From Cluster Algebras to Quiver Grassmannians

Dylan Rupel

Michigan State University

April 26, 2019

Maurice Auslander Distinguished Lectures and International Conference

Dylan Rupel (MSU)

From Clusters to Quivers

– Main Result

Cell Decompositions for Rank Two Quiver Grassmannians

MetaTheorem/Conjecture

The combinatorics of compatible subsets of maximal Dyck paths controls the geometry of quiver Grassmannians.

Theorem (R.-Weist)

For $k \in \mathbb{Z} \setminus \{1, 2\}$ and $\mathbf{e} = (e_1, e_2) \in \mathbb{Z}_{\geq 0}^2$, the quiver Grassmannian $Gr_{\mathbf{e}}(M_k)$ admits a cell decomposition (affine paving) whose affine cells are naturally labeled by compatible subsets $S \in \mathcal{C}_k$ with

$$|S \cap V_k| = e_2 \qquad |S \cap H_k| = \begin{cases} u_{k-1} - e_1 & \text{if } k \ge 3\\ u_{1-k} - e_1 & \text{if } k \le 0 \end{cases}$$

• Fix an integer $n \ge 2$.

• Define *cluster variables* $x_k \in \mathbb{Q}(x_1, x_2)$, $k \in \mathbb{Z}$, recursively by

$$x_{k-1}x_{k+1} = x_k^n + 1.$$

• The first few cluster variables are computed as follows:

$$x_{3} = \frac{x_{2}^{n} + 1}{x_{1}}$$

$$x_{4} = \frac{x_{3}^{n} + 1}{x_{2}} = \frac{(x_{2}^{n} + 1)^{n} + x_{1}^{n}}{x_{1}^{n}x_{2}}$$

$$x_{5} = \frac{x_{4}^{n} + 1}{x_{3}} = \frac{N(x_{1}, x_{2})}{x_{1}^{n^{2} - 1}x_{2}^{n}}$$

Here $N(x_1, x_2) \in \mathbb{Z}[x_1, x_2]$ and so a non-trivial cancellation has occurred.

Laurent Phenomenon

• Fix an integer $n \ge 2$.

• Define *cluster variables* $x_k \in \mathbb{Q}(x_1, x_2)$, $k \in \mathbb{Z}$, recursively by

$$x_{k-1}x_{k+1} = x_k^n + 1.$$

Theorem (Fomin-Zelevinsky, Laurent Phenomenon)

Each cluster variable $x_k \in \mathbb{Q}(x_1, x_2)$, $k \in \mathbb{Z}$, can be written as

$$x_k = \frac{N_k(x_1, x_2)}{x_1^{d_{k,1}} x_2^{d_{k,2}}},$$

for some polynomial $N_k(x_1, x_2) \in \mathbb{Z}[x_1, x_2]$ with nonzero constant term and some denominator vector $\mathbf{d}_k = (d_{k,1}, d_{k,2}) \in \mathbb{Z}^2$.

First Goal: Understand these Laurent expansions of the cluster variables

Denominator Vectors

• The denominators are relatively easy to describe: define Chebyshev polynomials $u_m = u_m(n) \in \mathbb{Z}$ for $m \in \mathbb{Z}$ recursively by

$$u_1 = 0,$$
 $u_2 = 1,$ $u_{m+1} = nu_m - u_{m-1}.$

Proposition

For $k \in \mathbb{Z}$, the denominator vector of x_k is given by

$$\mathbf{d}_{k} = \begin{cases} (u_{k-1}, u_{k-2}) & \text{if } k \geq 2\\ (u_{1-k}, u_{2-k}) & \text{if } k \leq 1 \end{cases}$$

Goal: Understand the numerators $N_k(x_1, x_2)$ of the cluster variables x_k .

