DEFORMATIONS OF GORENSTEIN-PROJECTIVE MODULES OVER NAKAYAMA AND TRIANGULAR MATRIX ALGEBRAS

José A. Vélez-Marulanda

VALDOSTA STATE UNIVERSITY

Maurice Auslander Distinguished Lectures and International Conference April 24-29, 2019

Woods Hole, MA

GORENSTEIN-PROJECTIVE MODULES

• In this talk, we assume that k is an algebraically closed field of arbitrary characteristic and that all our modules are finite-dimensional over k.

Definition 1. (E. ENOCHS, O. JENDA, 1995) Let Λ be a finite dimensional k-algebra. A Λ -module V is said to be **Gorenstein-projective** if there exists an acyclic complex of projective Λ -modules

$$P^{\bullet}: \cdots \to P^{-2} \xrightarrow{\delta^{-2}} P^{-1} \xrightarrow{\delta^{-1}} P^0 \xrightarrow{\delta^0} P^1 \xrightarrow{\delta^1} P^2 \to \cdots$$

such that $\operatorname{Hom}_{\Lambda}(P^{\bullet}, \Lambda)$ is also acyclic and $V = \operatorname{coker} \delta^{0}$.

- We denote by Λ -Gproj the category of Gorenstein-projective left Λ -modules, and by Λ -Gproj its stable category.
- Λ is self-injective if and only if every left Λ -module is Gorenstein-projective.
- If Λ has finite global dimension, then every Gorenstein projective left Λ -module is projective.
- There are finite dimensional k-algebras Λ of infinite global dimension such that every Gorenstein-projective left Λ -module is projective (see e.g. (X.-W. Chen & Y. Ye, 2014)).
- (R. -O. BUCHWEITZ, 1987) If Λ is Gorenstein (i.e. Λ has finite injective dimension as a left and right Λ -module), then

$$\mathcal{D}_{sg}(\Lambda\text{-mod}) = \mathcal{D}^b(\Lambda\text{-mod})/\mathcal{K}^b(\Lambda\text{-proj}) = \Lambda\text{-}\underline{\mathsf{Gproj}}.$$

GORENSTEIN-PROJECTIVE MODULES

Finitely generated Gorenstein-projective modules are also known as:

- Modules of Gorenstein-dimension zero (M. Auslander & M. Bridger, 1969).
- Maximal Cohen-Macaulay modules provided that Λ is Gorenstein (R.-O. BUCHWEITZ, 1987).
- Cohen-Macaulay modules (A. Beligiannis & I. Reiten, 2001).
- Totally reflexive modules (L. AVRAMOV & A. MARTSINKOVSKY, 2002).

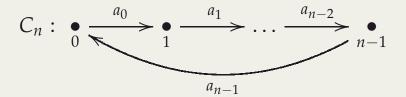
Explicit descriptions of finitely generated Gorenstein-projective modules have been found for the following classes of finite dimensional k-algebras (this list may be incomplete).

- Basic connected Nakayama algebras with no simple projective modules (C.M. RINGEL, 2013).
- Triangular matrix algebras (P. ZHANG, 2013).
- Gentle algebras (M. KALCK, 2015).
- 2-Calabi-Yau tilted algebras (A. GARCÍA ELSENER, R. SCHIFFLER, 2017).
- Monomial algebras (X.W. Chen, D. Shen, G. Zhou, 2018)

GORENSTEIN-PROJECTIVE MODULES OVER NAKAYAMA ALGEBRAS

- From now on we assume that Λ is a basic connected finite-dimensional k-algebra, i.e., Λ is of the form kQ/I, where Q is a finite quiver and I is an admissible ideal of kQ.
- Recall that Λ is said to be a **Nakayama algebra** if every left or right indecomposable projective Λ -module has a unique composition series.

Theorem 2. Λ is a Nakayama algebra with no simple projective modules if and only if $\Lambda = \mathbb{k}Q/I$, where Q is the quiver:



for some $n \geq 1$.

Theorem 3. (C. M. RINGEL, 2013) Let Λ be a Nakayama algebra with no simple projective modules. A left Λ -module V is Gorenstein-projective if and only if there exists an exact sequence of Λ -modules

$$0 \to V \to P_{n-1} \to \cdots \to P_0 \to V \to 0$$
,

where each P_i is a **minimal projective** Λ -module, i.e., no proper non-zero submodule of P_i is projective.

