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m Note that
Py X X Py = l__|(st13) X ... x (Bs;,B)
ici
where j = (j1,...,Jjm) runs over all subwords of i (not necessarily reduced).

These can be thought of as “Bott-Samelson cell”.
m Alternatively one can think of an element of (Bs;B) x ... x (Bs;,B) as a
B B

sequence of flags that satisfies the relative position conditions imposed by
the simple reflections s;,, s, ..., sj,. So a “double Bott-Samelson cell”
will then be two sequences of flags that satisfy two sequences of relative
position conditions imposed by two words i and j.
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m We use subscript to denote Borel subgroups in B_, e.g. Bo, By, etc.
m We write B —= B* if (B°,B") is in the w-orbit in B, x B..
m We write By —%> By if (Bo, B1) is in the w-orbit in B_ x B_.

m We write Bg

B® if (Bo,B%) = (gB—,gBy) for some g € G.

m B.s;By/ B, can be thought of as the moduli space of B; satisfying

Bo — > B, for a fixed Bo.
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Let b and d be two positive braids in the associated braid group. First choose a
word (i, i2, ..., Im) for b and a word (j1,j2,...,ja) for d. The undecorated
double Bott-Samelson cell Conf’(B) is defined to be
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Let b and d be two positive braids in the associated braid group. First choose a
word (i, i2, ..., Im) for b and a word (j1,j2,...,ja) for d. The undecorated
double Bott-Samelson cell Conf’(B) is defined to be

Siy Siy Si
B =B =S .. XZB™
| | G
Bo=>=B; = ... =B,
Sjt Sp Sjn

Remark

The resulting space does not depend on the choice of words for b and d.
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The decorated double Bott-Samelson cell Conf’(A) is defined to be

Siy Siy Si
A =Bl = . Zg"

| | /c
Bo?Bl?...e-An
J1 12

Sj n

m Decorated double Bott-Samelson cell can be viewed as a generalization of
double Bruhat cells B uB+ N B_vB_. Double Bruhat cells are examples
of cluster varieties and are studied by Berenstein, Fomin, and Zelevinsky
[BFZ05], Fock and Goncharov [FG06], and many others.

Theorem (Shen-W.)

The decorated double Bott-Samelson cells Conf’ (A) are smooth affine
varieties.
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Cluster Structures

m We equip each double Bott-Samelson cell (both undecorated and
decorated) with an atlas of algebraic torus charts, parametrized by a
choice of words for b and d and a triangulation of the “trapezoid”.

B® L p! L p2 2 ps
///B\ /B\\B\\

B()%Bl% 4%85

m There are two kinds of moves available to us:

BO 1 Bl 1 BZ 3 B3

diagonal flipping /// ‘ \ ‘ \

80981982$B3$B4$B5

B L gl L

L g2 2igs
Braid move //‘ / ‘ \ ‘\
Bs —>B4—>

80981/982/9 5 B5
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m We actually consider two versions of decorated double Bott-Samelson
cells, one for Gsc and one for Gaq (analogues of the simply-connected form
and the adjoint form in the semisimple cases).

m The natural projection Gsc — Gaa gives rise to natural projection maps
Ase = Aaq and p : Confb (Ase) — Conf? (Aaa)-

Theorem (Shen-W.)

The atlas of algebraic torus charts are related by birational maps called cluster
mutations. These charts equips O (Confg (.ASC)) with the structure of an
upper cluster algebra, and equips O (Conff} (.Aad)) with the structure of an

upper cluster Poisson algebra. The pair (Coan (Ase), Conf? (Aaa)) form a
Fock-Goncharov cluster ensemble.
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Reflection Maps between double Bott-Samelson cells

m We constructed biregular maps called reflection maps:
Conf’(B) +— Conf (B) Conf3®(B) <— Conf? 4(B).
They are induced by moves that look like the following:
B® L gt B
S N

Bo Bo < B1

m These reflection maps are Poisson and respect the cluster structures.
m One can think of such reflection maps as movement of tangles in a link.

Conf2?(B) +— ConfZ*?(B)

=

Il
|
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m One important conjecture in cluster theory is the Fock-Goncharov cluster
duality [FG09], which conjectures the existence of canonical bases in an
upper cluster algebra and its corresponding upper cluster Poisson algebra.

m Part of a sufficient condition [GHKK18] [GS18] of the duality conjecture is
the existence of the cluster Donaldson-Thomas transformation.

Theorem (Shen-W.)

Cluster Donaldson-Thomas transformations exist on double Bott-Samelson cells
and are given by compositions of reflection maps and a transposition map.
Reflection maps intertwine the cluster Donaldson-Thomas transformations on
different double Bott-Samelson cells. By verifying the sufficient condition, we
prove the cluster duality conjecture for double Bott-Samelson cells.

reflections
u -

3

transposition
'_)
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Periodicity of DT in the Semisimple Case

m For the rest of the talk, let G be semisimple and let wy denote the longest
Weyl group element.

Theorem (Shen-W.)

Let G be a semisimple group. Let b be a positive braid and let m, n be two
positive integers such that b™ = w@". Then the order of the cluster
Donaldson-Thomas transformation of Confj(B) is finite and divides 2(m + n).

Example

Suppose G = SLs3 and b = s;5;515. Then b®> = wg in the braid group, and
therefore DT'® = Id on Conf§(B). Intertwining by a reflection map, this
computation also implies that DT'® = Id on Conf{}, (B) in the double Bruhat
cell case as well.
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m One version of the conjecture (formulated by Keller [Kel13]) is about the
periodicities of the Donaldson-Thomas transformations associated to
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periodicities of the Donaldson-Thomas transformations associated to
products of two Dynkin diagrams.

Theorem (Keller)

Let D and D' be Dynkin quivers with Coxeter numbers h and h’. Then
2(h+h") _
DTpgp ' = 1d.
m Using our result on the periodicity of DT on double Bott-Samelson cells,
we can give a new geometric proof of the periodicity conjecture in the case
of DX A,.
m Give D a bipartite coloring.

o . o b = sys4S5, W = 5153
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New Proof of Zamolodchikov's Periodicity Conjecture

m Consider the double Bott-Samelson cell Conf242:- (B), where the number

of b and w in each braid sum up to n+ 1.

@O —— o

[l

Dy O— @ ¢——— 0

AL
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m Note that bw = c and Confly> (B) = Conf¢,,.(B).

, h
u Let h be the Coxeter number of D. Since (c"1)" = w"™, our result

implies that DT%%::H) =1Id.



Thank you!
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