I will present two approaches: one geometric and one combinatorial (explaining the relationship between them is the ultimate goal of this talk)

Dylan Rupel (MSU)

From Clusters to Quivers

Basic Definitions

- Let Q_n = 1 ← 2 be the n-Kronecker quiver with vertex set {1,2} and arrows α_j, j = 1,...,n, from vertex 2 to vertex 1.
- A representation $M = (M_1, M_2, M_{\alpha_i})$ of Q_n consists of the following:
 - \mathbb{C} -vector spaces M_i for i = 1, 2
 - C-linear maps $M_{\alpha_j}: M_2 \to M_1$ for $j = 1, \ldots, n$
- Write $\underline{\dim}(M) = (\dim M_1, \dim M_2)$ for the *dimension vector* of M
- Given representations $M = (M_1, M_2, M_{\alpha_j})$ and $N = (N_1, N_2, N_{\alpha_j})$, a morphism $\theta : M \to N$ consists of linear maps $\theta_i : M_i \to N_i$ such that $\theta_1 \circ M_{\alpha_j} = N_{\alpha_j} \circ \theta_2$ for $j = 1, \ldots, n$

└─ Quiver Grassmannians

• A subrepresentation $E \subset M$ consists of subspaces $E_i \subset M_i$ such that $M_{\alpha_j}(E_2) \subset E_1$ for $j = 1, \ldots, n$

Definition

Given a dimension vector $\mathbf{e} = (e_1, e_2) \in \mathbb{Z}^2_{\geq 0}$, the quiver Grassmannian $Gr_{\mathbf{e}}(M)$ is the set of all subrepresentations $E \subset M$ with $\underline{\dim}(E) = \mathbf{e}$.

Lemma

 $Gr_{\mathbf{e}}(M)$ is a projective variety

Proof.

 $Gr_{\mathbf{e}}(M)$ is naturally identified with a subset of the product of ordinary vector space Grassmannians $Gr_{e_1}(M_1) \times Gr_{e_2}(M_2)$ which is projective. The requirements $M_{\alpha_j}(E_2) \subset E_1$ give closed conditions cutting out the quiver Grassmannian $Gr_{\mathbf{e}}(M)$.

└─ Quiver Grassmannians

Theorem (Reineke, Huisgen-Zimmermann, Hille, Ringel)

Every projective variety is isomorphic to a quiver Grassmannian

└─ Quiver Grassmannians

Theorem (Reineke, Huisgen-Zimmermann, Hille, Ringel)

Every projective variety is isomorphic to a quiver Grassmannian of Q_n for any $n \ge 3$.

└─ Quiver Grassmannians

Theorem (Reineke, Huisgen-Zimmermann, Hille, Ringel)

Every projective variety is isomorphic to a quiver Grassmannian of Q_n for any $n \ge 3$.

Moral: one cannot expect great control over the geometry of quiver Grassmannians without imposing conditions on M or e.

- A representation M is rigid if $Ext^1(M, M) = 0$.
- In this case, representations isomorphic to M form a dense subset of the moduli space of representations with dimension vector $\underline{\dim}(M)$.

Theorem (Caldero-Reineke)

Assume $Gr_{\mathbf{e}}(M)$ is nonempty and M is rigid. Then $Gr_{\mathbf{e}}(M)$ is a smooth projective variety.

- Geometric Construction Quiver Representations
 - Geometric Construction of Rank Two Cluster Variables

Theorem (Bernstein-Gelfand-Ponamarev, Dlab-Ringel)

For $k \in \mathbb{Z} \setminus \{1, 2\}$, there exists a unique (up to isomorphism) indecomposable rigid representation M_k of Q_n with dimension vector

$$\mathbf{d}_{k} = \begin{cases} (u_{k-1}, u_{k-2}) & \text{if } k \ge 2\\ (u_{1-k}, u_{2-k}) & \text{if } k \le 1 \end{cases}$$

Theorem (Caldero-Chapoton, Caldero-Keller, R./Qin (quantum case))

Each cluster variable $x_k \in \mathbb{Q}(x_1, x_2)$ for $k \in \mathbb{Z} \setminus \{1, 2\}$ is a generating function for the Euler characteristics of the quiver Grassmannians for M_k :

$$x_{k} = \begin{cases} x_{1}^{-u_{k-1}} x_{2}^{-u_{k-2}} \sum_{\mathbf{e} \in \mathbb{Z}_{\geq 0}^{2}} \chi(Gr_{\mathbf{e}}(M_{k})) x_{1}^{ne_{2}} x_{2}^{n(u_{k-1}-e_{1})} & \text{if } k \geq 3 \\ x_{1}^{-u_{1-k}} x_{2}^{-u_{2-k}} \sum_{\mathbf{e} \in \mathbb{Z}_{\geq 0}^{2}} \chi(Gr_{\mathbf{e}}(M_{k})) x_{1}^{ne_{2}} x_{2}^{n(u_{1-k}-e_{1})} & \text{if } k \leq 0 \end{cases}$$

