Cluster Structures of Double Bott-Samelson Cells

Daping Weng
Michigan State University
April 2019
Joint work with Linhui Shen

arXiv:1904.07992

Motivation: Bott-Samelson Variety

- Let $\mathrm{G}, \mathrm{B}, \mathrm{W}$ be defined as usual. Let $\mathbf{i}=\left(i_{1}, \ldots, i_{l}\right)$ be a reduced word of w. The Bott-Samelson variety associated to the reduced word \mathbf{i} is

$$
\mathrm{P}_{i_{1}} \times \mathrm{P}_{i_{2}} \times \underset{B}{\times} \ldots \mathrm{P}_{i_{1}} / \mathrm{B}
$$

where $\mathrm{P}_{i}=\mathrm{B} \sqcup \mathrm{B} s_{i} \mathrm{~B}$.

Motivation: Bott-Samelson Variety

- Let $\mathrm{G}, \mathrm{B}, \mathrm{W}$ be defined as usual. Let $\mathbf{i}=\left(i_{1}, \ldots, i_{i}\right)$ be a reduced word of w. The Bott-Samelson variety associated to the reduced word \mathbf{i} is

$$
\mathrm{P}_{i_{1}} \times \mathrm{P}_{i_{2}} \times \ldots \times{ }_{\mathrm{B}} \ldots \mathrm{P}_{i_{1}} / \mathrm{B}
$$

where $\mathrm{P}_{i}=\mathrm{B} \sqcup \mathrm{B} s_{i} \mathrm{~B}$.

- Note that

$$
P_{i_{1}} \underset{B}{\times} \ldots \times{ }_{B} P_{i_{1}}=\bigsqcup_{j \subset i}\left(B s_{j_{1}} B\right) \underset{B}{\times} \ldots \underset{B}{\times}\left(B s_{j_{m}} B\right)
$$

where $\mathbf{j}=\left(j_{1}, \ldots, j_{m}\right)$ runs over all subwords of \mathbf{i} (not necessarily reduced). These can be thought of as "Bott-Samelson cell".

Motivation: Bott-Samelson Variety

- Let $\mathrm{G}, \mathrm{B}, \mathrm{W}$ be defined as usual. Let $\mathbf{i}=\left(i_{1}, \ldots, i_{l}\right)$ be a reduced word of w. The Bott-Samelson variety associated to the reduced word \mathbf{i} is

$$
\mathrm{P}_{i_{1}} \underset{\mathrm{~B}}{\times} \mathrm{P}_{i_{2}} \underset{\mathrm{~B}}{\times} \ldots \underset{\mathrm{B}}{\times \mathrm{P}_{i_{1}} / \mathrm{B}}
$$

where $\mathrm{P}_{i}=\mathrm{B} \sqcup \mathrm{B} s_{i} \mathrm{~B}$.
■ Note that

$$
\mathrm{P}_{i_{1}} \underset{\mathrm{~B}}{\times} \ldots \times{ }_{\mathrm{B}} \mathrm{P}_{i_{l}}=\bigsqcup_{\mathrm{j} \subset \mathbf{i}}\left(\mathrm{~B} s_{j_{1}} \mathrm{~B}\right) \underset{\mathrm{B}}{\times} \ldots \underset{\mathrm{B}}{\times}\left(\mathrm{B} s_{j_{m}} \mathrm{~B}\right)
$$

where $\mathbf{j}=\left(j_{1}, \ldots, j_{m}\right)$ runs over all subwords of \mathbf{i} (not necessarily reduced). These can be thought of as "Bott-Samelson cell".

- Alternatively one can think of an element of $\left(B s_{j_{1}} B\right) \underset{B}{\times} \ldots \underset{B}{\times}\left(B s_{j_{m}} B\right)$ as a sequence of flags that satisfies the relative position conditions imposed by the simple reflections $s_{j_{1}}, s_{j_{2}}, \ldots, s_{j_{m}}$. So a "double Bott-Samelson cell" will then be two sequences of flags that satisfy two sequences of relative position conditions imposed by two words \mathbf{i} and \mathbf{j}.

