From Cluster Algebras to Quiver Grassmannians

Dylan Rupel
Michigan State University

April 26, 2019

Maurice Auslander Distinguished Lectures and International Conference

MetaTheorem/Conjecture

The combinatorics of compatible subsets of maximal Dyck paths controls the geometry of quiver Grassmannians.

Theorem (R.-Weist)

For $k \in \mathbb{Z} \backslash\{1,2\}$ and $\mathbf{e}=\left(e_{1}, e_{2}\right) \in \mathbb{Z}_{>0}^{2}$, the quiver Grassmannian $G r_{\mathbf{e}}\left(M_{k}\right)$ admits a cell decomposition (affine paving) whose affine cells are naturally labeled by compatible subsets $S \in \mathcal{C}_{k}$ with

$$
\left|S \cap V_{k}\right|=e_{2} \quad\left|S \cap H_{k}\right|= \begin{cases}u_{k-1}-e_{1} & \text { if } k \geq 3 \\ u_{1-k}-e_{1} & \text { if } k \leq 0\end{cases}
$$

- Fix an integer $n \geq 2$.
- Define cluster variables $x_{k} \in \mathbb{Q}\left(x_{1}, x_{2}\right), k \in \mathbb{Z}$, recursively by

$$
x_{k-1} x_{k+1}=x_{k}^{n}+1
$$

- The first few cluster variables are computed as follows:

$$
\begin{aligned}
& x_{3}=\frac{x_{2}^{n}+1}{x_{1}} \\
& x_{4}=\frac{x_{3}^{n}+1}{x_{2}}=\frac{\left(x_{2}^{n}+1\right)^{n}+x_{1}^{n}}{x_{1}^{n} x_{2}} \\
& x_{5}=\frac{x_{4}^{n}+1}{x_{3}}=\frac{N\left(x_{1}, x_{2}\right)}{x_{1}^{n^{2}-1} x_{2}^{n}}
\end{aligned}
$$

Here $N\left(x_{1}, x_{2}\right) \in \mathbb{Z}\left[x_{1}, x_{2}\right]$ and so a non-trivial cancellation has occurred.

- Fix an integer $n \geq 2$.
- Define cluster variables $x_{k} \in \mathbb{Q}\left(x_{1}, x_{2}\right), k \in \mathbb{Z}$, recursively by

$$
x_{k-1} x_{k+1}=x_{k}^{n}+1
$$

Theorem (Fomin-Zelevinsky, Laurent Phenomenon)

Each cluster variable $x_{k} \in \mathbb{Q}\left(x_{1}, x_{2}\right), k \in \mathbb{Z}$, can be written as

$$
x_{k}=\frac{N_{k}\left(x_{1}, x_{2}\right)}{x_{1}^{d_{k, 1}} x_{2}^{d_{k, 2}}}
$$

for some polynomial $N_{k}\left(x_{1}, x_{2}\right) \in \mathbb{Z}\left[x_{1}, x_{2}\right]$ with nonzero constant term and some denominator vector $\mathbf{d}_{k}=\left(d_{k, 1}, d_{k, 2}\right) \in \mathbb{Z}^{2}$.

First Goal: Understand these Laurent expansions of the cluster variables

- The denominators are relatively easy to describe: define Chebyshev polynomials $u_{m}=u_{m}(n) \in \mathbb{Z}$ for $m \in \mathbb{Z}$ recursively by

$$
u_{1}=0, \quad u_{2}=1, \quad u_{m+1}=n u_{m}-u_{m-1}
$$

Proposition

For $k \in \mathbb{Z}$, the denominator vector of x_{k} is given by

$$
\mathbf{d}_{k}= \begin{cases}\left(u_{k-1}, u_{k-2}\right) & \text { if } k \geq 2 \\ \left(u_{1-k}, u_{2-k}\right) & \text { if } k \leq 1\end{cases}
$$

Goal: Understand the numerators $N_{k}\left(x_{1}, x_{2}\right)$ of the cluster variables x_{k}. I will present two approaches: one geometric and one combinatorial (explaining the relationship between them is the ultimate goal of this talk)