└─ Maximal Dyck Paths

• Recall the denominator/dimension vectors for $k \in \mathbb{Z}$:

$$\mathbf{d}_{k} = \begin{cases} (u_{k-1}, u_{k-2}) & \text{if } k \geq 2\\ (u_{1-k}, u_{2-k}) & \text{if } k \leq 1 \end{cases}$$

Definition

For $k \in \mathbb{Z} \setminus \{1, 2\}$, write D_k for the maximal Dyck path in the lattice rectangle in \mathbb{Z}^2 with corner vertices (0, 0) and \mathbf{d}_k .

- D_k is a lattice path beginning at (0,0), taking East and North steps to end at \mathbf{d}_k , and never passing above the main diagonal.
- Any lattice point above D_k also lies above the main diagonal.

└─ Maximal Dyck Paths

• Recall the denominator/dimension vectors for $k \in \mathbb{Z}$:

$$\mathbf{d}_{k} = \begin{cases} (u_{k-1}, u_{k-2}) & \text{if } k \ge 2\\ (u_{1-k}, u_{2-k}) & \text{if } k \le 1 \end{cases}$$

Definition

For $k \in \mathbb{Z} \setminus \{1, 2\}$, write D_k for the maximal Dyck path in the lattice rectangle in \mathbb{Z}^2 with corner vertices (0, 0) and \mathbf{d}_k .

- Write H_k and V_k for the sets of horizontal and vertical edges of D_k .
- The edges $H_k \sqcup V_k$ are naturally ordered along the Dyck path D_k from (0,0) to \mathbf{d}_k .

Combinatorics of Maximal Dyck Paths

• For n = 3, we have

$$\mathbf{d}_3 = (1,0), \qquad \mathbf{d}_4 = (3,1), \qquad \mathbf{d}_5 = (8,3), \qquad \mathbf{d}_6 = (21,8)$$

The associated maximal Dyck paths are shown below:

Combinatorics of Maximal Dyck Paths

• For n = 3, we have

$$\mathbf{d}_3 = (1,0), \qquad \mathbf{d}_4 = (3,1), \qquad \mathbf{d}_5 = (8,3), \qquad \mathbf{d}_6 = (21,8)$$

The associated maximal Dyck paths are shown below:

Combinatorics of Maximal Dyck Paths

• For n = 3, we have

$$\mathbf{d}_3 = (1,0), \qquad \mathbf{d}_4 = (3,1), \qquad \mathbf{d}_5 = (8,3), \qquad \mathbf{d}_6 = (21,8)$$

The associated maximal Dyck paths are shown below:

Combinatorics of Maximal Dyck Paths

• For n = 3, we have

$$\mathbf{d}_3 = (1,0), \qquad \mathbf{d}_4 = (3,1), \qquad \mathbf{d}_5 = (8,3), \qquad \mathbf{d}_6 = (21,8)$$

The associated maximal Dyck paths are shown below:

Dylan Rupel (MSU)

April 26, 2019 10 / 21

From Clusters to Quivers

Combinatorial Construction - Compatible Subsets

Combinatorics of Maximal Dyck Paths

Proposition

For $k \ge 5$, the maximal Dyck path D_k can be constructed by concatenating n-1 copies of D_{k-1} followed by a copy of D_{k-1} with its first D_{k-2} removed.

Dylan Rupel (MSU)

From Clusters to Quivers

Compatible Subsets of Maximal Dyck Paths

Definition

or

A subset $S \subset H_k \sqcup V_k$ is *compatible* if for each $h \in S \cap H_k$ and $v \in S \cap V_k$ with h < v, there exists an edge $h \le e \le v$ such that at least one of the following holds:

$$e \neq v$$
 and $n | \{ h' \in H_k : h \le h' \le e \} | = | \{ v' \in V_k : h \le v' \le e \} |$

 $e \neq h$ and $n | \{v' \in V_k : e \leq v' \leq v\} | = | \{h' \in H_k : e \leq h' \leq v\} |$. Write \mathcal{C}_k for the collection of all compatible subsets of $H_k \sqcup V_k$.

