Continuous Clusters and Continuous Mutation

Job Rock

Department of Mathematics Brandeis University

Joint with Kiyoshi Igusa and Gordana Todorov

Maurice Auslander Distinguished Lectures and International Conference 28 April 2019

1 Motivation and Construction

Ontinuous Clusters

3 Continuous Mutation

1 Motivation and Construction

2 Continuous Clusters

8 Continuous Mutation

- Type A_∞ quivers are a infinite-vertex generalizations of type A_n quivers.
- Clusters for type A_∞ quivers are triangulations of the ∞-gon, see work by Thorsten Holm and Peter Jørgensen from 2012, [2].
- In 2015, Kiyoshi Igusa and Gordana Todorov introduced a continuous quiver [3].
- They constructed continuous a cluster category whose clusters were discrete maximal geodesic laminations of the hyperbolic plane. (We can think of these as triangulations of the disk, or "R-gon.")
- The construction was limited by "discrete-ness."

In this talk we have a generalization of clusters and mutation to a continuous setting that behaves well when restricted to previous constructions.

Construction – $A_{\mathbb{R}}$

Definition $(A_{\mathbb{R}})$

We pick a set of sinks and sources in \mathbb{R} with no limit or accumulation points. This induces a partial order \leq on \mathbb{R} . A continuous quiver of type A is \mathbb{R} equipped with such a partial order, denoted $A_{\mathbb{R}}$.

Proposition (Igusa, R., Todorov)

The bounded dimensional indecomposables are those whose support is an interval of \mathbb{R} , whose linear maps are isomorphisms, and whose vector spaces are k or 0.

Definition $(\operatorname{rep}_k(A_{\mathbb{R}}))$

The category $\operatorname{rep}_k(A_{\mathbb{R}})$ is the category of finite direct sums of one dimensional indecomposables (and usual morphisms of representations).

We denote an indecomposable in $\operatorname{rep}_k(A_{\mathbb{R}})$ by the interval that is its support. For example [0, 1] is the indecomposable with support [0, 1]. Writing | instead of (,), [, or] is short hand for allowing whichever symbol is allowed in context. For example |0, 1| can be used for any of [0, 1], [0, 1], (0, 1], or (0, 1).

Properties of $\operatorname{rep}_k(A_{\mathbb{R}})$:

- $\operatorname{rep}_k(A_{\mathbb{R}})$ is abelian and Krull-Scmidt. It is not Artinian.
- For indecomposables V and W, Hom(V, W) = 0 or $Hom(V, W) \cong k$.
- For indecomposables V ≇ W, either Hom(V, W) = 0 or Hom(W, V) = 0.
- For indecomposables V and W, either Ext(V, W) = 0 or Ext(V, W) ≅ k.
- For indecomposables V and W, either Ext(V, W) = 0 or Ext(W, V) = 0.
- For an indecomposable V, Ext(V, V) = 0.
- Most indecomposables belong to a unique Auslander-Reiten sequence. (Picture on next slide.)

Let 0 be a source, 1 a sink, and $a, b \in \mathbb{R}$ such that 0 < a < 1 < b. Then the Auslander-Reiten space looks like this:

Note: if $A_{\mathbb{R}}$ has the same orientation as \mathbb{R} then the projectives $(-\infty, a|$ of rep_k $(A_{\mathbb{R}})$ are totally ordered by inclusion just as with A_n .

Definition $(\mathcal{D}^b(\mathcal{A}_{\mathbb{R}}))$

We take $\mathcal{D}^b(A_\mathbb{R})$ to be the usual bounded derived category of the abelian category rep_k($A_\mathbb{R}$).

Example

Take $A_{\mathbb{R}}$ to have the same ordering as \mathbb{R} .

Theorem (Igusa, R., Todorov)

Let $A_{\mathbb{R}}$ and $A'_{\mathbb{R}}$ be two different continuous type A quivers. Then $\mathcal{D}^b(A_{\mathbb{R}})$ and $\mathcal{D}^b(A'_{\mathbb{R}})$ are equivalent as triangulated categories if and only if one of the following holds.

- **1** The sinks and sources of both $A_{\mathbb{R}}$ and $A'_{\mathbb{R}}$ are bounded.
- 2 The sinks and sources of both $A_{\mathbb{R}}$ and $A'_{\mathbb{R}}$ are each bounded exactly one of above or below.
- **(3)** The sinks and sources of both $A_{\mathbb{R}}$ and $A'_{\mathbb{R}}$ are each unbounded above and below.

In particular, we can now just pretend $A_{\mathbb{R}}$ has the same orientation as \mathbb{R} .

Motivation and Construction

Ontinuous Clusters

8 Continuous Mutation

We do not have an Auslander-Reiten translation defined on all modules, so we instead mod out by shift.

