

Matrix Problems Associated to Some Brauer Configuration Algebras Maurice Auslander Distinguished Lectures Falmouth-USA

Agustín Moreno Cañadas jointly with; Pedro Fernández, José A. Velez-Marulanda, Hernán Giraldo

04/25/2019

< (17) > < (17) > (17)

Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

- 2 Brauer Configuration Algebras
- Some Matrix Problems
 The Kronecker Problem

4 Helices

- Helices and Exceptional Sequences
- Cycles
- The Four Subspace Problem (FSP)

5 References

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

通 と く ヨ と く ヨ と

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

- 2 Brauer Configuration Algebras
- 3 Some Matrix ProblemsThe Kronecker Problem

4 Helices

- Helices and Exceptional Sequences
- Cycles
- The Four Subspace Problem (FSP)

5 References

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

- 2 Brauer Configuration Algebras
- 3 Some Matrix Problems
 - The Kronecker Problem

4 Helices

- Helices and Exceptional Sequences
- Cycles
- The Four Subspace Problem (FSP)

5 References

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

• • = • • = •

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

- 1 Aims and Scope
- 2 Brauer Configuration Algebras
- 3 Some Matrix Problems
 - The Kronecker Problem
- 4 Helices
 - Helices and Exceptional Sequences
 - Cycles
 - The Four Subspace Problem (FSP)

5 References

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

• • = • • = •

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

- 1 Aims and Scope
- 2 Brauer Configuration Algebras
- 3 Some Matrix Problems
 - The Kronecker Problem
- 4 Helices
 - Helices and Exceptional Sequences
 - Cycles
 - The Four Subspace Problem (FSP)

5 References

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

A = A = A

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

Bijections between solutions of the Kronecker problem and the four subspace problem with indecomposable projective modules over some Brauer configuration algebras are obtained by interpreting elements of some integer sequences as polygons of suitable Brauer configurations.

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

向下 イヨト イヨト

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

Ideas from the Medellin CIMPA School

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の久()

Some Matrix Problems

lelices

References

00000000

200

Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

Brauer Configuration Algebras

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ロト ・回ト ・ヨト ・ヨト

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

Definition

Recently, E.L. Green and S. Schroll introduced Brauer configuration algebras as a way to deal with research of algebras of wild representation type (*Brauer configuration algebras: A generalization of Brauer graph algebras, E.L. Green, S. Schroll, Bull. Sci. Math. vol.* 141, 2017, 539-572).

Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

A Brauer configuration is a tuple $\Gamma = (\Gamma_0, \Gamma_1, \mu, \mathcal{O})$ where Γ_0 is a set of vertices, Γ_1 is a set of polygons, $\mu : \Gamma_0 \to \mathbb{N}$ is a multiplicity function and \mathcal{O} is an orientation, such that the following conditions hold:

C(1) Every vertex in Γ_0 is a vertex in at least one polygon in Γ_1 .

C(3) Every polygon has at least a vertex happening more than once (nontruncated vertex).

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ 同 ト ・ ヨ ト ・ ヨ ト

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

A Brauer configuration is a tuple $\Gamma = (\Gamma_0, \Gamma_1, \mu, \mathcal{O})$ where Γ_0 is a set of vertices, Γ_1 is a set of polygons, $\mu : \Gamma_0 \to \mathbb{N}$ is a multiplicity function and \mathcal{O} is an orientation, such that the following conditions hold:

C(1) Every vertex in Γ_0 is a vertex in at least one polygon in Γ_1 .

C(2) Every polygon has at least two vertices.

C(3) Every polygon has at least a vertex happening more than once (nontruncated vertex).

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

A Brauer configuration is a tuple $\Gamma = (\Gamma_0, \Gamma_1, \mu, \mathcal{O})$ where Γ_0 is a set of vertices, Γ_1 is a set of polygons, $\mu : \Gamma_0 \to \mathbb{N}$ is a multiplicity function and \mathcal{O} is an orientation, such that the following conditions hold:

- C(1) Every vertex in Γ_0 is a vertex in at least one polygon in Γ_1 .
- C(2) Every polygon has at least two vertices.
- C(3) Every polygon has at least a vertex happening more than once (nontruncated vertex).

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

The cyclic ordering at vertex α is obtained by linearly ordering the list (i.e., $V_{i_1} < \cdots < V_{i_t}$ and by adding $V_{i_t} < V_{i_1}$). Such a list is said to be the successor sequence at α .