- Let $Q_{n}=1 \stackrel{n}{\longleftarrow} 2$ be the n-Kronecker quiver with vertex set $\{1,2\}$ and arrows $\alpha_{j}, j=1, \ldots, n$, from vertex 2 to vertex 1 .
- A representation $M=\left(M_{1}, M_{2}, M_{\alpha_{j}}\right)$ of Q_{n} consists of the following:
- \mathbb{C}-vector spaces M_{i} for $i=1,2$
- \mathbb{C}-linear maps $M_{\alpha_{j}}: M_{2} \rightarrow M_{1}$ for $j=1, \ldots, n$
- Write $\operatorname{dim}(M)=\left(\operatorname{dim} M_{1}, \operatorname{dim} M_{2}\right)$ for the dimension vector of M
- Given representations $M=\left(M_{1}, M_{2}, M_{\alpha_{j}}\right)$ and $N=\left(N_{1}, N_{2}, N_{\alpha_{j}}\right)$, a morphism $\theta: M \rightarrow N$ consists of linear maps $\theta_{i}: M_{i} \rightarrow N_{i}$ such that $\theta_{1} \circ M_{\alpha_{j}}=N_{\alpha_{j}} \circ \theta_{2}$ for $j=1, \ldots, n$
- A subrepresentation $E \subset M$ consists of subspaces $E_{i} \subset M_{i}$ such that $M_{\alpha_{j}}\left(E_{2}\right) \subset E_{1}$ for $j=1, \ldots, n$

Definition

Given a dimension vector $\mathbf{e}=\left(e_{1}, e_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$, the quiver Grassmannian $G r_{\mathbf{e}}(M)$ is the set of all subrepresentations $E \subset M$ with $\underline{\operatorname{dim}}(E)=\mathbf{e}$.

Lemma

$G r_{\mathbf{e}}(M)$ is a projective variety

Proof.

$G r_{\mathbf{e}}(M)$ is naturally identified with a subset of the product of ordinary vector space Grassmannians $G r_{e_{1}}\left(M_{1}\right) \times G r_{e_{2}}\left(M_{2}\right)$ which is projective. The requirements $M_{\alpha_{j}}\left(E_{2}\right) \subset E_{1}$ give closed conditions cutting out the quiver Grassmannian $G r_{\mathbf{e}}(M)$.

Theorem (Reineke, Huisgen-Zimmermann, Hille, Ringel)

Every projective variety is isomorphic to a quiver Grassmannian

Theorem (Reineke, Huisgen-Zimmermann, Hille, Ringel)

Every projective variety is isomorphic to a quiver Grassmannian of Q_{n} for any $n \geq 3$.

Theorem (Reineke, Huisgen-Zimmermann, Hille, Ringel)

Every projective variety is isomorphic to a quiver Grassmannian of Q_{n} for any $n \geq 3$.

Moral: one cannot expect great control over the geometry of quiver Grassmannians without imposing conditions on M or \mathbf{e}.

- A representation M is rigid if $\operatorname{Ext}^{1}(M, M)=0$.
- In this case, representations isomorphic to M form a dense subset of the moduli space of representations with dimension vector $\underline{\operatorname{dim}(M)}$.

Theorem (Caldero-Reineke)

Assume $\operatorname{Gr}_{\mathrm{e}}(M)$ is nonempty and M is rigid. Then $G r_{\mathrm{e}}(M)$ is a smooth projective variety.

Theorem (Bernstein-Gelfand-Ponamarev, Dlab-Ringel)

For $k \in \mathbb{Z} \backslash\{1,2\}$, there exists a unique (up to isomorphism) indecomposable rigid representation M_{k} of Q_{n} with dimension vector

$$
\mathbf{d}_{k}= \begin{cases}\left(u_{k-1}, u_{k-2}\right) & \text { if } k \geq 2 \\ \left(u_{1-k}, u_{2-k}\right) & \text { if } k \leq 1\end{cases}
$$

Theorem (Caldero-Chapoton, Caldero-Keller, R./Qin (quantum case))