Definition $(\mathcal{C}(A_{\mathbb{R}}))$

The continuous cluster category $\mathcal{C}(A_{\mathbb{R}})$ of $A_{\mathbb{R}}$ is the orbit category of $\mathcal{D}^{b}(A_{\mathbb{R}})$ via [1].

Corollary (To previous Theorem)

If $A_{\mathbb{R}}$ and $A'_{\mathbb{R}}$ are two continuous type A quivers with bounded sinks and sources then $C(A_{\mathbb{R}})$ is triangulated equivalent to $C(A'_{\mathbb{R}})$.

We may continue to pretend $A_{\mathbb{R}}$ has the same ordering as \mathbb{R} .

Definition (g-vectors)

Let $\mathcal{K}_0^{\text{split}}(\mathcal{C}(A_{\mathbb{R}}))$ denote the split Grothendieck group of $\mathcal{C}(A_{\mathbb{R}})$. A *g-vector*, or *index*, of an indecomposable V in $\mathcal{C}(A_{\mathbb{R}})$ is the element $[P_{0,V}] - [P_{1,V}]$ in $\mathcal{K}_0^{\text{split}}(\mathcal{C}(A_{\mathbb{R}}))$, where $P_{1,V} \to P_{0,V} \to V$ is the projective resolution of V in rep_k $(A_{\mathbb{R}})$.

Definition (Compatible Set, Continuous Cluster)

Let T be a set of indecomposables in $\mathcal{C}(A_{\mathbb{R}})$ such that there is **no pair** $V, W \in T$ with the following nonzero composition:

$$\underbrace{P_{1,V} \to P_{1,W} \to P_{0,V} \to P_{0,W}}_{\neq 0}.$$

(I.e., all g-vectors are compatible.) We call T a compatible set. If T is maximal with respect to this condition we say T is a continuous cluster.

Definitions

Example

Let $a < b \in \mathbb{R}$ and

$$T = \{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\}$$
$$\cup \{[x, a), \{x\} : -\infty < x < a\}$$
$$\cup \{(a, x], \{x\} : a < x < b\} \cup \{(b, x], \{x\} : b < x\}$$

T is a continuous cluster with three *continuous fountains*. We can visualize T as a set of noncrossing partitions of \mathbb{R} :

Structure

The types of compatible sets that make up a continuous cluster are:

- Discrete
- Nests
- Continuous fountains (a type of nest)
- Antifountains (a type of nest)
- Simples

Here is another picture of a continuous cluster.

Here is another picture of a continuous cluster.

Structure

The previous construction had a one-to-one correspondence between clusters and discrete maximal geodesic laminations of the hyperbolic plane. We have a nice type of cluster and a similar statement.

Definition (Laminated Cluster)

Let T be a continuous cluster such that for all $U, V \in T$, if $V \cap U \neq \emptyset$ then

$(\operatorname{supp} V \cup \operatorname{supp} W) \setminus (\operatorname{supp} V \cap \operatorname{supp} W)$

is infinite. Additionally, assume that there is at most one indecomposable in T of the form $|a, +\infty)$ where $a \in \mathbb{R}$. We say T is a *laminated cluster*.

Theorem (Igusa, R., Todorov)

There is a one-to-one correspondence between laminated clusters and maximal geodesic laminations on the hyperbolic plane.

Motivation and Construction

2 Continuous Clusters

3 Continuous Mutation

Definitions

Definition (Simple Mutation Path, Mutation Path)

Let T and T' be continuous clusters with respective subsets S and S' where $S \cap S' = \emptyset$; let $\mu : S \to S'$ be a bijection; let $f : S \to [0, 1]$ and $g : S' \to [0, 1]$ be injections such that

•
$$g\circ\mu=f$$
 and $f\circ\mu^{-1}=g$

•
$$T \setminus S = T' \setminus S'$$

- for all $V \in S$, $\{V, \mu V\}$ is not a compatible set
- $(T \setminus f^{-1}([0,t|)) \cup g^{-1}([0,t|)$ is a continuous cluster for all $t \in [0,1]$
- "We can restrict μ , f, and g to any subinterval [0, t] and preserve all existing properties."

Then μ , extended to T by $V \mapsto V$ for $V \notin S$ is a *simple mutation path*. A *mutation path* is a finite concatenation of simple mutation paths $\{\mu_i\}$ where the source of μ_{i+1} is the target of μ_i .

Theorem (Igusa, R., Todorov)

Let T be a continuous cluster and $V \in T$. Let T_1, T_2 be continuous clusters, $W_1 \in T_1$ and $W_2 \in T_2$ such that

$$T \setminus \{V\} = T_1 \setminus \{W_1\} = T_2 \setminus \{W_2\}$$

and there are simple mutation paths $\mu_1 : T \to T_1$ and $\mu_2 : T \to T_2$. Then $W_1 = W_2$.

