) is defined to be
A0

si1 // B1
si2 // . . .

sim // Bm

B0 sj1

// B1 sj2

// . . .
sjn

// An


/

G

Decorated double Bott-Samelson cell can be viewed as a generalization of
double Bruhat cells B+uB+ ∩ B−vB−. Double Bruhat cells are examples
of cluster varieties and are studied by Berenstein, Fomin, and Zelevinsky
[BFZ05], Fock and Goncharov [FG06], and many others.

Theorem (Shen-W.)

The decorated double Bott-Samelson cells Confbd (A) are smooth affine
varieties.
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Cluster Structures

We equip each double Bott-Samelson cell (both undecorated and
decorated) with an atlas of algebraic torus charts, parametrized by a
choice of words for b and d and a triangulation of the “trapezoid”.

B0 s1 // B1 s1 // B2 s3 // B3

B0 s2

// B1 s1

// B2 s2

// B3 s3

// B4 s3

// B5

There are two kinds of moves available to us:

diagonal flipping

B0 s1 // B1 s1 // B2 s3 // B3

B0 s2

// B1 s1

// B2 s2

// B3 s3

// B4 s3

// B5

Braid move

B0 s1 // B1 s1 // B2 s3 // B3

B0 s1

// B1′ s2

// B2′ s1

// B3 s3

// B4 s3

// B5
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Cluster Structures

We actually consider two versions of decorated double Bott-Samelson
cells, one for Gsc and one for Gad (analogues of the simply-connected form
and the adjoint form in the semisimple cases).

The natural projection Gsc → Gad gives rise to natural projection maps
Asc → Aad and p : Confbd (Asc)→ Confbd (Aad).

Theorem (Shen-W.)

The atlas of algebraic torus charts are related by birational maps called cluster
mutations. These charts equips O

(
Confbd (Asc)

)
with the structure of an

upper cluster algebra, and equips O
(
Confbd (Aad)

)
with the structure of an

upper cluster Poisson algebra. The pair
(
Confbd (Asc) ,Confbd (Aad)

)
form a

Fock-Goncharov cluster ensemble.
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Reflection Maps between double Bott-Samelson cells

We constructed biregular maps called reflection maps:

Confbsid (B)←→ Confbdsi (B) Confsi bd (B)←→ Confbsi d(B).

They are induced by moves that look like the following:

B0 si // B1

B0

←→
B0

B0 si
// B1

These reflection maps are Poisson and respect the cluster structures.

One can think of such reflection maps as movement of tangles in a link.

Confs1s2
s1

(B) ←→ Confs1s1s2
e (B)

←→
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Cluster Donaldson-Thomas Transformation

One important conjecture in cluster theory is the Fock-Goncharov cluster
duality [FG09], which conjectures the existence of canonical bases in an
upper cluster algebra and its corresponding upper cluster Poisson algebra.

Part of a sufficient condition [GHKK18] [GS18] of the duality conjecture is
the existence of the cluster Donaldson-Thomas transformation.

Theorem (Shen-W.)

Cluster Donaldson-Thomas transformations exist on double Bott-Samelson cells
and are given by compositions of reflection maps and a transposition map.
Reflection maps intertwine the cluster Donaldson-Thomas transformations on
different double Bott-Samelson cells. By verifying the sufficient condition, we
prove the cluster duality conjecture for double Bott-Samelson cells.

d b reflections7→ d◦ b◦

=

b◦ d◦ transposition7→ d b
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Periodicity of DT in the Semisimple Case

For the rest of the talk, let G be semisimple and let w0 denote the longest
Weyl group element.

Theorem (Shen-W.)

Let G be a semisimple group. Let b be a positive braid and let m, n be two
positive integers such that bm = w 2n

0 . Then the order of the cluster
Donaldson-Thomas transformation of Confeb(B) is finite and divides 2(m + n).

Example

Suppose G = SL3 and b = s1s2s1s2. Then b3 = w 4
0 in the braid group, and

therefore DT10 = Id on Confeb(B). Intertwining by a reflection map, this
computation also implies that DT10 = Id on Confs1

w0
(B) in the double Bruhat

cell case as well.
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New Proof of Zamolodchikov’s Periodicity Conjecture

One version of the conjecture (formulated by Keller [Kel13]) is about the
periodicities of the Donaldson-Thomas transformations associated to
products of two Dynkin diagrams.

Theorem (Keller)

Let D and D ′ be Dynkin quivers with Coxeter numbers h and h′. Then

DT
2(h+h′)
D�D′ = Id.

Using our result on the periodicity of DT on double Bott-Samelson cells,
we can give a new geometric proof of the periodicity conjecture in the case
of D � An.
Give D a bipartite coloring.

◦•

•

•

◦1 2 3

4

5

b = s2s4s5, w = s1s3
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New Proof of Zamolodchikov’s Periodicity Conjecture

Consider the double Bott-Samelson cell Confbwb...wbw...(B), where the number
of b and w in each braid sum up to n + 1.

• ◦ •

◦ • ◦

• ◦ •

• ◦ •

D4

A3

Note that bw = c and Confbwb...wbw...(B) ∼= Confecn+1 (B).

Let h be the Coxeter number of D. Since
(
cn+1

)h
= w

2(n+1)
0 , our result

implies that DT
2(h+n+1)
D�An

= Id.
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Thank you!



Cluster Structures of Double Bott-Samelson Cells

Bibliography

A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J. 126

(2005), no. 1, 1–52, arXiv:math/0305434.

V. Fock and A. Goncharov, Cluster X-varieties, amalgamation and Poisson-Lie groups, Algebraic Geometry and Number Theory,

In honor of Vladimir Drinfeld’s 50th birthday, Birkhäuser Boston (2006), 27–68, arXiv:math/0508408.
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arXiv:math/0311245.

M. Gross, P. Hacking, S. Keel, and M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2,

497–608, arXiv:1411.1394.

A. Goncharov and L. Shen, Donaldson-Thomas transformations for moduli spaces of G-local systems, Adv. Math. 327 (2018),

225–348, arXiv:1602.06479.

B. Keller, The periodicty conjecture for pairs of Dynkin diagrams, Ann. Of Math. 177 (2013), no. 1, 111–170, arXiv:1001.1531.

https://arxiv.org/abs/math/0305434
https://arxiv.org/abs/math/0508408
https://arxiv.org/abs/math/0311245
https://arxiv.org/abs/1411.1394
https://arxiv.org/abs/1602.06479
https://arxiv.org/abs/1001.1531