Definition

- Let G be the Kac-Peterson group (the smallest Kac-Moody group) associated to a symmetrizable generalized Cartan matrix and let $\mathrm{B}_{ \pm}$be the two opposite Borel subgroups.

Definition

- Let G be the Kac-Peterson group (the smallest Kac-Moody group) associated to a symmetrizable generalized Cartan matrix and let $\mathrm{B}_{ \pm}$be the two opposite Borel subgroups.
- Let $\mathcal{B}_{ \pm}=\left\{\right.$Borel subgroups that are conjugates of $\left.B_{ \pm}\right\}$. Bruhat decomposition implies that the G-orbits in $\mathcal{B}_{+} \times \mathcal{B}_{+}$and $\mathcal{B}_{-} \times \mathcal{B}_{-}$are parametrized by the Weyl group W.

Definition

- Let G be the Kac-Peterson group (the smallest Kac-Moody group) associated to a symmetrizable generalized Cartan matrix and let $\mathrm{B}_{ \pm}$be the two opposite Borel subgroups.
- Let $\mathcal{B}_{ \pm}=\left\{\right.$Borel subgroups that are conjugates of $\left.B_{ \pm}\right\}$. Bruhat decomposition implies that the G-orbits in $\mathcal{B}_{+} \times \mathcal{B}_{+}$and $\mathcal{B}_{-} \times \mathcal{B}_{-}$are parametrized by the Weyl group W.

Notation

■ We use superscript to denote Borel subgroups in \mathcal{B}_{+}, e.g. $\mathrm{B}^{0}, \mathrm{~B}^{1}$, etc.
■ We use subscript to denote Borel subgroups in \mathcal{B}_{-}, e.g. B_{0}, B_{1}, etc.

- We write $\mathrm{B}^{0} \xrightarrow{w} \mathrm{~B}^{1}$ if $\left(\mathrm{B}^{0}, \mathrm{~B}^{1}\right)$ is in the w-orbit in $\mathcal{B}_{+} \times \mathcal{B}_{+}$.
- We write $B_{0} \xrightarrow{w} B_{1}$ if $\left(B_{0}, B_{1}\right)$ is in the w-orbit in $\mathcal{B}_{-} \times \mathcal{B}_{-}$.
\square We write $\mathrm{B}_{0} — \mathrm{~B}^{0}$ if $\left(\mathrm{B}_{0}, \mathrm{~B}^{0}\right)=\left(g \mathrm{~B}_{-}, g \mathrm{~B}_{+}\right)$for some $g \in \mathrm{G}$.

Definition

- Let G be the Kac-Peterson group (the smallest Kac-Moody group) associated to a symmetrizable generalized Cartan matrix and let $\mathrm{B}_{ \pm}$be the two opposite Borel subgroups.
- Let $\mathcal{B}_{ \pm}=\left\{\right.$Borel subgroups that are conjugates of $\left.B_{ \pm}\right\}$. Bruhat decomposition implies that the G-orbits in $\mathcal{B}_{+} \times \mathcal{B}_{+}$and $\mathcal{B}_{-} \times \mathcal{B}_{-}$are parametrized by the Weyl group W.

Notation

■ We use superscript to denote Borel subgroups in \mathcal{B}_{+}, e.g. $\mathrm{B}^{0}, \mathrm{~B}^{1}$, etc.
■ We use subscript to denote Borel subgroups in \mathcal{B}_{-}, e.g. B_{0}, B_{1}, etc.