I.e., for any $V \in T$ there is at most one other indecomposable W in $\mathcal{C}(A_{\mathbb{R}})$ such that $\mu : T \to (T \setminus \{V\}) \cup \{W\}$ is a simple mutation path. A simple mutation path performs at most one mutation for every $t \in [0, 1]$, often on an indecomposable that could not previously be mutated.

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y] \mapsto [y,b)$$
 and $f(a,y] = \frac{b-y}{b-a} = g[y,b)$

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y] \mapsto [y,b)$$
 and $f(a,y] = \frac{b-y}{b-a} = g[y,b)$

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y]\mapsto [y,b)$$
 and $f(a,y]=rac{b-y}{b-a}=g[y,b)$

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y] \mapsto [y,b)$$
 and $f(a,y] = \frac{b-y}{b-a} = g[y,b)$

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y] \mapsto [y,b)$$
 and $f(a,y] = \frac{b-y}{b-a} = g[y,b)$

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y] \mapsto [y,b)$$
 and $f(a,y] = \frac{b-y}{b-a} = g[y,b)$

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y] \mapsto [y,b)$$
 and $f(a,y] = \frac{b-y}{b-a} = g[y,b)$

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y]\mapsto [y,b)$$
 and $f(a,y]=rac{b-y}{b-a}=g[y,b)$

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y]\mapsto [y,b)$$
 and $f(a,y]=rac{b-y}{b-a}=g[y,b)$

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y]\mapsto [y,b)$$
 and $f(a,y]=rac{b-y}{b-a}=g[y,b)$

Example

Let $a, b \in \mathbb{R}$ such that a < 0 < b. Let T be

$$\{(-\infty, +\infty), (-\infty, a), (a, b), (-\infty, b), (b, +\infty)\} \\ \cup \{(-\infty, x], \{x\}, (a, y], \{y\}, (b, z], \{z\}\}$$

$$\mu(a,y] \mapsto [y,b)$$
 and $f(a,y] = \frac{b-y}{b-a} = g[y,b)$

Example (Lamination)

One reason to use continuous mutation is to *laminate* a cluster. Consider the continuous clusters

$$T = \{(-\infty, +\infty)\} \cup \{(-\infty, x], (-\infty, x) : x \in \mathbb{R}\}$$

$$T' = \{(-\infty, +\infty)\} \cup \{(-\infty, x], \{x\} : x \in \mathbb{R}\}.$$

T is not laminated but T' is laminated.

Let $S = \{(-\infty, x) : x \in \mathbb{R}\}$ and $\mu : (-\infty, x) \mapsto \{x\}$. Choose any bijection $h : \mathbb{R} \to (0, 1)$ and let $f(-\infty, x) = h(x) = g\{x\}$. Then $\mu : T \to T'$ is a (simple) mutation path. (Picture on next slide.)

We call T' a *lamination* of T. A cluster and one of its laminations should essentially contain the same information. The laminated cluster, however, corresponds to a geodesic lamination and is also easier to work with.

Example (Lamination Continued)

Here is a picture:

Example (Transfinite Mutation)

We can also use the same language to encode the transfinite mutation described by Karin Baur and Sira Gratz in 2018, [1]. Let

$$T = \{(n, n + 1) : n \in \mathbb{Z}\} \cup \{(-\infty, +\infty)\} \\ \cup \{(n, n + x], \{x\} : n \in \mathbb{Z}, 0 < x < 1\} \\ \cup \{(-\infty, n) : n \in \mathbb{Z}\} \\ T' = \{(n, n + 1) : n \in \mathbb{Z}\} \cup \{(-\infty, +\infty)\} \\ \cup \{(n, n + x], \{x\} : n \in \mathbb{Z}, 0 < x < 1\} \\ \cup \{(-n, n), (-n, n + 1) : n > 0 \in \mathbb{Z}\}.$$

We focus on the last line of each union, which is essentially an A_{∞} cluster. The rest just "fills in" the holes between each pair of consecutive integers. At time $t = 1 - \frac{3}{2^{n+1}}$, we mutate $(-\infty, n) \xrightarrow{\mu} (-n, n+1)$, n > 0. At time $t = 1 - \frac{1}{2^n}$, we mutate $(-\infty, -n) \xrightarrow{\mu} (-n - 1, n + 1)$, $n \ge 0$.

Further Questions:

- Which continuous clusters can be laminated?
- Which continuous clusters are reachable from each other?
- Can we construct a continuous cluster algebra?
- Can we use a similar construction (continuous versions of the quiver, clusters, *and* mutation) for type *D*?

Thank you!

- K. Baur and S. Gratz, Transfinite mutations in the completed infinity-gon, Journal of Combinatorial Series A, Volume 155, April 2018, 321 – 359
- T. Holm and P. Jørgensen, On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon, Math. Z. (2012) 270: 277 – 295
- K. Igusa and G. Todorov, *Continuous Cluster Categories I*, Algebras and Representation Theory (2015), 18:65 101.