Running Example: The Nakayama algebra Λ with admissible sequence $\mathbf{c}(\Lambda)=(10,10,9,9)$

Consider the Nakayama algebra whose quiver and admissible sequence are given by

- Note that Λ is a non-self-injective k-algebra.
- The minimal projective left Λ -modules are given by $P_1=S_1^{[10]}$, $P_3=S_3^{[9]}$ and $P_4=S_4^{[9]}$.
- For example $S_1^{[2]}$ is Gorenstein-projective for we have a exact sequence of left Λ -modules

$$0 \to S_1^{[2]} \to P_1 \to P_4 \to P_4 \to P_3 \to P_3 \to P_1 \to S_1^{[2]} \to 0.$$

Definition 4. (C. M. RINGEL. 2013) Let Λ be a basic Nakayama algebra without simple projective Λ -modules.

- We denote by $\mathscr{C}(\Lambda)$ be the subcategory of Λ -mod whose indecomposable objects are the indecomposable non-projective Gorenstein-projective left Λ -modules as well as their corresponding projective covers. We call $\mathscr{C}(\Lambda)$ the **Gorenstein core** of Λ .
- We also denote by $\mathscr{E}(\Lambda)$ be the class of non-zero indecomposable Gorenstein-projective Λ -modules E such that no proper non-zero factor module of E is a Gorenstein-projective Λ -module. Then the objects in $\mathscr{E}(\Lambda)$ are the simple objects in $\mathscr{E}(\Lambda)$ called the **elementary** Gorenstein-projective modules of Λ .

GORENSTEIN-PROJECTIVE MODULES OVER NAKAYAMA ALGEBRAS

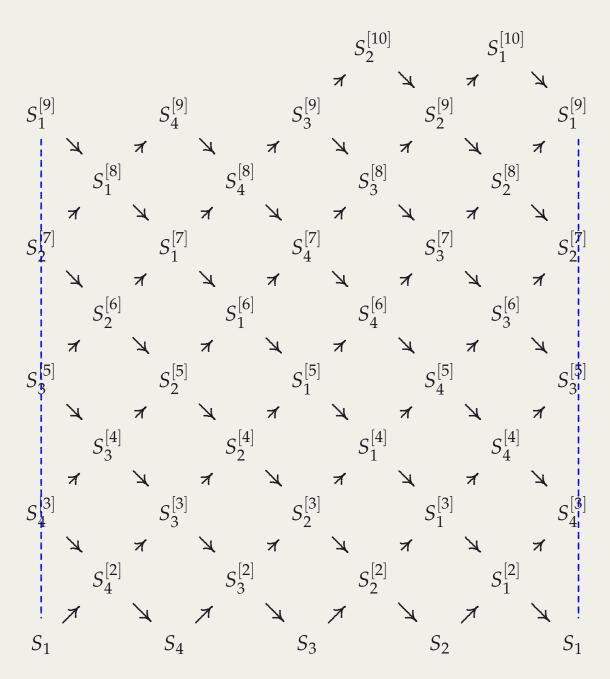
Theorem 5. (C. M. RINGEL. 2013) Let Λ be a basic Nakayama algebra without simple projective Λ -modules and denote by $s=s(\Lambda)$ the number of isomorphism classes of simple left Λ -modules.

- (i) Every object V in $\mathscr{C}(\Lambda)$ has a filtration with composition factors in $\mathscr{E}(\Lambda)$. Thus $\mathscr{C}(\Lambda)$ is an **abelian length category** in the sense of (P. Gabriel, 1973).
- (ii) There exists a basic connected **self-injective** Nakayama algebra Λ' such that the categories $\mathscr{C}(\Lambda)$ and Λ' -mod are equivalent.
- (iii) If $\mathscr{E}(\Lambda) = \{E_1, \ldots, E_g\}$ and p_i is the length of the projective Λ -module cover $P(E_i)$ of E_i for all $1 \leq i \leq g$ with $s < p_i$, then Λ' has exactly $e = e(\Lambda') = g$ isomorphism classes of simple Λ' -modules and the Loewy length $\ell\ell(\Lambda')$ of Λ' is given by