- We write $\mathrm{B}^{0} \xrightarrow{w} \mathrm{~B}^{1}$ if $\left(\mathrm{B}^{0}, \mathrm{~B}^{1}\right)$ is in the w-orbit in $\mathcal{B}_{+} \times \mathcal{B}_{+}$.
- We write $B_{0} \xrightarrow{w} B_{1}$ if $\left(B_{0}, B_{1}\right)$ is in the w-orbit in $\mathcal{B}_{-} \times \mathcal{B}_{-}$.
- We write $\mathrm{B}_{0} \quad \mathrm{~B}^{0}$ if $\left(\mathrm{B}_{0}, \mathrm{~B}^{0}\right)=\left(g \mathrm{~B}_{-}, g \mathrm{~B}_{+}\right)$for some $g \in \mathrm{G}$.
- $\mathrm{B}_{+} s_{i} \mathrm{~B}_{+} / \mathrm{B}_{+}$can be thought of as the moduli space of B_{1} satisfying $\mathrm{B}_{0} \xrightarrow{s_{i}} \mathrm{~B}_{1}$ for a fixed B_{0}.

Definition

Definition

Let b and d be two positive braids in the associated braid group. First choose a word $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ for b and a word $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ for d. The undecorated double Bott-Samelson cell $\operatorname{Conf}_{d}^{b}(\mathcal{B})$ is defined to be

$$
\left\{\begin{array}{c}
\mathrm{B}^{0} \stackrel{s_{i_{1}}}{\rightarrow} \mathrm{~B}^{1} \xrightarrow{s_{i_{2}}} \ldots \stackrel{s_{i_{m}}}{\rightarrow} \mathrm{~B}^{m} \\
\mathrm{~B}_{0} \underset{s_{j_{1}}}{ } \mathrm{~B}_{1} \underset{s_{j_{2}}}{\rightarrow} \ldots \stackrel{\rightarrow}{s_{j_{n}}} \mathrm{~B}_{n}
\end{array}\right\} / G
$$

Definition

Definition

Let b and d be two positive braids in the associated braid group. First choose a word $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ for b and a word $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ for d. The undecorated double Bott-Samelson cell $\operatorname{Conf}_{d}^{b}(\mathcal{B})$ is defined to be

$$
\left\{\begin{array}{c}
\mathrm{B}^{0} \xrightarrow{s_{i_{1}}} \mathrm{~B}^{1} \xrightarrow{s_{i_{2}}} \ldots \xrightarrow{s_{i_{m}}} \mathrm{~B}^{m} \\
\mathrm{~B}_{0} \rightarrow \mathrm{~B}_{1} \xrightarrow[s_{j_{1}}]{\rightarrow} \ldots \xrightarrow[s_{j_{2}}]{\rightarrow} \mathrm{B}_{n}
\end{array}\right\} / G
$$

Remark

The resulting space does not depend on the choice of words for b and d.

Definition

$■$ Let $\mathrm{U}_{ \pm}:=\left[\mathrm{B}_{ \pm}, \mathrm{B}_{ \pm}\right]$and define decorated flag varieties $\mathcal{A}_{ \pm}:=\mathrm{G} / \mathrm{U}_{ \pm}$. We denote decorated flags with a symbol A instead of B.

Definition

The decorated double Bott-Samelson cell $\operatorname{Conf}_{d}^{b}(\mathcal{A})$ is defined to be

$$
\left\{\begin{array}{c}
\mathrm{A}^{0} \stackrel{s_{i_{1}}}{\rightarrow} \mathrm{~B}^{1} \xrightarrow{s_{i_{2}}} \ldots \stackrel{s_{i_{m}}}{\rightarrow} \mathrm{~B}^{m} \\
\mathrm{~B}_{0} \underset{s_{j_{1}}}{>} \mathrm{B}_{1} \xrightarrow[s_{j_{2}}]{\rightarrow} \ldots \xrightarrow[s_{j_{n}}]{\rightarrow} \mathrm{A}_{n}
\end{array}\right\} / G
$$

Definition

$■$ Let $\mathrm{U}_{ \pm}:=\left[\mathrm{B}_{ \pm}, \mathrm{B}_{ \pm}\right]$and define decorated flag varieties $\mathcal{A}_{ \pm}:=\mathrm{G} / \mathrm{U}_{ \pm}$. We denote decorated flags with a symbol A instead of B.