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

→ < Ξ >

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

The Quiver of a Brauer Configuration Algebra

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ロ・ ・ 日・ ・ ヨ・ ・

ъ.

The quiver Q_{Γ} of a Brauer configuration algebra is defined in such a way that the vertex set $\{v_1, v_2, \ldots, v_m\}$ of Q_{Γ} is in correspondence with the set of polygons $\{V_1, V_2, \ldots, V_m\}$ in Γ_1 , noting that there is one vertex in Q_{Γ} for every polygon in Γ_1 .

Arrows in Q_{Γ} are defined by the successor sequences.

For each non-truncated vertex $\alpha \in \Gamma_0$ and each successor V' of V at α , there is an arrow from v to v' in Q_{Γ} where v and v' are the vertices in Q_{Γ} associated to the polygons V and V' in Γ_1 , respectively.

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

- 4 回 2 - 4 回 2 - 4 回 2

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

- $\ \, {\bf I}_0=\{1,2,3,4\},$
- **2** $\Gamma_1 = \{U = \{1, 1, 2, 3, 3, 4\}, V = \{1, 2, 3, 4, 4, 4\}\},\$
- ${igsidentsigma}$ At vertex 1, it holds that; U < U < V, val(1) = 3,
- ④ At vertex 2, it holds that; U < V, val(2) = 2,
- (1) At vertex 3, it holds that; U < U < V, val(3) = 3
- At vertex 4, it holds that; U < V < V < V, val(4) = 4,
- $\bigcirc \mu(\alpha) = 1$ for any vertex α .

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

▲□ → ▲ 三 → ▲ 三 →

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

$$0 \ \ \Gamma_0 = \{1,2,3,4\},$$

2 $\Gamma_1 = \{U = \{1, 1, 2, 3, 3, 4\}, V = \{1, 2, 3, 4, 4, 4\}\},\$

3 At vertex 1, it holds that; U < U < V, val(1) = 3,

- ④ At vertex 2, it holds that; U < V, val(2) = 2,
- (a) At vertex 3, it holds that; U < U < V, val(3) = 3
- At vertex 4, it holds that; U < V < V < V, val(4) = 4,

$$\mu(\alpha) = 1$$
 for any vertex α .

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

▲□ → ▲ 三 → ▲ 三 →

I naa

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

$$0 \ \ \Gamma_0 = \{1,2,3,4\},$$

2 $\Gamma_1 = \{U = \{1, 1, 2, 3, 3, 4\}, V = \{1, 2, 3, 4, 4, 4\}\},\$

3 At vertex 1, it holds that; U < U < V, val(1) = 3,

④ At vertex 2, it holds that; U < V, val(2) = 2

(a) At vertex 3, it holds that; U < U < V, val(3) = 3

• At vertex 4, it holds that; U < V < V, val(4) = 4,

$$\square \mu(\alpha) = 1$$
 for any vertex α .

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

∃ <\0<</p>

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

- Γ₀ = {1,2,3,4},
 Γ₁ = {U = {1,1,2,3,3,4}, V = {1,2,3,4,4,4}},
 At vertex 1, it holds that; U < U < V, val(1) = 3,
 At vertex 2, it holds that; U < V, val(2) = 2,
 At vertex 3, it holds that; U < U < V, val(3) = 3
 At vertex 4, it holds that; U < V < V < V, val(4) = 4,
- (i) $\mu(\alpha) = 1$ for any vertex α .

Universidad Nacional de <u>Colombia</u>

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

- Γ₀ = {1,2,3,4},
 Γ₁ = {U = {1,1,2,3,3,4}, V = {1,2,3,4,4,4}},
 At vertex 1, it holds that; U < U < V, val(1) = 3,
 At vertex 2, it holds that; U < V, val(2) = 2,
 At vertex 3, it holds that; U < U < V, val(3) = 3
 At vertex 4, it holds that; U < V < V < V, val(4) = 4,
- $\bigcirc \mu(\alpha) = 1$ for any vertex α .

Universidad Nacional de <u>Colombia</u>

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

Γ₀ = {1,2,3,4},
Γ₁ = {U = {1,1,2,3,3,4}, V = {1,2,3,4,4,4}},
At vertex 1, it holds that; U < U < V, val(1) = 3,
At vertex 2, it holds that; U < V, val(2) = 2,
At vertex 3, it holds that; U < U < V, val(3) = 3
At vertex 4, it holds that; U < V < V < V, val(4) = 4,
μ(α) = 1 for any vertex α.