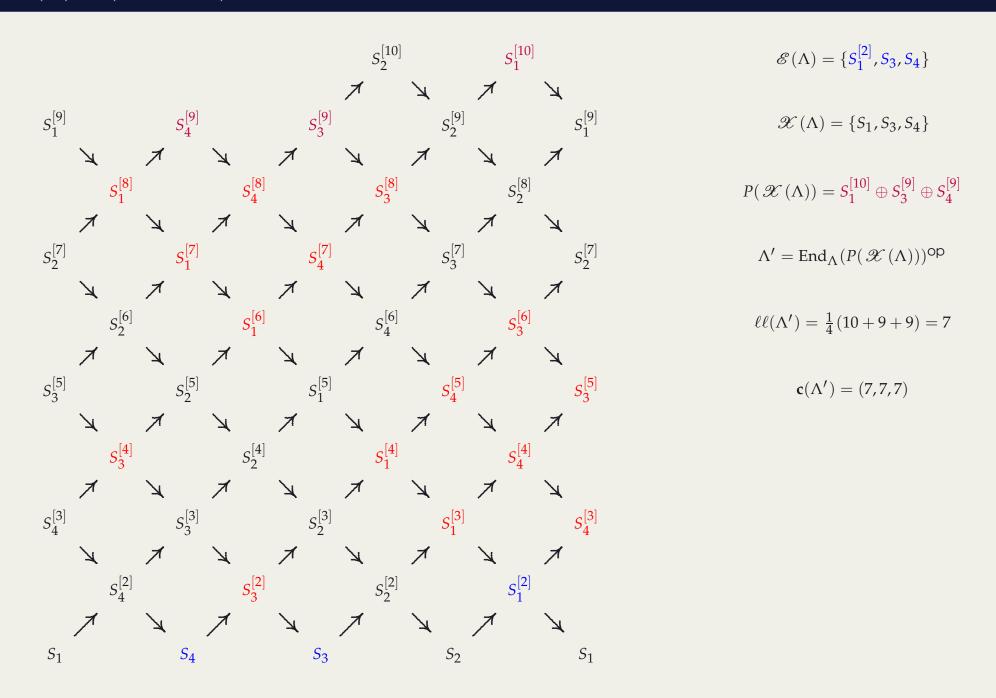
$$\ell\ell(\Lambda') = \frac{1}{s} \sum_{i=1}^{g} p_i.$$

The Auslander-Reiten Quiver of the Nakayama Algebra with admissible sequence $\mathbf{c}(\Lambda)=(10,10,9,9)$

The Auslander-Reiten Quiver of the Nakayama Algebra with admissible sequence $\mathbf{c}(\Lambda)=(10,10,9,9)$



The Nakayama Algebra Λ with four vertices and admissible sequence $\mathbf{c}(\Lambda)=(10,10,9,9)$



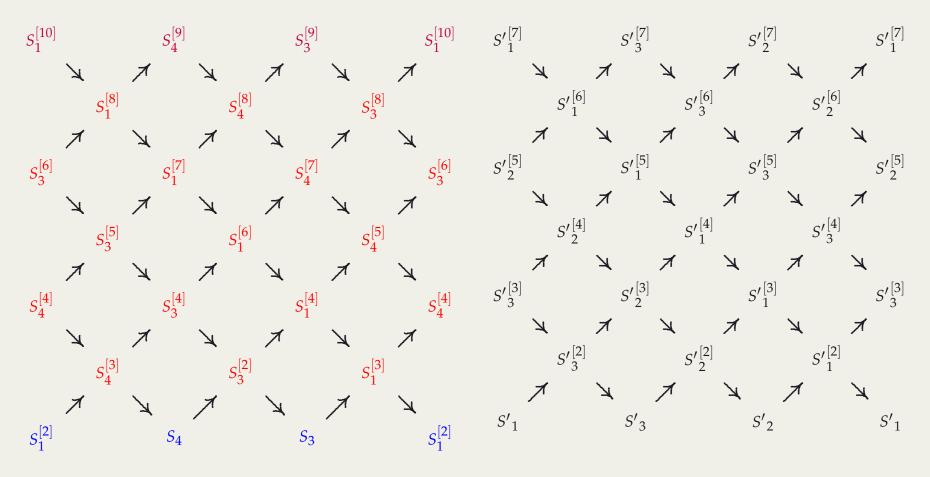


Figure 1: The Auslander-Reiten quivers of $\mathscr{C}(\Lambda)$ and Λ' -mod

Example 6. Note e.g. that $|S_1^{[8]}|_{\mathscr{C}(\Lambda)}=6$ for the composition factors of $S_1^{[8]}$ in $\mathscr{E}(\Lambda)$ are $S_1^{[2]}$, S_3 , S_4 , $S_1^{[2]}$, S_3 , S_4 .