Each cluster variable $x_{k} \in \mathbb{Q}\left(x_{1}, x_{2}\right)$ for $k \in \mathbb{Z} \backslash\{1,2\}$ is a generating function for the Euler characteristics of the quiver Grassmannians for M_{k} :

$$
x_{k}= \begin{cases}x_{1}^{-u_{k-1}} x_{2}^{-u_{k-2}} \sum_{\mathbf{e} \in \mathbb{Z}_{\geq 0}^{2}} \chi\left(G r_{\mathbf{e}}\left(M_{k}\right)\right) x_{1}^{n e_{2}} x_{2}^{n\left(u_{k-1}-e_{1}\right)} & \text { if } k \geq 3 \\ x_{1}^{-u_{1-k}} x_{2}^{-u_{2-k}} \sum_{\mathbf{e} \in \mathbb{Z}_{\geq 0}^{2}} \chi\left(G r_{\mathbf{e}}\left(M_{k}\right)\right) x_{1}^{n e_{2}} x_{2}^{n\left(u_{1-k}-e_{1}\right)} & \text { if } k \leq 0\end{cases}
$$

- Recall the denominator/dimension vectors for $k \in \mathbb{Z}$:

$$
\mathbf{d}_{k}= \begin{cases}\left(u_{k-1}, u_{k-2}\right) & \text { if } k \geq 2 \\ \left(u_{1-k}, u_{2-k}\right) & \text { if } k \leq 1\end{cases}
$$

Definition

For $k \in \mathbb{Z} \backslash\{1,2\}$, write D_{k} for the maximal Dyck path in the lattice rectangle in \mathbb{Z}^{2} with corner vertices $(0,0)$ and \mathbf{d}_{k}.

- D_{k} is a lattice path beginning at $(0,0)$, taking East and North steps to end at \mathbf{d}_{k}, and never passing above the main diagonal.
- Any lattice point above D_{k} also lies above the main diagonal.
- Recall the denominator/dimension vectors for $k \in \mathbb{Z}$:

$$
\mathbf{d}_{k}= \begin{cases}\left(u_{k-1}, u_{k-2}\right) & \text { if } k \geq 2 \\ \left(u_{1-k}, u_{2-k}\right) & \text { if } k \leq 1\end{cases}
$$

Definition

For $k \in \mathbb{Z} \backslash\{1,2\}$, write D_{k} for the maximal Dyck path in the lattice rectangle in \mathbb{Z}^{2} with corner vertices $(0,0)$ and \mathbf{d}_{k}.

- Write H_{k} and V_{k} for the sets of horizontal and vertical edges of D_{k}.
- The edges $H_{k} \sqcup V_{k}$ are naturally ordered along the Dyck path D_{k} from $(0,0)$ to \mathbf{d}_{k}.

Combinatorial Construction - Compatible Subsets

-Combinatorics of Maximal Dyck Paths

- For $n=3$, we have

$$
\mathbf{d}_{3}=(1,0), \quad \mathbf{d}_{4}=(3,1), \quad \mathbf{d}_{5}=(8,3), \quad \mathbf{d}_{6}=(21,8)
$$

The associated maximal Dyck paths are shown below:

$$
\begin{gathered}
D_{3}=\bullet \bullet \\
D_{4}=\longmapsto \longmapsto ?
\end{gathered}
$$

Combinatorial Construction - Compatible Subsets

-Combinatorics of Maximal Dyck Paths

- For $n=3$, we have

$$
\mathbf{d}_{3}=(1,0), \quad \mathbf{d}_{4}=(3,1), \quad \mathbf{d}_{5}=(8,3), \quad \mathbf{d}_{6}=(21,8)
$$

The associated maximal Dyck paths are shown below:

$$
\begin{gathered}
D_{3}=\bullet \bullet \\
D_{4}=\longmapsto \longmapsto ?
\end{gathered}
$$

Combinatorial Construction - Compatible Subsets

-Combinatorics of Maximal Dyck Paths

- For $n=3$, we have

$$
\mathbf{d}_{3}=(1,0), \quad \mathbf{d}_{4}=(3,1), \quad \mathbf{d}_{5}=(8,3), \quad \mathbf{d}_{6}=(21,8)
$$