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

Γ₀ = {1,2,3,4},
Γ₁ = {U = {1,1,2,3,3,4}, V = {1,2,3,4,4,4}},
At vertex 1, it holds that; U < U < V, val(1) = 3,
At vertex 2, it holds that; U < V, val(2) = 2,
At vertex 3, it holds that; U < U < V, val(3) = 3
At vertex 4, it holds that; U < V < V < V, val(4) = 4,
μ(α) = 1 for any vertex α.

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

Quiver of the BCA:

(1)

= 900

・ロ・ ・ 日・ ・ ヨ・ ・

Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

Some Properties of Brauer Configuration Algebras

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Aims and Scope	Brauer Configuration Algebras	Some Matrix Pro

ces References

00000000

伺 ト イヨト イヨト

3

Definition

Let k be a field and Γ a Brauer configuration. The Brauer configuration algebra associated to Γ is defined to be kQ_{Γ}/I_{Γ} , where Q_{Γ} is the quiver associated to Γ and I_{Γ} is the ideal in kQ_{Γ} generated by a set of relations ρ_{Γ} of type I, II and III.

Universidad Nacional de Colombia

The ideal of relations I_{Γ} of the Brauer configuration algebra associated to the Brauer configuration Γ is generated by three types of relations:

1 Relations of type I. For each polygon

 $V = \{\alpha_1, \ldots, \alpha_m\} \in \Gamma_1$ and each pair of non-truncated vertices α_i and α_j in V, the set of relations ρ_{Γ} contains all relations of the form $C^{\mu(\alpha_i)} - C'^{\mu(\alpha_j)}$ where C is a special α_i -cycle and C' is a special α_i -cycle.

- **Relations of type II**. Relations of type II are all paths of the form C^{μ(α)}a where C is a special α-cycle and a is the first arrow in C.
- **Relations of type III**. These relations are quadratic monomial relations of the form *ab* in *kQ*_Γ where *ab* is not a subpath of any special cycle unless *a* = *b* and *a* is a loop associated to a vertex of valency 1 and μ(α) > 1.

Universidad Nacional de Colombia

The ideal of relations I_{Γ} of the Brauer configuration algebra associated to the Brauer configuration Γ is generated by three types of relations:

O Relations of type I. For each polygon

 $V = \{\alpha_1, \ldots, \alpha_m\} \in \Gamma_1$ and each pair of non-truncated vertices α_i and α_j in V, the set of relations ρ_{Γ} contains all relations of the form $C^{\mu(\alpha_i)} - C'^{\mu(\alpha_j)}$ where C is a special α_i -cycle and C' is a special α_i -cycle.

- **Relations of type II**. Relations of type II are all paths of the form C^{μ(α)}a where C is a special α-cycle and a is the first arrow in C.
- ③ Relations of type III. These relations are quadratic monomial relations of the form *ab* in *kQ*_Γ where *ab* is not a subpath of any special cycle unless *a* = *b* and *a* is a loop associated to a vertex of valency 1 and μ(α) > 1.

Universidad Nacional de Colombia

The ideal of relations I_{Γ} of the Brauer configuration algebra associated to the Brauer configuration Γ is generated by three types of relations:

O Relations of type I. For each polygon

 $V = \{\alpha_1, \ldots, \alpha_m\} \in \Gamma_1$ and each pair of non-truncated vertices α_i and α_j in V, the set of relations ρ_{Γ} contains all relations of the form $C^{\mu(\alpha_i)} - C'^{\mu(\alpha_j)}$ where C is a special α_i -cycle and C' is a special α_i -cycle.

- **Relations of type II**. Relations of type II are all paths of the form C^{μ(α)}a where C is a special α-cycle and a is the first arrow in C.
- Selations of type III. These relations are quadratic monomial relations of the form *ab* in *kQ*_Γ where *ab* is not a subpath of any special cycle unless *a* = *b* and *a* is a loop associated to a vertex of valency 1 and μ(α) > 1.

Universidad Nacional de Colombia

0000000

Theorem

Let Λ be a Brauer configuration algebra with Brauer configuration Γ .

