_			
lahi	<u>a n</u> 1	r con	tont
labi			CIII

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Generalized tilting theory in functor categories

Xi Tang

April 25, 2019

(日) (日) (日) (日) (日) (日) (日)

Table of content

2

Motivation and Introduction

Main results

- Equivalences induced by ${\cal T}$
- A cotorsion pair

3 Applications

- An isomorphism of Grothendieck groups
- An abelian model structure
- A t-structure induced by ${\cal T}$

Table of content	Motivation and Introduction	Main results	Applications
Deferences			

- S. Bazzoni, *The t-structure induced by an n-tilting module*, Trans. Amer. Math. Soc. (to appear).
- R. Martínez-Villa and M. Ortiz-Morales, *Tilting theory and functor categories I. Classical tilt-ing*, Appl. Categ. Struct. **22** (2014), 595–646.
- R. Martínez-Villa and M. Ortiz-Morales, *Tilting theory and functor categories II. Generalized tilting*, Appl. Categ. Struct. **21** (2013), 311–348.

Table of content	Motivation and Introduction	Main results	Applications

- *K* algebraically closed field
- Λ finite dimensional *K*-algebra
- T_{Λ} tilting module
- $\Gamma := \operatorname{End}(T)^{op}$

Brenner-Butler Tilting Theorem

The following statements hold.

(1) $(\mathcal{T}(T), \mathcal{F}(T))$ is a torsion theory, where

 $\mathcal{T}(T) := \{ M \in \operatorname{mod} \Lambda \mid \operatorname{Ext}^1_\Lambda(T, M) = 0 \},\$

 $\mathcal{F}(T) := \{ M \in \operatorname{mod} \Lambda \mid \operatorname{Hom}_{\Lambda}(T, M) = 0 \}.$

	tont
Table of Coll	leni

Main results

Motivation

(2) $(\mathcal{X}(T), \mathcal{Y}(T))$ is a torsion theory, where $\mathcal{X}(T) := \{N \in \text{mod } \Gamma \mid N \otimes_{\Gamma} T = 0\},$ $\mathcal{Y}(T) := \{N \in \text{mod } \Gamma \mid \text{Tor}_{1}^{\Gamma}(N, T) = 0\}.$

(3) There are two category equivalences:

Table of content	Motivation and Introduction	Main results	Applications

- *R* associative ring
- *T_R n*-tilting module
- $S := \operatorname{End}(T)^{op}$

Miyashita Theorem

There are category equivalences:

$$\operatorname{KE}_{e}^{n}(T_{R}) \underbrace{\frac{\operatorname{Ext}_{R}^{e}(T,-)}{\sim}}_{\operatorname{Tor}_{e}^{S}(-,T)} \operatorname{KT}_{e}^{n}({}_{S}T), \text{ where }$$

$$\begin{split} & KE_e^n(T_R) := \{ M \mid \operatorname{Ext}_R^i(T,M) = 0, 0 \leqslant i \neq e \leqslant n \}, \\ & KT_e^n(ST) := \{ N \mid \operatorname{Tor}_i^S(N,T) = 0, 0 \leqslant i \neq e \leqslant n \}. \end{split}$$

Table of content	Motivation and Introduction	Main results	Applications

Questions

Observation

$$Mod(R) \cong Fun(R, Ab).$$

Replace R with any additive category C, what will happen to the two classical results?

- How to define tilting objects in functor categories?
- (2) Can we extend Brenner-Butler Theorem to functor categories?
- (3) Can we extend Miyashita Theorem to functor categories?

Table of content	Motivation and Introduction	Main results	Applications

Questions

Observation

$$Mod(R) \cong Fun(R, Ab).$$

Replace R with any additive category C, what will happen to the two classical results?

- (1) How to define tilting objects in functor categories?
- (2) Can we extend Brenner-Butler Theorem to functor categories?
- (3) Can we extend Miyashita Theorem to functor categories?

-								
lai	nL	ρ,	nt i	ററ	nt	e 1	٦t	
		u 1		00				

(日)

Introduction

- C annuli variety
- $Mod(\mathcal{C})$:=Fun(\mathcal{C}^{op}, Ab)
- $\mathcal{T} \subseteq \operatorname{Mod}(\mathcal{C})$
- $C(Mod(\mathcal{C}))$ the category of complexes in $Mod(\mathcal{C})$
- $D(Mod(\mathcal{C}))$ the derived category of $Mod(\mathcal{C})$

Preliminaries

W

Definition 1.1.1 (Martínez and Ortiz, 2013)

 $\ensuremath{\mathcal{T}}$ is generalized tilting if the following hold.