The associated maximal Dyck paths are shown below:

$$
\begin{gathered}
D_{3}=\bullet \bullet \\
D_{4}=\longmapsto \longmapsto ?
\end{gathered}
$$

Combinatorial Construction - Compatible Subsets

-Combinatorics of Maximal Dyck Paths

- For $n=3$, we have

$$
\mathbf{d}_{3}=(1,0), \quad \mathbf{d}_{4}=(3,1), \quad \mathbf{d}_{5}=(8,3), \quad \mathbf{d}_{6}=(21,8)
$$

The associated maximal Dyck paths are shown below:

$$
\begin{gathered}
D_{3}=\bullet \\
D_{4}=\square
\end{gathered}
$$

LCombinatorial Construction - Compatible Subsets

-Combinatorics of Maximal Dyck Paths

$$
D_{4}=\square
$$

Proposition

For $k \geq 5$, the maximal Dyck path D_{k} can be constructed by concatenating $n-1$ copies of D_{k-1} followed by a copy of D_{k-1} with its first D_{k-2} removed.

Definition

A subset $S \subset H_{k} \sqcup V_{k}$ is compatible if for each $h \in S \cap H_{k}$ and $v \in S \cap V_{k}$ with $h<v$, there exists an edge $h \leq e \leq v$ such that at least one of the following holds:
$e \neq v \quad$ and $\quad n\left|\left\{h^{\prime} \in H_{k}: h \leq h^{\prime} \leq e\right\}\right|=\left|\left\{v^{\prime} \in V_{k}: h \leq v^{\prime} \leq e\right\}\right|$
or
$e \neq h \quad$ and $\quad n\left|\left\{v^{\prime} \in V_{k}: e \leq v^{\prime} \leq v\right\}\right|=\left|\left\{h^{\prime} \in H_{k}: e \leq h^{\prime} \leq v\right\}\right|$.
Write \mathcal{C}_{k} for the collection of all compatible subsets of $H_{k} \sqcup V_{k}$.

LCombinatorial Construction - Compatible Subsets

-Compatible Subsets of Maximal Dyck Paths
Compatible subsets of D_{5} for $n=3$:

LCombinatorial Construction - Compatible Subsets

- Compatible Subsets of Maximal Dyck Paths

Compatible subsets of D_{5} for $n=3$:

LCombinatorial Construction - Compatible Subsets

LCompatible Subsets of Maximal Dyck Paths
Compatible subsets of D_{5} for $n=3$:

LCombinatorial Construction - Compatible Subsets

LCompatible Subsets of Maximal Dyck Paths
Compatible subsets of D_{5} for $n=3$:

Definition

A subset $S \subset H_{k} \sqcup V_{k}$ is compatible if for each $h \in S \cap H_{k}$ and $v \in S \cap V_{k}$ with $h<v$, there exists an edge $h \leq e \leq v$ such that at least one of the following holds:
$e \neq v \quad$ and $\quad n\left|\left\{h^{\prime} \in H_{k}: h \leq h^{\prime} \leq e\right\}\right|=\left|\left\{v^{\prime} \in V_{k}: h \leq v^{\prime} \leq e\right\}\right|$
$e \neq h \quad$ and $\quad n\left|\left\{v^{\prime} \in V_{k}: e \leq v^{\prime} \leq v\right\}\right|=\left|\left\{h^{\prime} \in H_{k}: e \leq h^{\prime} \leq v\right\}\right|$.
Write \mathcal{C}_{k} for the collection of all compatible subsets of $H_{k} \sqcup V_{k}$.