- There is a bijective correspondence between the set of projective indecomposable Λ-modules and the polygons in Γ.
- If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ. Then rad P is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices of V and where the intersection of any two of the uniserial modules is a simple Λ-module.
- ③ A Brauer configuration algebra is a multiserial algebra.
- The number of summands in the heart of a projective indecomposable Λ -module P such that $\operatorname{rad}^2 P \neq 0$ equals the number of non-truncated vertices of the polygons in Γ

Agustin Moreno Canadas Jondy With, Pedro Ternandez, 3038 A. Velez-Marulanda, Hernan Gran Universidad Nacional de Colombia 200

Let Λ be a Brauer configuration algebra with Brauer configuration Γ .

 There is a bijective correspondence between the set of projective indecomposable Λ-modules and the polygons in Γ.

If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ. Then rad P is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices of V and where the intersection of any two of the uniserial modules is a simple Λ-module.

- In the second state of the second state of
- The number of summands in the heart of a projective indecomposable Λ-module P such that rad² P ≠ 0 equals the number of non-truncated vertices of the polygons in Γ

ngusan Moreno Canadas Jointy with, Pedro Fernandez, José A. Velez-Marulanda, Hernan Graid Universidad Nacional de Colombia

Let Λ be a Brauer configuration algebra with Brauer configuration Γ .

- There is a bijective correspondence between the set of projective indecomposable Λ-modules and the polygons in Γ.
- If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ. Then rad P is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices of V and where the intersection of any two of the uniserial modules is a simple Λ-module.
- In the second s second sec
- The number of summands in the heart of a projective indecomposable Λ-module P such that rad² P ≠ 0 equals the number of non-truncated vertices of the polygons in Γ

ngustin Moreno Canadas Joindy With, Fedro Fernandez, José A. Velez-Marulanda, Hernan Girai Universidad Nacional de Colombia

Let Λ be a Brauer configuration algebra with Brauer configuration Γ .

- There is a bijective correspondence between the set of projective indecomposable Λ-modules and the polygons in Γ.
- If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ. Then rad P is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices of V and where the intersection of any two of the uniserial modules is a simple Λ-module.
- 3 A Brauer configuration algebra is a multiserial algebra.
- The number of summands in the heart of a projective indecomposable Λ-module P such that rad² P ≠ 0 equals the number of non-truncated vertices of the polygons in Γ

Agustin Moreno Canadas jointly with, Fedro Fernandez, Jose A. veicz-Mardianda, Hernan Giraid Universidad Nacional de Colombia

Let Λ be a Brauer configuration algebra with Brauer configuration Γ .

- There is a bijective correspondence between the set of projective indecomposable Λ-modules and the polygons in Γ.
- If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ. Then rad P is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices of V and where the intersection of any two of the uniserial modules is a simple Λ-module.
- **③** A Brauer configuration algebra is a multiserial algebra.
- G The number of summands in the heart of a projective indecomposable Λ-module P such that rad² P ≠ 0 equals the number of non-truncated vertices of the polygons in Γ

Aguson Moreno เอกสสอราคากๆ din retio Tensกละแขระยัดสางสออหมาแปกเลก Fiernan Grand Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

Proposition

Let Λ be the Brauer configuration algebra associated to the Brauer configuration Γ . For each $V \in \Gamma_1$ choose a non-truncated vertex α and exactly one special α -cycle C_V at V then

 $\{\overline{p} \mid p \text{ is a proper prefix of some } C^{\mu(\alpha)} \text{ where } C \text{ is a special } \alpha - cycle} \bigcup \{\overline{C^{\mu(\alpha)}} \mid V \in \Gamma_1\} \text{ is a } k\text{-basis of } \Lambda.$

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA
Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

Some Matrix Problems

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ロト ・回ト ・ヨト ・ヨト

= 990

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems ●0000	Helices 0000	References
The Kronecker Problem				

The Kronecker Problem

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ロン ・四 と ・ ヨ と ・ ヨ と

= 900

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 0●000	Helices 0000	References	
The Kronecker Problem					

The classification of indecomposable Kronecker modules was solved by Weierstrass in 1867 for some particular cases and by Kronecker in 1890 for the complex number field case.

This flat matrix problem of type Gelfand is equivalent to the problem of finding canonical Jordan form of pairs (A, B) of matrices with respect to the following elementary transformations:

(i) All elementary transformations on rows of the block matrix (A, B).

(ii) All elementary transformations made simultaneously on columns of *A* and *B* having the same index number.

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 0●000	Helices 0000	References	
The Kronecker Problem					

The classification of indecomposable Kronecker modules was solved by Weierstrass in 1867 for some particular cases and by Kronecker in 1890 for the complex number field case.