(1) There exists a fixed integer n such that every object T in T has a projective resolution

$$0 \to P_n \to \cdots \to P_1 \to P_0 \to T \to 0,$$

with each P_i finitely generated.

(2) $\operatorname{Ext}_{\mathcal{C}}^{i \ge 1}(T, T') = 0$ for any T and T' in \mathcal{T} .

(3) For each $\mathcal{C}(-, C)$, there is an exact resolution

$$0 \to \mathcal{C}(\quad, C) \to T_C^0 \to \cdots \to T_C^m \to 0,$$

ith T_C^i in \mathcal{T} .

Definition 1.1.2

 \mathcal{T} is *n*-tilting if it is generalized tilting with $\operatorname{pdim} \mathcal{T} \leq n$ and for each $\mathcal{C}(-, C)$, there is an exact resolution

$$0
ightarrow \mathcal{C}(-,C)
ightarrow T^0_C
ightarrow \cdots
ightarrow T^n_C
ightarrow 0,$$

with T_C^i in \mathcal{T} .

Example 1.1.3

Let Λ be an artin *R*-algebra and let $C = \operatorname{add} \Lambda$. Assume that *T* is a classical *n*-tilting Λ -module. Then $\mathcal{T} = \{C(-,M) \mid M \in \operatorname{add} T\}$ is *n*-tilting.

Definition 1.1.2

 \mathcal{T} is *n*-tilting if it is generalized tilting with $\operatorname{pdim} \mathcal{T} \leq n$ and for each $\mathcal{C}(-, C)$, there is an exact resolution

$$0
ightarrow \mathcal{C}(\ , C)
ightarrow T^0_C
ightarrow \cdots
ightarrow T^n_C
ightarrow 0,$$

with T_C^i in \mathcal{T} .

Example 1.1.3

Let Λ be an artin *R*-algebra and let $C = \operatorname{add} \Lambda$. Assume that *T* is a classical *n*-tilting Λ -module. Then $\mathcal{T} = \{C(-,M) \mid M \in \operatorname{add} T\}$ is *n*-tilting.

Main results ●○○

Equivalences induced by \mathcal{T}

Equivalences induced by ${\cal T}$

Lemma 2.1.1(Martínez and Ortiz, 2014)

Let's define the following functor:

$$\phi: \operatorname{Mod}(\mathcal{C}) \to \operatorname{Mod}(\mathcal{T}), \phi(M) := \operatorname{Hom}(-, M)_{\mathcal{T}}$$

Then ϕ has a left adjoint:

$$-\otimes \mathcal{T}: Mod(\mathcal{T}) \to Mod(\mathcal{C})$$

such that $\mathcal{T}(-,T) \otimes \mathcal{T} = T$ for any $T \in \mathcal{T}$.

・ロト・(型ト・(ヨト・(ヨト・)の(の))

Table of content	Motivation and Introduction	Main results ○●○	Applications
Equivalences induced by ${\cal T}$			

Theorem 2.1.2

Assume that T is *n*-tilting. Then for any $0 \le e \le n$, there are category equivalences

$$\operatorname{KE}_{e}^{n}(\mathcal{T}) \underbrace{\frac{\operatorname{Ext}_{\mathcal{C}(\ ,-)_{\mathcal{T}}}^{e}}{\sim} \operatorname{KT}_{e}^{n}(\mathcal{T}), where}_{\operatorname{Tor}_{e}^{\mathcal{T}(\ ,\mathcal{T})}}$$

$$\begin{split} & \textit{KE}_e^n(\mathcal{T}) := \{ M \mid \textit{Ext}_{\mathcal{C}}^i(\ , M)_{\mathcal{T}} = 0, 0 \leqslant i \neq e \leqslant n \}, \\ & \textit{KT}_e^n(\mathcal{T}) := \{ N \mid \textit{Tor}_i^{\mathcal{T}}(N, \mathcal{T}) = 0, 0 \leqslant i \neq e \leqslant n \}. \end{split}$$

• \mathcal{T} generalized tilting with $pdim(\mathcal{T}) \leq n$ • $\mathcal{T}^{\perp_{\infty}} := \{M \mid Ext_{\mathcal{C}}^{i \geq 1}(T, M) = 0 \text{ for } T \in \mathcal{T}\}$

Theorem 2.2.1

The following statements hold.

(1) $(^{\perp_{\infty}}(\mathcal{T}^{\perp_{\infty}}), \mathcal{T}^{\perp_{\infty}})$ is a hereditary and complete cotorsion pair.

