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Motivation

K algebraically closed field
Λ finite dimensional K-algebra
TΛ tilting module
Γ := End(T)op

Brenner-Butler Tilting Theorem
The following statements hold.
(1) (T (T),F(T)) is a torsion theory, where

T (T) := {M ∈ mod Λ | Ext1Λ(T,M) = 0},
F(T) := {M ∈ mod Λ | HomΛ(T,M) = 0}.
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Motivation

(2) (X (T),Y(T)) is a torsion theory, where
X (T) := {N ∈ mod Γ | N ⊗Γ T = 0},
Y(T) := {N ∈ mod Γ | TorΓ

1 (N,T) = 0}.
(3) There are two category equivalences:

T (T)
∼

''

F(T)

∼
ww

X (T)

77

Y(T).

gg
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R associative ring
TR n-tilting module
S := End(T)op

Miyashita Theorem
There are category equivalences:

KEn
e(TR)

Exte
R(T,−)

//
KTn

e(ST),

TorS
e(−,T)

∼oo where

KEn
e(TR) := {M | ExtiR(T,M) = 0, 0 6 i 6= e 6 n},

KTn
e (ST) := {N | TorS

i (N,T) = 0, 0 6 i 6= e 6 n}.
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Questions

Observation
Mod(R) ∼= Fun(R,Ab).

Replace R with any additive category C, what will
happen to the two classical results?

(1) How to define tilting objects in functor cate-
gories?

(2) Can we extend Brenner-Butler Theorem to
functor categories?

(3) Can we extend Miyashita Theorem to functor
categories?
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Introduction

C annuli variety
Mod(C):=Fun(Cop,Ab)

T ⊆ Mod(C)
C(Mod(C)) the category of complexes in Mod(C)
D(Mod(C)) the derived category of Mod(C)
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Preliminaries

Definition 1.1.1 (Martı́nez and Ortiz, 2013)
T is generalized tilting if the following hold.
(1) There exists a fixed integer n such that every

object T in T has a projective resolution
0→ Pn → · · · → P1 → P0 → T → 0,

with each Pi finitely generated.
(2) Exti>1

C (T,T ′) = 0 for any T and T ′ in T .
(3) For each C( ,C), there is an exact resolution

0→ C( ,C)→ T0
C → · · · → Tm

C → 0,
with T i

C in T .
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Definition 1.1.2
T is n-tilting if it is generalized tilting with
pdim T 6 n and for each C( ,C), there is an ex-
act resolution

0→ C( ,C)→ T0
C → · · · → Tn

C → 0,

with T i
C in T .

Example 1.1.3
Let Λ be an artin R-algebra and let C = add Λ.
Assume that T is a classical n-tilting Λ-module.
Then T = {C( ,M) | M ∈ add T} is n-tilting.
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Equivalences induced by T

Equivalences induced by T

Lemma 2.1.1(Martı́nez and Ortiz, 2014)
Let’s define the following functor:

φ : Mod(C)→ Mod(T ), φ(M) := Hom( ,M)T .

Then φ has a left adjoint:

−⊗ T : Mod(T )→ Mod(C)

such that T ( ,T)⊗ T = T for any T ∈ T .
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Equivalences induced by T

Theorem 2.1.2
Assume that T is n-tilting. Then for any 0 6 e 6
n, there are category equivalences

KEn
e(T )

Exte
C( ,−)T//

KTn
e(T ),where

TorTe ( ,T )

∼oo

KEn
e(T ) := {M | ExtiC( ,M)T = 0, 0 6 i 6= e 6 n},

KTn
e (T ) := {N | TorTi (N, T ) = 0, 0 6 i 6= e 6 n}.
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A cotorsion pair

T generalized tilting with pdim(T ) 6 n
T ⊥∞ := {M | Exti>1

C (T,M) = 0 for T ∈ T }

Theorem 2.2.1
The following statements hold.
(1) (⊥∞(T ⊥∞), T ⊥∞) is a hereditary and complete

cotorsion pair.
(2) pdim(⊥∞(T ⊥∞)) 6 n.
(3) ⊥∞(T ⊥∞) ∩ T ⊥∞ = Add(T ).
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An isomorphism of Grothendieck groups

An isomorphism of Grothendieck groups

Definition 3.1.1 (Martı́nez and Ortiz, 2013)
A :=< |mod(C)| >;
R :=< [M] − [K] − [L] | 0 → K → M → L →
0 is exact in mod(C) >;

The Grothendieck group of C is K0(C) := A/R.