VERSAL DEFORMATION RINGS OF MODULES OVER FINITE DIMENSIONAL ALGEBRAS

Theorem 7. Let Λ be a finite dimensional k-algebra and V a left Λ -module.

- (i) V always has a **versal deformation ring** $R(\Lambda, V)$ which is a local complete commutative Noetherian \Bbbk -algebra with residue filed \Bbbk , and which is further universal provided that $\operatorname{End}_{\Lambda}(V) = \Bbbk$. Moreover, versal deformation rings are invariants under Morita equivalence (F. M. Bleher-JVM, 2012).
- (ii) Versal deformation rings of non-projective modules are invariant under **stable equivalence of Morita type** between self-injective finite dimensional k-algebras (F. M. BLEHER JVM, 2017).
- (iii) If Λ is Frobenius and V is non-projective, then the versal deformation rings $R(\Lambda, V)$ and $R(\Lambda, \Omega V)$ are isomorphic (F. M. Bleher, D. Wackwitz, 2019).
- (iv) Versal deformation rings of Gorenstein-projective modules are invariant under **singular equivalences of Morita type** (in the sense of X. W. Chen & L. G. Sun) between Gorenstein &-algebras (V. Bekkert, H. Giraldo, JVM,2019).
- (v) If Λ is a monomial algebra in which there is no overlap (in the sense of (X. W. Chen, D. Shen & G. Zhou, 2018)) and V is Gorenstein-projective, then $R(\Lambda, V)$ is universal and isomorphic to \mathbb{k} or to $\mathbb{k}[\![t]\!]/(t^2)$ (V. Bekkert, H. Giraldo, JVM,2019).

Universal Deformation Ring of Gorenstein-projective Modules over a cycle Nakayama Algebra

Theorem 8. (F. M. Bleher and D. J. Wackwitz, 2019) Assume that Λ is a self-injective (so Frobenius) Nakayama \mathbb{R} -algebra, and let V be an indecomposable non-projective left Λ -module.

- (i) The versal deformation ring $R(\Lambda, V)$ is universal.
- (ii) The universal deformation rings $R(\Lambda, V)$ and $R(\Lambda, \Omega V)$ are isomorphic in \hat{C} .
- (iii) Moreover, $R(\Lambda, V)$ is isomorphic either to \mathbb{k} , or $\mathbb{k}[t]/(t^2)$, or determined as a quotient ring of a power series ring over \mathbb{k} in finitely many variables by the shortest distance d_V of the isomorphism class of V to the boundary of the <u>stable</u> Auslander-Reiten quiver of Λ .

Theorem 9. (JVM, 2019) Let Λ be a Nakayama \mathbb{R} -algebra with no simple projective modules and with $\mathscr{C}(\Lambda) \neq 0$. Let V be an indecomposable non-projective Gorentein-projective left Λ -module in $\mathscr{C}(\Lambda)$.

- (i) The versal deformation ring $R(\Lambda,V)$ is isomorphic to $R(\Lambda',V')$ in $\hat{\mathcal{C}}$, where Λ' is a self-injective Nakayama \Bbbk -algebra. In particular, $R(\Lambda,V)$ is also universal and isomorphic to $R(\Lambda,\Omega V)$ in $\hat{\mathcal{C}}$.
- (ii) Moreover, $R(\Lambda, V)$ is isomorphic either to \mathbb{k} , or $\mathbb{k}[t]/(t^2)$, or determined as a quotient ring of a power series ring over \mathbb{k} in finitely many variables by the shortest distance $d_{\mathscr{C}(\Lambda),V}$ of the isomorphism class of V to the boundary of the <u>stable</u> Auslander-Reiten quiver of $\mathscr{C}(\Lambda)$.

Universal Deformation Ring of Gorenstein-projective Modules over a Cycle Nakayama Algebra

Example 10. Let Λ' be the self-injective Nakayama k-algebra with admissible sequence $\mathbf{c}(\Lambda')=(7,7,7)$ discussed before. Then the universal deformation rings $R(\Lambda',V')$ of the indecomposable Λ' -modules V' are described below, where $d_{V'}$ denotes the shortest distance of V' to the boundary of the stable Auslander-Reiten quiver of Λ' .