(2)
$$\operatorname{pdim}(^{\perp_{\infty}}(\mathcal{T}^{\perp_{\infty}})) \leq n.$$

(3) $^{\perp_{\infty}}(\mathcal{T}^{\perp_{\infty}}) \cap \mathcal{T}^{\perp_{\infty}} = \operatorname{Add}(\mathcal{T})$

An isomorphism of Grothendieck groups

An isomorphism of Grothendieck groups

Definition 3.1.1 (Martínez and Ortiz, 2013)

•
$$\mathcal{A} := < |\operatorname{mod}(\mathcal{C})| >;$$

•
$$\mathcal{R} := < [M] - [K] - [L] \mid 0 \rightarrow K \rightarrow M \rightarrow L \rightarrow 0$$
 is exact in $mod(\mathcal{C}) >$;

The Grothendieck group of C is $\mathcal{K}_0(\mathcal{C}) := \mathcal{A}/\mathcal{R}$.

Theorem 3.1.2

Let C be an abelian category with enough injectives and T an *n*-tilting subcategory of mod(C) with pseudokernels. Then $K_0(C) \cong K_0(T)$.

An isomorphism of Grothendieck groups

An isomorphism of Grothendieck groups

Definition 3.1.1 (Martínez and Ortiz, 2013)

•
$$\mathcal{A} := < |\operatorname{mod}(\mathcal{C})| >;$$

•
$$\mathcal{R} := < [M] - [K] - [L] \mid 0 \rightarrow K \rightarrow M \rightarrow L \rightarrow 0$$
 is exact in $mod(\mathcal{C}) >;$

The Grothendieck group of C is $\mathcal{K}_0(C) := \mathcal{A}/\mathcal{R}$.

Theorem 3.1.2

Let C be an abelian category with enough injectives and T an *n*-tilting subcategory of mod(C) with pseudokernels. Then $K_0(C) \cong K_0(T)$.

Main results

An abelian model structure

An abelian model structure

Definition 3.2.1 (J. Gillespie 2004)

Let $(\mathcal{A}, \mathcal{B})$ be a cotorsion pair on an abelian category \mathcal{C} . Let *X* be a complex.

- (1) X is called an $\mathcal{A}(\text{resp. }\mathcal{B})$ **complex** if it is exact and $Z_n(X) \in \mathcal{A}(\text{resp. }Z_n(X) \in \mathcal{B})$ for all n.
- (2) *X* is called a dg-A complex if $X_n \in A$ for each *n*, and Hom(*X*, *B*) is exact whenever *B* is a B complex.
- (3) *X* is called a dg- \mathcal{B} complex if $X_n \in \mathcal{B}$ for each *n*, and Hom(A, X) is exact whenever *A* is an \mathcal{A} complex.

Table of content	Motivation and Introduction	Main results	Applications
An abelian model structure			
Notations			

- \mathcal{T} generalized tilting
- $\mathcal{A} := {}^{\perp_{\infty}}(\mathcal{T}^{\perp_{\infty}})$
- $\mathcal{B}:=\mathcal{T}^{\perp_{\infty}}$
- $\tilde{\mathcal{A}}$ the class of \mathcal{A} complexes
- $\tilde{\mathcal{B}}$ the class of \mathcal{B} complexes
- $dg\tilde{\mathcal{A}}$ the class of dg- \mathcal{A} complexes
- $dg\tilde{\mathcal{B}}$ the class of $dg-\mathcal{B}$ complexes

(日) (日) (日) (日) (日) (日) (日)

An abelian model structure

Theorem 3.2.2

- There is an abelian model structure on $C(Mod(\mathcal{C}))$ given as follows:
- (1) Weak equivalences are quasi-isomorphisms,
- (2) Cofibrations (trivial cofibrations) consist of all the monomorphisms f such that $\operatorname{Coker} f \in dg \tilde{\mathcal{A}}(\operatorname{Coker} f \in \tilde{\mathcal{A}}),$
- (3) Fibrations (trivial fibrations) consist of all the epimorphisms g such that $\operatorname{Ker} g \in dg \tilde{\mathcal{B}}(\operatorname{Ker} g \in \tilde{\mathcal{B}})$.

The homotopy category of this model category is $D(Mod(\mathcal{C})).$

An abelian model structure

Definition 3.2.3(M. Hovey 2002)

Suppose that an abelian category \mathcal{A} has a model structure and $X \in \mathcal{A}$, X is **trivial** if $0 \to X$ is a weak equivalence, X is **cofibrant** if $0 \to X$ is a cofibration and X is **fibrant** if $X \to 0$ is a fibration.

Corollary 3.2.4

The following statements hold.

