Indecomposable objects determined by their index in Higher Homological Algebra

Joe Reid

Let \mathscr{C} be a 2d-Calabi-Yau K-linear Hom-finite (d + 2)-angulated category with split idempotents and d odd, and let $\mathscr{T} = \operatorname{add}(T)$ be an Oppermann-Thomas cluster tilting subcategory.

Assume that if $c, x \in \mathscr{C}$ are indecomposable, then $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(c, x)$ and $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(x, \Sigma^d(c))$ cannot be simultaneously non-zero.

Let \mathscr{C} be a 2d-Calabi-Yau K-linear Hom-finite (d + 2)-angulated category with split idempotents and d odd, and let $\mathscr{T} = \operatorname{add}(T)$ be an Oppermann-Thomas cluster tilting subcategory.

Assume that if $c, x \in \mathscr{C}$ are indecomposable, then $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(c, x)$ and $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(x, \Sigma^d(c))$ cannot be simultaneously non-zero.

Recalling the Index

- We have a (d + 2)-angulated category & and an Oppermann-Thomas cluster tilting subcategory *I*.
- By definition, any object $c \in \mathscr{C}$ appears in a (d+2)-angle

$$t_d \to t_{d-1} \to \ldots \to t_0 \to c \to \Sigma^d t_d$$

where each t_i is an object in \mathscr{T} .

• The index of c with respect to \mathcal{T} is defined as

$$\operatorname{Ind}_{\mathscr{T}}(c) := \Sigma_{i=0}^d (-1)^i [t_i]$$

where each $[t_i]$ is an element of $K_0^{\text{split}}(\mathscr{T})$. • For objects $t \in \mathscr{T}$, we see that $\text{Ind}_{\mathscr{T}}(t) = [t]$ The inspiration came from the following result by Dehy and Keller ("On the combinatorics of rigid objects in 2-Calabi-Yau categories", 2008):

Theorem

Let K be an algebraically closed field, let \mathscr{C} be a K-linear Hom-finite triangulated category with split idempotents, and assume also that \mathscr{C} is 2-Calabi-Yau.

Let \mathscr{T} be a cluster tilting subcategory of \mathscr{C} . Then the index induces an injection from the set of isomorphism classes of rigid objects into $K_0^{\text{Split}}(\mathscr{T})$.

Let \mathscr{C} be a 2d-Calabi-Yau K-linear Hom-finite (d + 2)-angulated category with split idempotents and d odd, and let $\mathscr{T} = \operatorname{add}(T)$ be an Oppermann-Thomas cluster tilting subcategory.

Assume that if $c, x \in \mathscr{C}$ are indecomposable, then $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(c, x)$ and $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(x, \Sigma^d(c))$ cannot be simultaneously non-zero.

Proposition

Let \mathscr{C} be a K-linear, Hom-finite, 2d-Calabi-Yau (d + 2)-angulated category with split idempotents, and let \mathscr{T} be an Oppermann-Thomas cluster tilting subcategory. Suppose that for $c \in \mathscr{C}$ we have a (d + 2)-angle

$$t_d \rightarrow t_{d-1} \rightarrow \cdots \rightarrow t_1 \rightarrow t_0 \rightarrow c \rightarrow \Sigma^d(t_d)$$

with $t_i \in \mathscr{T}$. Then for any $x \in \mathscr{C}$, there is an exact sequence

$$\begin{array}{l} 0 \rightarrow & \operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(c,x) \rightarrow \operatorname{Hom}_{\mathscr{C}}(t_0,x) \rightarrow \operatorname{Hom}_{\mathscr{C}}(t_1,x) \rightarrow \\ & \cdots \rightarrow \operatorname{Hom}_{\mathscr{C}}(t_d,x) \rightarrow D\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(x,\Sigma^d(c)) \rightarrow 0. \end{array}$$

$$\begin{split} \dim_{\mathsf{K}} \mathrm{Hom}_{\frac{\mathscr{C}}{[\Sigma^{d}\mathcal{T}]}}(c,x) + (-1)^{d} \dim_{\mathsf{K}} \mathrm{Hom}_{\frac{\mathscr{C}}{[\Sigma^{d}\mathcal{T}]}}(x,\Sigma^{d}(c)) = \\ \Sigma_{i=0}^{i=d}(-1)^{i} \dim_{\mathsf{K}} \mathrm{Hom}_{\mathscr{C}}(t_{i},x). \end{split}$$

The result holds for indecomposables, and in fact the method used is due to Auslander's work on algebras without short chains.