				d(V')	$R(\Lambda', V')$
.[7]	.[7]	.[7]	.[7]		
S' [7]	S' [7]	S' [7]	S' [7]	_	k
7		•	1		
	$S'_{1}^{[6]}$	$S'_{3}^{[6]}$	S' ^[6]	0	k
7	•	·	×		
$S'_{2}^{[5]}$	$S'_1^{[5]}$	S' [5]	$S'_2^{[5]}$	1	k
7	(<i>1</i>)	<i>x x</i>	1		
	$S'_{2}^{[4]}$	$S'_{1}^{[4]}$	$3^{\prime}_{3}^{[4]}$	2	$\mathbb{k}[t]/(t^2)$
7	K K I	XX	×		
$S'_{3}^{[3]}$	$S'_{2}^{[3]}$	$S'_1^{[3]}$	$S'_{3}^{[3]}$	2	$\mathbb{k}[t]/(t^2)$
7	(1 Y	1 1	1		
	$S'_{3}^{[2]}$	$S'_{2}^{[2]}$	S'[2]	1	k
7		XX	A		
S'_1	S'_3	S'_2	S'_1	0	k

Universal Deformation Ring of Gorenstein-projective Modules over a Cycle Nakayama Algebra

Let Λ be cycle Nakayama \Bbbk -algebra with admissible sequence $\mathbf{c}(\Lambda)=(10,10,9,9)$ discussed before. Then the universal deformation rings $R(\Lambda,V)$ of the indecomposable Gorenstein-projective left Λ -modules V in $\mathscr{C}(\Lambda)$ are described below, where $d_{\mathscr{C}(\Lambda),V}$ denotes the shortest distance of V to the boundary of the stable Auslander-Reiten quiver of $\mathscr{C}(\Lambda)$.

$R(\Lambda, V)$
\Bbbk
\Bbbk
\Bbbk
$\mathbb{k}[t]/(t^2)$
$\mathbb{k}[t]/(t^2)$
k
k

GORENSTEIN-PROJECTIVE MODULES OVER TRIANGULAR MATRIX ALGEBRAS

Recall that a finite dimensional k-algebra Σ is a triangular matrix k-algebra if Σ is of the form

$$\Sigma = \begin{pmatrix} \Lambda & B \\ 0 & \Gamma \end{pmatrix}$$
,

where Λ and Γ are finite dimensional k-algebras and B is a Λ - Γ -bimodule.

- A left Σ -module is of the form $\binom{V}{W}_f$, where V is a left Λ -module, W is a left Γ -module and $f: B \otimes_{\Gamma} W \to V$ is a Λ -module homomorphism.
- A Σ -module homomorphism between two left Σ -modules $\binom{V}{W}_f$ and $\binom{V'}{W'}_{f'}$ is of the form

$$\binom{\alpha}{\beta}:\binom{V}{W}_f\rightarrow \binom{V'}{W'}_{f'} \text{, where } \alpha:V\rightarrow V' \text{ is a Λ-module homomorphism, } \beta:W\rightarrow W' \text{ is a Λ-$$

Γ-module homomorphism, and $f' \circ (id_B \otimes \beta) = \alpha \circ f$.

Definition 11. (P. Zhang, 2013) We say that the Λ - Γ -bimodule B is **compatible** if satisfies the following conditions:

- (i) If Q^{\bullet} is a exact sequence of projective Γ -modules, then $B \otimes_{\Gamma} Q^{\bullet}$ is also exact.
- (ii) If P^{\bullet} is a complete Λ -projective resolution, then $\operatorname{Hom}_{\Lambda}(P^{\bullet}, B)$ is also exact.

In particular, if B has finite projective dimension as a left Λ -module and as a right Γ -module, then B is compatible.

Gorenstein-projective Modules over Triangular Matrix Algebras

Theorem 12. (P. Zhang, 2013) Let Σ be a triangular matrix \Bbbk algebra as before with B a compatible Λ - Γ -bimodule, and let $\begin{pmatrix} V \\ W \end{pmatrix}_f$ be a left Σ -module.