Definition

The decorated double Bott-Samelson cell $\operatorname{Conf}_{d}^{b}(\mathcal{A})$ is defined to be

$$
\left\{\begin{array}{c}
\mathrm{A}^{0} \stackrel{s_{i_{1}}}{\rightarrow} \mathrm{~B}^{1} \xrightarrow{s_{i_{2}}} \ldots \stackrel{s_{i_{m}}}{\rightarrow} \mathrm{~B}^{m} \\
\mid \\
\mathrm{B}_{0} \xrightarrow[s_{j_{1}}]{\rightarrow} \mathrm{B}_{1} \xrightarrow[s_{j_{2}}]{\rightarrow} \ldots \xrightarrow[s_{j_{n}}]{\rightarrow} \mathrm{A}_{n}
\end{array}\right\} / G
$$

- Decorated double Bott-Samelson cell can be viewed as a generalization of double Bruhat cells $\mathrm{B}_{+} u \mathrm{~B}_{+} \cap \mathrm{B}_{-} v \mathrm{~B}_{-}$. Double Bruhat cells are examples of cluster varieties and are studied by Berenstein, Fomin, and Zelevinsky [BFZ05], Fock and Goncharov [FG06], and many others.

Definition

$■$ Let $\mathrm{U}_{ \pm}:=\left[\mathrm{B}_{ \pm}, \mathrm{B}_{ \pm}\right]$and define decorated flag varieties $\mathcal{A}_{ \pm}:=\mathrm{G} / \mathrm{U}_{ \pm}$. We denote decorated flags with a symbol A instead of B.

Definition

The decorated double Bott-Samelson cell $\operatorname{Conf}_{d}^{b}(\mathcal{A})$ is defined to be

$$
\left\{\begin{array}{c}
\mathrm{A}^{0} \stackrel{s_{i_{1}}}{\rightarrow} \mathrm{~B}^{1} \xrightarrow{s_{i_{2}}} \ldots \stackrel{s_{i_{m}}}{\rightarrow} \mathrm{~B}^{m} \\
\mid \\
\mathrm{B}_{0} \xrightarrow[s_{j_{1}}]{\rightarrow} \mathrm{B}_{1} \xrightarrow[s_{j_{2}}]{\rightarrow} \ldots \xrightarrow[s_{j_{n}}]{\rightarrow} \mathrm{A}_{n}
\end{array}\right\} / G
$$

- Decorated double Bott-Samelson cell can be viewed as a generalization of double Bruhat cells $\mathrm{B}_{+} u \mathrm{~B}_{+} \cap \mathrm{B}_{-} v \mathrm{~B}_{-}$. Double Bruhat cells are examples of cluster varieties and are studied by Berenstein, Fomin, and Zelevinsky [BFZ05], Fock and Goncharov [FG06], and many others.

Theorem (Shen-W.)

The decorated double Bott-Samelson cells $\operatorname{Conf}_{d}^{b}(\mathcal{A})$ are smooth affine varieties.

Cluster Structures

■ We equip each double Bott-Samelson cell (both undecorated and decorated) with an atlas of algebraic torus charts, parametrized by a choice of words for b and d and a triangulation of the "trapezoid".

Cluster Structures

■ We equip each double Bott-Samelson cell (both undecorated and decorated) with an atlas of algebraic torus charts, parametrized by a choice of words for b and d and a triangulation of the "trapezoid".

■ There are two kinds of moves available to us:

Cluster Structures

- We actually consider two versions of decorated double Bott-Samelson cells, one for G_{sc} and one for G_{ad} (analogues of the simply-connected form and the adjoint form in the semisimple cases).