LCombinatorial Construction - Compatible Subsets

LCompatible Subsets of Maximal Dyck Paths
Compatible subsets of D_{5} for $n=3$:

LCombinatorial Construction - Compatible Subsets

LCompatible Subsets of Maximal Dyck Paths
Compatible subsets of D_{5} for $n=3$:

LCombinatorial Construction - Compatible Subsets

LCompatible Subsets of Maximal Dyck Paths
Compatible subsets of D_{5} for $n=3$:

- Combinatorial Construction - Compatible Subsets

-Combinatorial Construction of Rank Two Cluster Variables

Theorem (Lee-Li-Zelevinsky, R. (quantum/noncommutative case))

For $k \in \mathbb{Z} \backslash\{1,2\}$, the cluster variable is computed by

$$
x_{k}=x_{1}^{-d_{k, 1}} x_{2}^{-d_{k, 2}} \sum_{S \in \mathcal{C}_{k}} x_{1}^{n\left|S \cap V_{k}\right|} x_{2}^{n\left|S \cap H_{k}\right|}
$$

Corollary

For $k \in \mathbb{Z} \backslash\{1,2\}$ and $\mathbf{e}=\left(e_{1}, e_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$, the Euler characteristic $\chi\left(G r_{\mathbf{e}}\left(M_{k}\right)\right)$ is given by the number of compatible subsets $S \in \mathcal{C}_{k}$ with

$$
\left|S \cap V_{k}\right|=e_{2} \quad\left|S \cap H_{k}\right|= \begin{cases}u_{k-1}-e_{1} & \text { if } k \geq 3 \\ u_{1-k}-e_{1} & \text { if } k \leq 0\end{cases}
$$

Main Question: Why should compatible subsets of D_{k} "know about" the geometry of $G r_{\mathbf{e}}\left(M_{k}\right)$?

-Geometric Explanation

-Cell Decompositions for Rank Two Quiver Grassmannians

Theorem (R.-Weist)

For $k \in \mathbb{Z} \backslash\{1,2\}$ and $\mathbf{e}=\left(e_{1}, e_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$, the quiver Grassmannian $G r_{\mathbf{e}}\left(M_{k}\right)$ admits a cell decomposition (affine paving) whose affine cells are naturally labeled by compatible subsets $S \in \mathcal{C}_{k}$ with

$$
\left|S \cap V_{k}\right|=e_{2} \quad\left|S \cap H_{k}\right|= \begin{cases}u_{k-1}-e_{1} & \text { if } k \geq 3 \\ u_{1-k}-e_{1} & \text { if } k \leq 0\end{cases}
$$

- Write $G r_{k}\left(\mathbb{C}^{n}\right)$ for the ordinary Grassmannian of k-dimensional subspaces in \mathbb{C}^{n}.
- A subspace $U \in G r_{k}\left(\mathbb{C}^{n}\right)$ can be represented by a $k \times n$ matrix by choosing a basis for U.
- Writing such a matrix in reduced row-echelon form gives a unique $k \times n$ matrix representing the subspace U :

$$
M(U):=\left(\begin{array}{ccccccccccccccc}
* & \cdots & * & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
* & \cdots & * & 0 & * & \cdots & * & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
* & \cdots & * & 0 & * & \cdots & * & 0 & * & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
* & \cdots & * & 0 & * & \cdots & * & 0 & * & \cdots & 0 & 0 & 0 & \cdots & 0 \\
* & \cdots & * & 0 & * & \cdots & * & 0 & * & \cdots & * & 1 & 0 & \cdots & 0
\end{array}\right)
$$

- The subset of those $U \in G r_{k}\left(\mathbb{C}^{n}\right)$ where $M(U)$ has pivots in columns $\mathbf{a}=\left\{a_{1}<\ldots<a_{k}\right\}$ gives the Schubert cell $X_{n, \mathbf{a}} \subset G r_{k}\left(\mathbb{C}^{n}\right)$.
- Fix integers $w_{1}>\cdots>w_{n}$ and define a \mathbb{C}^{*}-action on \mathbb{C}^{n} via $t . e_{i}=t^{w_{i}} e_{i}$, where $\left\{e_{1}, \ldots, e_{n}\right\}$ denotes the standard basis of \mathbb{C}^{n}.
- This induces a \mathbb{C}^{*} action on $G r_{k}\left(\mathbb{C}^{n}\right)$ which can be described on matrix representatives as

$$
M(t . U)_{i j}=t^{w_{j}-w_{a_{i}}} M(U)_{i j}
$$

for $U \in X_{n, \mathbf{a}}$.