- (1) X is trivial if and only if X is exact.
- (2) C is a cofibrant if and only if $C \in dg \tilde{\mathcal{A}}$.
- (3) *F* is a fibrant if and only if $F \in dg\tilde{\mathcal{B}}$ if and only if *F* has all the terms in \mathcal{B} .

An abelian model structure

Definition 3.2.3(M. Hovey 2002)

Suppose that an abelian category \mathcal{A} has a model structure and $X \in \mathcal{A}$, X is **trivial** if $0 \to X$ is a weak equivalence, X is **cofibrant** if $0 \to X$ is a cofibration and X is **fibrant** if $X \to 0$ is a fibration.

Corollary 3.2.4

The following statements hold.

- (1) *X* is trivial if and only if *X* is exact.
- (2) *C* is a cofibrant if and only if $C \in dg\tilde{A}$.
- (3) *F* is a fibrant if and only if $F \in dg\tilde{\mathcal{B}}$ if and only if *F* has all the terms in \mathcal{B} .

Main results

A t-structure induced by ${\cal T}$

A t-structure induced by ${\mathcal T}$

Definition 3.3.1

A **t-structure** on a triangulated category \mathcal{D} is a pair of full subcategories $(\mathcal{X}, \mathcal{Y})$ satisfying:

(1) Hom_{\mathcal{D}} $(X, \Sigma^{-1}Y) = 0$ for all $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$.

- (2) $\Sigma \mathcal{X} \subseteq \mathcal{X}$ and $\Sigma^{-1} \mathcal{Y} \subseteq \mathcal{Y}$.
- (3) For every object $Z \in \mathcal{D}$ there is a distinguished triangle $X \to Z \to Y \to \Sigma X$ with $X \in \mathcal{X}$ and $Y \in \Sigma^{-1} \mathcal{Y}$.

(日)

A t-structure induced by ${\cal T}$

• \mathcal{T} generalized tilting

- $k \in \mathbb{Z}$
- $\mathcal{D}_{\mathcal{T}}^{\leq k} = \{ X \in \mathrm{D}(\mathrm{Mod}(\mathcal{C})) \mid \mathrm{Hom}_{\mathrm{D}(\mathrm{Mod}(\mathcal{C}))}(\Sigma^{i}T, X) = 0 \text{ for any } i < k \text{ and } T \in \mathcal{T} \}$
- $\mathcal{D}_{\mathcal{T}}^{\geq k} = \{Y \in \mathcal{D}(\operatorname{Mod}(\mathcal{C})) \mid \operatorname{Hom}_{\mathcal{D}(\operatorname{Mod}(\mathcal{C}))}(\Sigma^{i}T, Y) = 0 \text{ for any } i > k \text{ and } T \in \mathcal{T}\}$

A t-structure induced by ${\cal T}$

Proposition 3.3.2

TFAE for $X \in D(Mod(\mathcal{C}))$. (1) $X \in \mathcal{D}_{\mathcal{T}}^{\leq k}$. (2) $X \cong \cdots \to B_{k+2} \to B_{k+1} \to B_k \to 0 \to \cdots$, with $B_i \in \mathcal{T}^{\perp_{\infty}}$ for $i \ge k$. (3) $X \cong \cdots \to T_{k+2} \to T_{k+1} \to T_k \to 0 \to \cdots$, with $T_i \in Add(\mathcal{T})$ for $i \ge k$.

Theorem 3.3.3

 $(\mathcal{D}_{\mathcal{T}}^{\leq k}, \mathcal{D}_{\mathcal{T}}^{\geq k})$ forms a t-structure on the derived category $D(Mod(\mathcal{C}))$. A t-structure induced by ${\cal T}$

Proposition 3.3.2

TFAE for $X \in D(Mod(\mathcal{C}))$. (1) $X \in \mathcal{D}_{\mathcal{T}}^{\leq k}$. (2) $X \cong \cdots \to B_{k+2} \to B_{k+1} \to B_k \to 0 \to \cdots$, with $B_i \in \mathcal{T}^{\perp_{\infty}}$ for $i \ge k$. (3) $X \cong \cdots \to T_{k+2} \to T_{k+1} \to T_k \to 0 \to \cdots$, with $T_i \in Add(\mathcal{T})$ for $i \ge k$.

Theorem 3.3.3

 $(\mathcal{D}_{\mathcal{T}}^{\leq k}, \mathcal{D}_{\mathcal{T}}^{\geq k})$ forms a t-structure on the derived category $D(Mod(\mathcal{C}))$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 の Q @

A t-structure induced by ${\cal T}$

Thank you for your attention!