- (i) $\binom{V}{W}_f$ is Gorenstein-projective if and only if the Λ -module homomorphism $f: B \otimes_{\Gamma} W \to V$ is injective, coker f is a Gorenstein-projective left Λ -module, and W is a Gorenstein-projective left Γ -module.
- (ii) Moreover, V is a Gorenstein-projective left Λ -module if and only if $B\otimes_{\Gamma}W$ is also a Gorenstein-projective left Λ -module.
- (iii) Assume that B is projective as a left Λ -module and Σ is Gorenstein with Γ of finite Gorenstein dimension. Then the operator

$$i^!: \Sigma ext{-}\mathsf{Gproj} o \Lambda ext{-}\mathsf{Gproj}$$
 (1)

defined by $\binom{V}{W}_f \mapsto V$. induces an equivalence of stable categories

$$i^!: \Sigma ext{-}\mathsf{Gproj} o \Lambda ext{-}\mathsf{Gproj}$$
 (2)

whose quasi-inverse is given by the functor $i_*:\Lambda$ - $\underline{\mathsf{Gproj}}\to \Sigma$ - $\underline{\mathsf{Gproj}}$ which sends every non-projective Gorenstein-projective left Λ -module V to $\begin{pmatrix} V \\ 0 \end{pmatrix}_0$.

Versal Deformation Rings of Gorenstein-projective Modules over Triangular Matrix Algebras

Theorem 13. (JVM, 2019) Let Σ be a triangular matrix \mathbb{k} -algebra as before. Assume that B is projective as a left Λ -module and Σ is Gorenstein with Γ of finite global dimension. Let $\begin{pmatrix} V \\ W \end{pmatrix}_f$ be a Gorenstein-projective left Σ -module. Then V is a Gorenstein-projective left Λ -module and the versal deformation rings $R\left(\Sigma, \begin{pmatrix} V \\ W \end{pmatrix}_f\right)$ and $R(\Lambda, V)$ are isomorphic in $\hat{\mathcal{C}}$.

Example 14. (B. L. XIONG, P. ZHANG, 2012) Let Σ be the k-algebra defined by the quiver with relations

$$Q: \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} \bullet \xrightarrow{\beta} \bullet$$

$$\rho = \{\gamma^3\}.$$

- Then Σ is the triangular matrix \mathbb{k} -algebra as before, where $\Lambda = \mathbb{k}[x]/(x^3)$, Γ is given by the quiver $\bullet \xrightarrow{\alpha} \bullet$ and $B = e_3\Sigma(1-e_3)$. Moreover, $B \cong \Lambda \oplus \Lambda$ as left Λ -modules, and $B \cong e_2\Gamma \oplus e_2\Gamma$ as right Γ -modules.
- The indecomposable non-projective Gorenstein-projective left Σ -modules are given by the following representations:

$$U_1 = 0 \longrightarrow 0 \longrightarrow \mathbb{K} \bigcirc 0$$
, $U_2 = 0 \longrightarrow 0 \longrightarrow \mathbb{K}^2 \bigcirc \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Versal Deformation Rings of Gorenstein-projective Modules over Triangular Matrix Algebras

- Note that $\Omega_{\Sigma}U_1 = U_2$, and that $\operatorname{End}_{\Sigma}(U_1) = \Bbbk = \operatorname{End}_{\Sigma}(U_2)$, and for i = 1, 2, we have that $\operatorname{Ext}^1_{\Sigma}(U_i, U_i) = \Bbbk$. Then the versal deformation ring $R(\Sigma, U_i)$ is universal and a quotient of $\Bbbk[t]$.
- Let S be the unique simple left Λ -module. Since Λ is a self-injective Nakayama \Bbbk -algebra with Loewy length 3, we have that

$$R(\Sigma, U_i) \cong R(\Lambda, S) \cong R(\Lambda, \Omega_{\Lambda} S) \cong \mathbb{k}[t]/(t^3).$$

Some References

- Bekkert, V., Giraldo, H. and Vélez-Marulanda, J. A., Universal deformation rings for finitely generated Gorenstein-projective modules over finite-dimensional algebras, submitted, available in Arxiv.org.
- Bleher, F. M. and Vélez-Marulanda, J. A., **Universal deformation rings of modules over Frobenius algebras**, J. Algebra **367** 176–202 (2012).
- Bleher, F. M. and Vélez-Marulanda, J. A., Deformations of complexes for finite dimensional algebras, J. Algebra 491 90–140 (2017).
- Bleher, F. M. and Wackwitz, D. J., Universal deformation rings and self-injective Nakayama algebras, J. Pure Appl. Algebra, 233, 218–244 (2019).
- Ringel, C. M., The Gorenstein projective modules for the Nakayama algebras. I, J. Algebra 385 241–261 (2013).
- Xiong, B. L. and Zhang, P., Gorenstein-projective modules over triangular Artin matrix algebras, J. Algebra Appl. 11 (4) 1250066 (2012).
- Zhang, P., Gorenstein-projective modules and symmetric recollements, J. Algebra 388 65–80 (2013).

Thanks for your attention!