Theorem (Białynicki-Birula?)

Each Schubert cell $X_{n, \mathbf{a}}$ is the attractor cell of a \mathbb{C}^{*}-fixed point in $G r_{k}\left(\mathbb{C}^{n}\right)$:

$$
X_{n, \mathbf{a}}=\left\{U \in G r_{k}\left(\mathbb{C}^{n}\right): \lim _{t \rightarrow 0} t \cdot U=\left\langle e_{a_{1}}, \ldots, e_{a_{k}}\right\rangle\right\}
$$

- Let $\mathbb{C}^{\ell} \subset \mathbb{C}^{n}$ denote the subspace $\left\langle e_{1}, \ldots, e_{\ell}\right\rangle$. There is an induced short exact sequence

$$
0 \longrightarrow \mathbb{C}^{\ell} \longrightarrow \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n-\ell} \longrightarrow 0
$$

where we identify $\mathbb{C}^{n-\ell}$ with $\left\langle e_{\ell+1}, \ldots, e_{n}\right\rangle$.

- This induces a map

$$
\begin{aligned}
G r_{k}\left(\mathbb{C}_{n}\right) & \rightarrow \bigsqcup_{r+s=k} G r_{r}\left(\mathbb{C}^{\ell}\right) \times G r_{s}\left(\mathbb{C}^{n-\ell}\right) \\
U & \mapsto\left(U \cap \mathbb{C}^{\ell},\left(U+\mathbb{C}^{\ell}\right) / \mathbb{C}^{\ell}\right)
\end{aligned}
$$

which allows to construct the Schubert cells inductively: the preimage of the product of Schubert cells $X_{\ell, \mathbf{b}} \times X_{n-\ell, \mathbf{c}}$ is the Schubert cell $X_{n,(\mathbf{b}, \mathbf{c})}$.

Lemma

- For $k \geq 4$, the space $\operatorname{Hom}\left(M_{k-1}, M_{k}\right)$ is n-dimensional.
- For any proper subspace $V \subsetneq \operatorname{Hom}\left(M_{k-1}, M_{k}\right)$, the natural evaluation map ev : $M_{k-1} \otimes V \rightarrow M_{k}$ is injective.

Definition

Define truncated preprojective representations $M_{k}^{V}:=M_{k} /\left(M_{k-1} \otimes V\right)$.

Proposition

For $k \geq 5$ and a codimension-one subspace $V \subsetneq \operatorname{Hom}\left(M_{k-1}, M_{k}\right)$, there exists a one-dimensional subspace $\bar{V} \subset \operatorname{Hom}\left(M_{k-2}, M_{k-1}\right)$ such that $M_{k}^{V}=M_{k-1}^{\bar{V}}$.

$$
D_{4}=\square
$$

Proposition

For $k \geq 5$, the maximal Dyck path D_{k} can be constructed by concatenating $n-1$ copies of D_{k-1} followed by a copy of D_{k-1} with its first D_{k-2} removed.

Theorem (R.-Weist)

For $k \geq 4$ and a proper subspace $V \subsetneq \operatorname{Hom}\left(M_{k-1}, M_{k}\right)$ with $\operatorname{dim}(V)=r$, each quiver Grassmannian $G r_{\mathrm{e}}\left(M_{k}^{V}\right)$ admits a cell decomposition whose affine cells are naturally labeled by compatible subsets of the maximal Dyck path $D_{k}^{[r]}$ obtained from D_{k} by removing the first r copies of D_{k-1}.

Idea of Proof

- Caldero-Chapoton maps: given $0 \rightarrow A \rightarrow M \rightarrow B \rightarrow 0$ we get

$$
G r_{\mathbf{e}}(M) \rightarrow \bigsqcup_{\mathbf{f}+\mathbf{g}=\mathbf{e}} G r_{\mathbf{f}}(A) \times G r_{\mathbf{g}}(B)
$$

- (iterated) \mathbb{C}^{*}-actions on $G r_{\mathbf{e}}(M)$ reduce the problem to thinking about quiver Grassmannians on the universal covering quiver of Q_{n}

Thank you!