Theorem 3.1.2
Let C be an abelian category with enough injec-
tives and T an n-tilting subcategory of mod(C)
with pseudokernels. Then K0(C) ∼= K0(T ).
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An abelian model structure

An abelian model structure

Definition 3.2.1 (J. Gillespie 2004)
Let (A,B) be a cotorsion pair on an abelian cat-
egory C. Let X be a complex.
(1) X is called anA(resp. B) complex if it is exact

and Zn(X) ∈ A(resp. Zn(X) ∈ B) for all n.
(2) X is called a dg-A complex if Xn ∈ A for each

n, and Hom(X,B) is exact whenever B is a B
complex.

(3) X is called a dg-B complex if Xn ∈ B for each
n, and Hom(A,X) is exact whenever A is an A
complex.
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An abelian model structure

Notations

T generalized tilting
A :=⊥∞(T ⊥∞)

B := T ⊥∞

Ã the class of A complexes
B̃ the class of B complexes
dgÃ the class of dg-A complexes
dgB̃ the class of dg-B complexes
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An abelian model structure

Theorem 3.2.2
There is an abelian model structure on
C(Mod(C)) given as follows:
(1) Weak equivalences are quasi-isomorphisms,
(2) Cofibrations (trivial cofibrations) consist of all

the monomorphisms f such that Coker f ∈
dgÃ(Coker f ∈ Ã),

(3) Fibrations (trivial fibrations) consist of all
the epimorphisms g such that Ker g ∈
dgB̃(Ker g ∈ B̃).

The homotopy category of this model category is
D(Mod(C)).
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An abelian model structure

Definition 3.2.3(M. Hovey 2002)
Suppose that an abelian categoryA has a model
structure and X ∈ A, X is trivial if 0 → X is a
weak equivalence, X is cofibrant if 0 → X is a
cofibration and X is fibrant if X → 0 is a fibration.

Corollary 3.2.4
The following statements hold.
(1) X is trivial if and only if X is exact.
(2) C is a cofibrant if and only if C ∈ dgÃ.
(3) F is a fibrant if and only if F ∈ dgB̃ if and only

if F has all the terms in B.
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A t-structure induced by T

A t-structure induced by T

Definition 3.3.1
A t-structure on a triangulated category D is a
pair of full subcategories (X ,Y) satisfying:
(1) HomD(X,Σ−1Y) = 0 for all X ∈ X and Y ∈ Y.
(2) ΣX ⊆ X and Σ−1Y ⊆ Y.
(3) For every object Z ∈ D there is a distin-

guished triangle X → Z → Y → ΣX with
X ∈ X and Y ∈ Σ−1Y.
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A t-structure induced by T

T generalized tilting
k ∈ Z
D≤k
T = {X ∈ D(Mod(C)) | HomD(Mod(C))(Σ

iT,X) =
0 for any i < k and T ∈ T }
D≥k
T = {Y ∈ D(Mod(C)) | HomD(Mod(C))(Σ

iT,Y) =
0 for any i > k and T ∈ T }
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A t-structure induced by T

Proposition 3.3.2
TFAE for X ∈ D(Mod(C)).
(1) X ∈ D≤k

T .
(2) X ∼= · · · → Bk+2 → Bk+1 → Bk → 0→ · · · ,

with Bi ∈ T ⊥∞ for i > k.
(3) X ∼= · · · → Tk+2 → Tk+1 → Tk → 0→ · · · ,

with Ti ∈ Add(T ) for i > k.

Theorem 3.3.3
(D≤k
T ,D

≥k
T ) forms a t-structure on the derived cat-

egory D(Mod(C)).
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A t-structure induced by T

Thank you for your attention!
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