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The Theorem

Theorem

Let C be a 2d-Calabi-Yau K-linear Hom-finite (d + 2)-angulated
category with split idempotents and d odd, and let T = add(T )
be an Oppermann-Thomas cluster tilting subcategory.

Assume that if c , x ∈ C are indecomposable, then Hom C
[ΣdT ]

(c , x)

and Hom C
[ΣdT ]

(x ,Σd(c)) cannot be simultaneously non-zero.

Then each indecomposable object c ∈ C is uniquely determined by
its index with respect to T up to isomorphism.
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Recalling the Index

We have a (d + 2)-angulated category C and an
Oppermann-Thomas cluster tilting subcategory T .

By definition, any object c ∈ C appears in a (d + 2)-angle

td → td−1 → . . .→ t0 → c → Σd td

where each ti is an object in T .

The index of c with respect to T is defined as

IndT (c) := Σd
i=0(−1)i [ti ]

where each [ti ] is an element of K split
0 (T ).

For objects t ∈ T , we see that IndT (t) = [t]
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The Triangulated Case

The inspiration came from the following result by Dehy and Keller
(“On the combinatorics of rigid objects in 2-Calabi-Yau
categories”, 2008):

Theorem

Let K be an algebraically closed field, let C be a K-linear
Hom-finite triangulated category with split idempotents, and
assume also that C is 2-Calabi-Yau.

Let T be a cluster tilting subcategory of C . Then the index
induces an injection from the set of isomorphism classes of rigid
objects into KSplit

0 (T ).
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A Technical Statement

Proposition

Let C be a K-linear, Hom-finite, 2d-Calabi-Yau (d + 2)-angulated
category with split idempotents, and let T be an
Oppermann-Thomas cluster tilting subcategory. Suppose that for
c ∈ C we have a (d + 2)-angle

td → td−1 → · · · → t1 → t0 → c → Σd(td)

with ti ∈ T . Then for any x ∈ C , there is an exact sequence

0→Hom C
[ΣdT ]

(c , x)→ HomC (t0, x)→ HomC (t1, x)→

· · · → HomC (td , x)→ DHom C
[ΣdT ]

(x ,Σd(c))→ 0.
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The (d + 2)-angulated case

dimKHom C
[ΣdT ]

(c , x) + (−1)ddimKHom C
[ΣdT ]

(x ,Σd(c)) =

Σi=d
i=0 (−1)idimKHomC (ti , x).

The result holds for indecomposables, and in fact the method used
is due to Auslander’s work on algebras without short chains.
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The (d + 2)-angulated higher cluster categories of Dynkin
type A

A family of categories introduced by Oppermann and Thomas
(“Higher dimensional cluster combinatorics and representation
theory”, 2010), which we denote C (Ad

n).

These categories are an example of a situation in which the
technical assumptions of the result are met.

A special case of these categories gives the classic triangulated
case, as seen in the combinatorial description.
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The (d + 2)-angulated higher cluster categories of Dynkin
type A

To describe C (Ad
n), take a cyclic ordering of

Z = {1, 2, . . . , n + 2d + 1}; we can consider these the
vertices of an (n + 2d + 1)-gon.

The indecomposables of C (Ad
n) are in bijection with the

subsets of Z of size (d + 1) that contain no neighbouring
vertices. We will refer to the indecomposables by their
corresponding subset.
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The (d + 2)-angulated higher cluster categories of Dynkin
type A

Two indecomposables X and Y intertwine if there are
labellings X = {x0, x1, . . . , xd} and Y = {y0, y1, . . . , yd} such
that

x0 < y0 < x1 < y1 < x2 < . . . < xd < yd < x0

with respect to the ordering.

The functor Σd applied to an indecomposable is equivalent to
shifting all of the vertices in the subset down by one.
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The (d + 2)-angulated higher cluster categories of Dynkin
type A

Oppermann-Thomas cluster tilting subcategories can be
generated from Oppermann-Thomas cluster tilting objects.

These are rigid objects with the correct number of
indecomposable summands.

An example of this is the “fan” at a single vertex.
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An Example

There are several technical assumptions in the result,
including the assumption that d is odd.

Let C be the 4-angulated higher cluster categories of Dynkin
type A2.

Let T be an Oppermann-Thomas cluster tilting subcategory
of C .
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An Example

Take an indecomposable t ∈ T , which we recall means that
IndT (t) = [t]. Then we have the trivial 4-angle

t → t → 0→ 0→ Σ2t,

which gives the 4-angle

t → 0→ 0→ Σ2t → Σ2t.

This in turn means that IndT (Σ2t) = [t].
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An Example

Let T be the “fan” at 1; that is, the subcategory generated by all
the indecomposable objects of C containing the vertex 1. Then we
see that

IndT ((1, 3, 5)) = IndT ((2, 4, 7))

which shows that the theorem doesn’t generalise to this situation.
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Next Steps

We are continuing to explore results that can (and cannot) be
generalised to the higher dimensional case.

We are also working on calculating indeces computationally.
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Thank you for your attention

More detail can be found at arXiv:1901.08953

Any questions?
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