Cluster Structures

- We actually consider two versions of decorated double Bott-Samelson cells, one for $G_{s c}$ and one for $G_{a d}$ (analogues of the simply-connected form and the adjoint form in the semisimple cases).
- The natural projection $\mathrm{G}_{\text {sc }} \rightarrow \mathrm{G}_{\text {ad }}$ gives rise to natural projection maps $\mathcal{A}_{\mathrm{sc}} \rightarrow \mathcal{A}_{\mathrm{ad}}$ and $p: \operatorname{Conf}_{d}^{b}\left(\mathcal{A}_{\mathrm{sc}}\right) \rightarrow \operatorname{Conf}_{d}^{b}\left(\mathcal{A}_{\mathrm{ad}}\right)$.

Cluster Structures

- We actually consider two versions of decorated double Bott-Samelson cells, one for G_{sc} and one for G_{ad} (analogues of the simply-connected form and the adjoint form in the semisimple cases).
- The natural projection $\mathrm{G}_{\text {sc }} \rightarrow \mathrm{G}_{\text {ad }}$ gives rise to natural projection maps $\mathcal{A}_{\mathrm{sc}} \rightarrow \mathcal{A}_{\mathrm{ad}}$ and $p: \operatorname{Conf}_{d}^{b}\left(\mathcal{A}_{\mathrm{sc}}\right) \rightarrow \operatorname{Conf}_{d}^{b}\left(\mathcal{A}_{\mathrm{ad}}\right)$.

Theorem (Shen-W.)

The atlas of algebraic torus charts are related by birational maps called cluster mutations. These charts equips $\mathcal{O}\left(\operatorname{Conf}_{d}^{b}\left(\mathcal{A}_{\mathrm{sc}}\right)\right)$ with the structure of an upper cluster algebra, and equips $\mathcal{O}\left(\operatorname{Conf}_{d}^{b}\left(\mathcal{A}_{\text {ad }}\right)\right)$ with the structure of an upper cluster Poisson algebra. The pair $\left(\operatorname{Conf}_{d}^{b}\left(\mathcal{A}_{\mathrm{sc}}\right), \operatorname{Conf}_{d}^{b}\left(\mathcal{A}_{\mathrm{ad}}\right)\right)$ form a Fock-Goncharov cluster ensemble.

Reflection Maps between double Bott-Samelson cells

- We constructed biregular maps called reflection maps:

$$
\operatorname{Conf}_{d}^{b_{i}}(\mathcal{B}) \longleftrightarrow \operatorname{Conf}_{d s_{i}}^{b}(\mathcal{B}) \quad \operatorname{Conf}_{d}^{s_{i} b}(\mathcal{B}) \longleftrightarrow \operatorname{Conf}_{s_{i d}(\mathcal{B})}^{b}(\mathcal{A}
$$

They are induced by moves that look like the following:

Reflection Maps between double Bott-Samelson cells

- We constructed biregular maps called reflection maps:

$$
\operatorname{Conf}_{d}^{b s_{i}}(\mathcal{B}) \longleftrightarrow \operatorname{Conf}_{d s_{i}}^{b}(\mathcal{B}) \quad \operatorname{Conf}_{d}^{s_{i} b}(\mathcal{B}) \longleftrightarrow \operatorname{Conf}_{s_{i} d}^{b}(\mathcal{B})
$$

They are induced by moves that look like the following:

- These reflection maps are Poisson and respect the cluster structures.

Reflection Maps between double Bott-Samelson cells

- We constructed biregular maps called reflection maps:

$$
\operatorname{Conf}_{d}^{b s_{i}}(\mathcal{B}) \longleftrightarrow \operatorname{Conf}_{d s_{i}}^{b}(\mathcal{B}) \quad \operatorname{Conf}_{d}^{s_{j} b}(\mathcal{B}) \longleftrightarrow \operatorname{Conf}_{s_{i} d}^{b}(\mathcal{B})
$$

They are induced by moves that look like the following:

- These reflection maps are Poisson and respect the cluster structures.