Let \mathscr{C} be a 2d-Calabi-Yau K-linear Hom-finite (d + 2)-angulated category with split idempotents and d odd, and let $\mathscr{T} = \operatorname{add}(T)$ be an Oppermann-Thomas cluster tilting subcategory.

Assume that if $c, x \in \mathscr{C}$ are indecomposable, then $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(c, x)$ and $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(x, \Sigma^d(c))$ cannot be simultaneously non-zero.

- A family of categories introduced by Oppermann and Thomas ("Higher dimensional cluster combinatorics and representation theory", 2010), which we denote $\mathscr{C}(A_n^d)$.
- These categories are an example of a situation in which the technical assumptions of the result are met.
- A special case of these categories gives the classic triangulated case, as seen in the combinatorial description.

The (d + 2)-angulated higher cluster categories of Dynkin type A

- To describe 𝔅(A^d_n), take a cyclic ordering of 𝔅 = {1, 2, ..., n + 2d + 1}; we can consider these the vertices of an (n + 2d + 1)-gon.
- The indecomposables of C(A^d_n) are in bijection with the subsets of Z of size (d + 1) that contain no neighbouring vertices. We will refer to the indecomposables by their corresponding subset.

The (d + 2)-angulated higher cluster categories of Dynkin type A

• Two indecomposables X and Y intertwine if there are labellings $X = \{x_0, x_1, \dots, x_d\}$ and $Y = \{y_0, y_1, \dots, y_d\}$ such that

$$x_0 < y_0 < x_1 < y_1 < x_2 < \ldots < x_d < y_d < x_0$$

with respect to the ordering.

 The functor Σ^d applied to an indecomposable is equivalent to shifting all of the vertices in the subset down by one.

The (d + 2)-angulated higher cluster categories of Dynkin type A

- Oppermann-Thomas cluster tilting subcategories can be generated from Oppermann-Thomas cluster tilting objects.
- These are rigid objects with the correct number of indecomposable summands.
- An example of this is the "fan" at a single vertex.

Let \mathscr{C} be a 2d-Calabi-Yau K-linear Hom-finite (d + 2)-angulated category with split idempotents and d odd, and let $\mathscr{T} = \operatorname{add}(T)$ be an Oppermann-Thomas cluster tilting subcategory.

Assume that if $c, x \in \mathscr{C}$ are indecomposable, then $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(c, x)$ and $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(x, \Sigma^d(c))$ cannot be simultaneously non-zero.

- There are several technical assumptions in the result, including the assumption that *d* is odd.
- Let \mathscr{C} be the 4-angulated higher cluster categories of Dynkin type A_2 .
- Let \mathscr{T} be an Oppermann-Thomas cluster tilting subcategory of \mathscr{C} .

Take an indecomposable $t \in \mathscr{T}$, which we recall means that $\operatorname{Ind}_{\mathscr{T}}(t) = [t]$. Then we have the trivial 4-angle

$$t \rightarrow t \rightarrow 0 \rightarrow 0 \rightarrow \Sigma^2 t$$
,

which gives the 4-angle

$$t \rightarrow 0 \rightarrow 0 \rightarrow \Sigma^2 t \rightarrow \Sigma^2 t.$$

This in turn means that $\operatorname{Ind}_{\mathscr{T}}(\Sigma^2 t) = [t]$.

Let $\mathscr T$ be the "fan" at 1; that is, the subcategory generated by all the indecomposable objects of $\mathscr C$ containing the vertex 1. Then we see that

$$\operatorname{Ind}_{\mathscr{T}}((1,3,5)) = \operatorname{Ind}_{\mathscr{T}}((2,4,7))$$

which shows that the theorem doesn't generalise to this situation.

Let \mathscr{C} be a 2d-Calabi-Yau K-linear Hom-finite (d + 2)-angulated category with split idempotents and d odd, and let $\mathscr{T} = \operatorname{add}(T)$ be an Oppermann-Thomas cluster tilting subcategory.

Assume that if $c, x \in \mathscr{C}$ are indecomposable, then $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(c, x)$ and $\operatorname{Hom}_{\frac{\mathscr{C}}{[\Sigma^d \mathscr{T}]}}(x, \Sigma^d(c))$ cannot be simultaneously non-zero.

- We are continuing to explore results that can (and cannot) be generalised to the higher dimensional case.
- We are also working on calculating indeces computationally.

- More detail can be found at arXiv:1901.08953
- Any questions?