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Motivation

Goal: understand representation theory of partial cluster-tilted algebras

C = cluster category (triangulated, Hom-finite, Krull-Schmidt, has a
Serre functor)

Σ = suspension functor

R = rigid object of C, i.e. Ext1C(R,R) = HomC(R,ΣR) = 0

ΛR := (EndC R)op is called a partial cluster-tilted algebra
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How?

Goal: to understand mod ΛR

Use the functor:

C mod ΛR
HomC(R,−)

What happens to the AR theory of C under HomC(R,−)?
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Two subcategories

XR = {X ∈ C | HomC(R,X ) = 0}

“kernel of HomC(R,−)”

C(R) = {X ∈ C | ∃∆: R0 → R1 → X → ΣR0, some R0,R1 ∈ addR}

“R-presented objects”
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Cases

A morphism f : X → Y is irreducible if it is neither a section nor a
retraction, and f = hg ⇒ g is a section or h is a retraction.

C(R) = “R-presented objects”

1 X ∈ C(R) and Y ∈ C(R)

2 X ∈ C(R) and Y /∈ C(R)

3 X /∈ C(R) and Y ∈ C(R)

4 X /∈ C(R) and Y /∈ C(R)
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The case with few tears: X ∈ C(R)

Proposition (S.)

Suppose f : X → Y is irreducible in C, where X ,Y are indecomposable
and are not in XR = Ker HomC(R,−). Assume X ∈ C(R). Then

1 Y ∈ C(R) ⇒ HomC(R, f ) is irreducible

2 Y /∈ C(R) ⇒ HomC(R, f ) is a section (so not irreducible)
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The case with more tears: X /∈ C(R)

What if X /∈ C(R)??

Proposition (S.)

Suppose f : X → Y is irreducible in C, where X ,Y are indecomposable
and are not in XR . Suppose X /∈ C(R) and Y ∈ C(R). If f in C/[XR ] is
right almost split and monic, then HomC(R, f ) is irreducible.
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The category C/[XR ]

A quasi-abelian category is an additive category with kernels and cokernels
in which PBs of cokernels are cokernels and POs of kernels are kernels.

Example

The category of Banach spaces over R

Example

Any torsion class of a torsion pair in an abelian category

Theorem (S.)

C/[XR ] is quasi-abelian.
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AR theory in quasi-abelian categories

An AR sequence in a quasi-abelian category is a short exact sequence

X
f→ Y

g→ Z where f is minimal left almost split and g is minimal right
almost split.

Theorem (S.)

A bunch of AR theory holds in a quasi-abelian category.

Example

Any irreducible morphism is proper monic or proper epic (or possibly both!)
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AR theory in a quasi-abelian, Krull-Schmidt category

But, C/[XR ] is also Krull-Schmidt!

Theorem (S.)

Let A be a Krull-Schmidt, quasi-abelian category, and ξ : X
f→ Y

g→ Z an
exact sequence in A. Then the following are equivalent.

1 ξ is an Auslander-Reiten sequence

2 EndA X is local and g is right almost split

3 EndA Z is local and f is left almost split

4 f is minimal left almost split

5 g is minimal right almost split

6 f and g are both irreducible
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Possible future approach

The localisation of an integral category at the class of regular morphisms
gives an abelian category.

C mod ΛR

C/[XR ] (C/[XR ])[R−1]

HomC(R,−)

quotient

localisation

where R is the class of regular morphisms in C/[XR ]
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