■ One can think of such reflection maps as movement of tangles in a link.

$$
\operatorname{Conf}_{s_{1}}^{s_{1} s_{2}}(\mathcal{B}) \quad \longleftrightarrow \operatorname{Conf}_{e}^{s_{1} s_{1} s_{2}}(\mathcal{B})
$$

Cluster Donaldson-Thomas Transformation

■ One important conjecture in cluster theory is the Fock-Goncharov cluster duality [FG09], which conjectures the existence of canonical bases in an upper cluster algebra and its corresponding upper cluster Poisson algebra.

Cluster Donaldson-Thomas Transformation

■ One important conjecture in cluster theory is the Fock-Goncharov cluster duality [FG09], which conjectures the existence of canonical bases in an upper cluster algebra and its corresponding upper cluster Poisson algebra.

- Part of a sufficient condition [GHKK18] [GS18] of the duality conjecture is the existence of the cluster Donaldson-Thomas transformation.

Cluster Donaldson-Thomas Transformation

- One important conjecture in cluster theory is the Fock-Goncharov cluster duality [FG09], which conjectures the existence of canonical bases in an upper cluster algebra and its corresponding upper cluster Poisson algebra.
- Part of a sufficient condition [GHKK18] [GS18] of the duality conjecture is the existence of the cluster Donaldson-Thomas transformation.

Theorem (Shen-W.)

Cluster Donaldson-Thomas transformations exist on double Bott-Samelson cells and are given by compositions of reflection maps and a transposition map. Reflection maps intertwine the cluster Donaldson-Thomas transformations on different double Bott-Samelson cells. By verifying the sufficient condition, we prove the cluster duality conjecture for double Bott-Samelson cells.

reflections

Periodicity of DT in the Semisimple Case

■ For the rest of the talk, let G be semisimple and let w_{0} denote the longest Weyl group element.

Periodicity of DT in the Semisimple Case

■ For the rest of the talk, let G be semisimple and let w_{0} denote the longest Weyl group element.

Theorem (Shen-W.)

Let G be a semisimple group. Let b be a positive braid and let m, n be two positive integers such that $b^{m}=w_{0}^{2 n}$. Then the order of the cluster Donaldson-Thomas transformation of $\operatorname{Conf}_{b}^{e}(\mathcal{B})$ is finite and divides $2(m+n)$.

Periodicity of DT in the Semisimple Case

- For the rest of the talk, let G be semisimple and let w_{0} denote the longest Weyl group element.

Theorem (Shen-W.)

Let G be a semisimple group. Let b be a positive braid and let m, n be two positive integers such that $b^{m}=w_{0}^{2 n}$. Then the order of the cluster Donaldson-Thomas transformation of $\operatorname{Conf}_{b}^{e}(\mathcal{B})$ is finite and divides $2(m+n)$.

Example

Suppose $G=\mathrm{SL}_{3}$ and $b=s_{1} s_{2} s_{1} s_{2}$. Then $b^{3}=w_{0}^{4}$ in the braid group, and therefore $\mathrm{DT}^{10}=\operatorname{Id}$ on $\operatorname{Conf}_{b}^{e}(\mathcal{B})$. Intertwining by a reflection map, this computation also implies that $\mathrm{DT}^{10}=\mathrm{Id}$ on $\operatorname{Conf}_{w_{0}}^{s_{1}}(\mathcal{B})$ in the double Bruhat cell case as well.

New Proof of Zamolodchikov's Periodicity Conjecture

■ One version of the conjecture (formulated by Keller [Kel13]) is about the periodicities of the Donaldson-Thomas transformations associated to products of two Dynkin diagrams.

Theorem (Keller)

Let D and D^{\prime} be Dynkin quivers with Coxeter numbers h and h^{\prime}. Then $\mathrm{DT}_{D \boxtimes D^{\prime}}^{2\left(h+h^{\prime}\right)}=\mathrm{Id}$.