Compatible Subsets of Maximal Dyck Paths

Compatible subsets of D_5 for n = 3:

Compatible Subsets of Maximal Dyck Paths

Compatible subsets of D_5 for n = 3:

Compatible Subsets of Maximal Dyck Paths

Compatible subsets of D_5 for n = 3:

Compatible Subsets of Maximal Dyck Paths

Compatible subsets of D_5 for n = 3:

Compatible Subsets of Maximal Dyck Paths

Definition

A subset $S \subset H_k \sqcup V_k$ is *compatible* if for each $h \in S \cap H_k$ and $v \in S \cap V_k$ with h < v, there exists an edge $h \le e \le v$ such that at least one of the following holds:

$$e \neq v$$
 and $n \left| \{ h' \in H_k : h \leq h' \leq e \} \right| = \left| \{ v' \in V_k : h \leq v' \leq e \} \right|$

 $e \neq h$ and $n | \{v' \in V_k : e \leq v' \leq v\} | = | \{h' \in H_k : e \leq h' \leq v\} |.$ Write C_k for the collection of all compatible subsets of $H_k \sqcup V_k$.

Compatible Subsets of Maximal Dyck Paths

Compatible subsets of D_5 for n = 3:

Compatible Subsets of Maximal Dyck Paths

Compatible subsets of D_5 for n = 3:

Compatible Subsets of Maximal Dyck Paths

Compatible subsets of D_5 for n = 3:

Combinatorial Construction of Rank Two Cluster Variables

Theorem (Lee-Li-Zelevinsky, R. (quantum/noncommutative case))

For $k \in \mathbb{Z} \setminus \{1, 2\}$, the cluster variable is computed by

$$x_k = x_1^{-d_{k,1}} x_2^{-d_{k,2}} \sum_{S \in \mathcal{C}_k} x_1^{n|S \cap V_k|} x_2^{n|S \cap H_k|}$$

Corollary

For $k \in \mathbb{Z} \setminus \{1, 2\}$ and $\mathbf{e} = (e_1, e_2) \in \mathbb{Z}_{\geq 0}^2$, the Euler characteristic $\chi(Gr_{\mathbf{e}}(M_k))$ is given by the number of compatible subsets $S \in \mathcal{C}_k$ with

$$|S \cap V_k| = e_2 \qquad |S \cap H_k| = \begin{cases} u_{k-1} - e_1 & \text{if } k \ge 3\\ u_{1-k} - e_1 & \text{if } k \le 0 \end{cases}$$

Main Question: Why should compatible subsets of D_k "know about" the geometry of $Gr_{\mathbf{e}}(M_k)$?

Geometric Explanation

Cell Decompositions for Rank Two Quiver Grassmannians

Theorem (R.-Weist)

For $k \in \mathbb{Z} \setminus \{1, 2\}$ and $\mathbf{e} = (e_1, e_2) \in \mathbb{Z}_{\geq 0}^2$, the quiver Grassmannian $Gr_{\mathbf{e}}(M_k)$ admits a cell decomposition (affine paving) whose affine cells are naturally labeled by compatible subsets $S \in C_k$ with

$$|S \cap V_k| = e_2 \qquad |S \cap H_k| = \begin{cases} u_{k-1} - e_1 & \text{if } k \ge 3\\ u_{1-k} - e_1 & \text{if } k \le 0 \end{cases}$$

From Clusters to Quivers	
Lea of Proof	
└─ Classical Case - Schubert Cells	

- Write $Gr_k(\mathbb{C}^n)$ for the ordinary Grassmannian of k-dimensional subspaces in \mathbb{C}^n .
- A subspace $U \in Gr_k(\mathbb{C}^n)$ can be represented by a $k \times n$ matrix by choosing a basis for U.
- Writing such a matrix in reduced row-echelon form gives a unique $k \times n$ matrix representing the subspace U:

• The subset of those $U \in Gr_k(\mathbb{C}^n)$ where M(U) has pivots in columns $\mathbf{a} = \{a_1 < \ldots < a_k\}$ gives the Schubert cell $X_{n,\mathbf{a}} \subset Gr_k(\mathbb{C}^n)$.