New Proof of Zamolodchikov's Periodicity Conjecture

- One version of the conjecture (formulated by Keller [Kel13]) is about the periodicities of the Donaldson-Thomas transformations associated to products of two Dynkin diagrams.

Theorem (Keller)

Let D and D^{\prime} be Dynkin quivers with Coxeter numbers h and h^{\prime}. Then $\mathrm{DT}_{D \boxtimes D^{\prime}}^{2\left(h+h^{\prime}\right)}=\mathrm{Id}$.

- Using our result on the periodicity of DT on double Bott-Samelson cells, we can give a new geometric proof of the periodicity conjecture in the case of $D \boxtimes A_{n}$.

New Proof of Zamolodchikov's Periodicity Conjecture

■ One version of the conjecture (formulated by Keller [Kel13]) is about the periodicities of the Donaldson-Thomas transformations associated to products of two Dynkin diagrams.

Theorem (Keller)

Let D and D^{\prime} be Dynkin quivers with Coxeter numbers h and h^{\prime}. Then
$\mathrm{DT}_{D \boxtimes D^{\prime}}^{2\left(h+h^{\prime}\right)}=\mathrm{Id}$.
■ Using our result on the periodicity of DT on double Bott-Samelson cells, we can give a new geometric proof of the periodicity conjecture in the case of $D \boxtimes A_{n}$.
■ Give D a bipartite coloring.

$$
b=s_{2} s_{4} s_{5}, \quad w=s_{1} s_{3}
$$

New Proof of Zamolodchikov's Periodicity Conjecture

■ Consider the double Bott-Samelson cell Conf $\underset{w b w \ldots(\mathcal{B}) \text {, where the number }}{b w b . . .}$ of b and w in each braid sum up to $n+1$.

A_{3}

New Proof of Zamolodchikov's Periodicity Conjecture

- Consider the double Bott-Samelson cell Conf $\underset{w b w \ldots(\mathcal{B}) \text {, where the number }}{b w b . .}$ of b and w in each braid sum up to $n+1$.

■ Note that $b w=c$ and $\operatorname{Conf}_{w b w \ldots(\mathcal{B})}^{b w b} \cong \operatorname{Conf}_{c^{n+1}}^{e}(\mathcal{B})$.

New Proof of Zamolodchikov's Periodicity Conjecture

- Consider the double Bott-Samelson cell Conf $\underset{w b w \ldots(\mathcal{B}) \text {, where the number }}{b w b . .}$ of b and w in each braid sum up to $n+1$.

- Note that $b w=c$ and $\operatorname{Conf}_{\text {wbw } \ldots(\mathcal{B})}^{b w \ldots}(\mathcal{B}) \operatorname{Conf}_{c^{n+1}}^{e}(\mathcal{B})$.
- Let h be the Coxeter number of D. Since $\left(c^{n+1}\right)^{h}=w_{0}^{2(n+1)}$, our result implies that $\mathrm{DT}_{D \boxtimes A_{n}}^{2(h+n+1)}=\mathrm{Id}$.

Thank you!

Bibliography

A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1-52, arXiv:math/0305434.
V. Fock and A. Goncharov, Cluster X-varieties, amalgamation and Poisson-Lie groups, Algebraic Geometry and Number Theory, In honor of Vladimir Drinfeld's 50th birthday, Birkhäuser Boston (2006), 27-68, arXiv:math/0508408.

\qquad , Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009), no. 6, 865-930, arXiv:math/0311245.
M. Gross, P. Hacking, S. Keel, and M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 497-608, arXiv:1411.1394.
A. Goncharov and L. Shen, Donaldson-Thomas transformations for moduli spaces of G-local systems, Adv. Math. 327 (2018), 225-348, arXiv:1602.06479.
B. Keller, The periodicty conjecture for pairs of Dynkin diagrams, Ann. Of Math. 177 (2013), no. 1, 111-170, arXiv:1001.1531.