From Clusters to Quivers

LIdea of Proof

Classical Case - Schubert Decomposition via Torus Actions

- Fix integers $w_1 > \cdots > w_n$ and define a \mathbb{C}^* -action on \mathbb{C}^n via $t.e_i = t^{w_i}e_i$, where $\{e_1, \ldots, e_n\}$ denotes the standard basis of \mathbb{C}^n .
- \bullet This induces a \mathbb{C}^* action on $Gr_k(\mathbb{C}^n)$ which can be described on matrix representatives as

$$M(t.U)_{ij} = t^{w_j - w_{a_i}} M(U)_{ij}$$

for $U \in X_{n,\mathbf{a}}$.

Theorem (Białynicki-Birula?)

Each Schubert cell $X_{n,\mathbf{a}}$ is the attractor cell of a \mathbb{C}^* -fixed point in $Gr_k(\mathbb{C}^n)$:

$$X_{n,\mathbf{a}} = \left\{ U \in Gr_k(\mathbb{C}^n) : \lim_{t \to 0} t.U = \langle e_{a_1}, \dots, e_{a_k} \rangle \right\}$$

Classical Case - Schubert Decomposition via Exact Sequences

• Let $\mathbb{C}^{\ell} \subset \mathbb{C}^n$ denote the subspace $\langle e_1, \ldots, e_{\ell} \rangle$. There is an induced short exact sequence

$$0 \longrightarrow \mathbb{C}^{\ell} \longrightarrow \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n-\ell} \longrightarrow 0$$

where we identify $\mathbb{C}^{n-\ell}$ with $\langle e_{\ell+1}, \ldots, e_n \rangle$.

• This induces a map

$$Gr_k(\mathbb{C}_n) \twoheadrightarrow \bigsqcup_{r+s=k} Gr_r(\mathbb{C}^\ell) \times Gr_s(\mathbb{C}^{n-\ell})$$
$$U \mapsto \left(U \cap \mathbb{C}^\ell, (U + \mathbb{C}^\ell)/\mathbb{C}^\ell\right)$$

which allows to construct the Schubert cells inductively: the preimage of the product of Schubert cells $X_{\ell,\mathbf{b}} \times X_{n-\ell,\mathbf{c}}$ is the Schubert cell $X_{n,(\mathbf{b},\mathbf{c})}$.

LIdea of Proof

└─ Quiver Case

Lemma

- For $k \ge 4$, the space $Hom(M_{k-1}, M_k)$ is *n*-dimensional.
- For any proper subspace $V \subsetneq Hom(M_{k-1}, M_k)$, the natural evaluation map $ev : M_{k-1} \otimes V \to M_k$ is injective.

Definition

Define truncated preprojective representations $M_k^V := M_k/(M_{k-1} \otimes V)$.

Proposition

For $k \geq 5$ and a codimension-one subspace $V \subsetneq \operatorname{Hom}(M_{k-1}, M_k)$, there exists a one-dimensional subspace $\overline{V} \subset \operatorname{Hom}(M_{k-2}, M_{k-1})$ such that $M_k^V = M_{k-1}^{\overline{V}}$.

LIdea of Proof

└─ Quiver Case

Proposition

For $k \ge 5$, the maximal Dyck path D_k can be constructed by concatenating n-1 copies of D_{k-1} followed by a copy of D_{k-1} with its first D_{k-2} removed.

Dylan Rupel (MSU)

From Clusters to Quivers

LIdea of Proof

└─ Quiver Case

Theorem (R.-Weist)

For $k \ge 4$ and a proper subspace $V \subsetneq Hom(M_{k-1}, M_k)$ with dim(V) = r, each quiver Grassmannian $Gr_{\mathbf{e}}(M_k^V)$ admits a cell decomposition whose affine cells are naturally labeled by compatible subsets of the maximal Dyck path $D_k^{[r]}$ obtained from D_k by removing the first r copies of D_{k-1} .

Idea of Proof

 \bullet Caldero-Chapoton maps: given $0 \to A \to M \to B \to 0$ we get

$$Gr_{\mathbf{e}}(M) \rightarrow \bigsqcup_{\mathbf{f}+\mathbf{g}=\mathbf{e}} Gr_{\mathbf{f}}(A) \times Gr_{\mathbf{g}}(B)$$

• (iterated) \mathbb{C}^* -actions on $Gr_{\mathbf{e}}(M)$ reduce the problem to thinking about quiver Grassmannians on the universal covering quiver of Q_n

From Clus	ters to Quivers		
- End			
Ĺ			

Thank you!