This flat matrix problem of type Gelfand is equivalent to the problem of finding canonical Jordan form of pairs (A, B) of matrices with respect to the following elementary transformations:

- (i) All elementary transformations on rows of the block matrix (*A*, *B*).
- (ii) All elementary transformations made simultaneously on columns of A and B having the same index number.

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00●00	Helices 0000	References
The Kronecker Problem				

If k is an algebraically closed field then up to isomorphism every indecomposable Kronecker module belongs to one of the following three classes:

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

► < Ξ >

э

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 000●0	Helices 0000	References
The Kronecker Problem				
	-	-		
	0:	In Fn		

where F_n is a Frobenius matrix or companion matrix of a minimal polynomial $p^s(t)$ with $n = s \partial p(t)$, $\partial p(t)$ denotes the degree of the polynomial p(t).

where $J_n(0) \in \{J_n^+(0), J_n^-(0)\}$ and $J_n^{\pm}(0)$ denotes a corresponding upper or lower Jordan block. Whereas, I* denotes the dual case defined by the classification problem.

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

▲□ ▶ ▲ □ ▶ ▲ □ ▶

3

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices	References

Helices

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ロト ・回ト ・ヨト ・ヨト

ъ.

Pedro Fernández, Hernán Giraldo and A.M.C associated to each indecomposable preprojective Kronecker module some helices which are paths running through the rows of the matrix block as follows:

 $\{a_{1,j}, b_{1,1}, b_{r_1,1}, a_{r_1,s_1}, a_{r_2,s_1}, b_{r_2,s_2}, b_{r_3,s_2}, a_{r_3,s_3}, \dots, l_{r_t,s_t}\}$ where starting vertices are entries in the null row of matrix A.

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

(ロ) (四) (三) (三)

э

Figure: Preprojective (5, 4); A052558={4, 12, 48, 72, ... } (the number of helices associated to a preprojective Kronecker module equals the number of ways of connecting n + 1 equally spaced points on a circle with a path of n line segments ignoring reflections).

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

Regarding the number of helices associated to preprojective Kronecker modules, we have the following result (Pedro Fernández, Hernán Giraldo, A.M.C)

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

э

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

Theorem

If (n + 1, n) denotes an indecomposable preprojective Kronecker module then the number of helices associated to (n + 1, n) is $h_n^p = n! \lceil \frac{n}{2} \rceil$ where $\lceil x \rceil$ denotes the smallest integer greatest than x. In particular,

$$h_n^p = (n-1)(n-2)h_{n-1}^p + h_{n-1}^i$$

where h_n^i denotes the number of helices associated to the preinjective module (n, n + 1).

3

Universidad Nacional de Colombia

is and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	Refer
			00000000	
Constlation				
Corollary				
For $n \ge 3$ fixed	d, let Γ be the Brauer configuration Γ =	$= (\Gamma_0, \Gamma_1, \mathcal{O}, \mu)$ such that:		
2 The or				

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ロト ・回ト ・ヨト ・ヨト

ъ.

Source of the second s	ims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References
For $n \ge 3$ fixed, let Γ be the Brauer configuration $\Gamma = (\Gamma_0, \Gamma_1, \mathcal{O}, \mu)$ such that: $ \begin{array}{l} \bullet \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$					
For $n \ge 3$ fixed, let Γ be the Brauer configuration $\Gamma = (\Gamma_0, \Gamma_1, \mathcal{O}, \mu)$ such that: \mathbf{O} $\Gamma_0 = \{x_1, x_2\},$ $\Gamma_1 = \{V_k = x_1^{(2k+2)!} x_2^{\binom{k}{2}(2k+2)!}\}_{1 \le k \le n}.$ (2) (3) The orientation \mathcal{O} is defined in such a way that for $n \ge 1$ At vertex x_1 : $V_1^{(4)} \le V_2^{(6)} \le V_3^{(6)} \le \cdots \le V_n^{\binom{(2n+2)!}{2}},$ $At vertex x_2: V_1^{(12)} \le V_2^{(720)} \le V_3^{(60480)} \le \cdots \le V_n^{\binom{(2n+2)!}{2}}, \mu(\alpha) = 1, \text{ for any vertex } \alpha \in \Gamma_0. Then there exists a bijective correspondence between indecomposable projective \Lambda_{\Gamma}-modules and indecomposable preprojective Kronecker modules of the form (2k + 3, 2k + 2), 1 \le k \le n.$					
For $n \ge 3$ fixed, let Γ be the Brauer configuration $\Gamma = (\Gamma_0, \Gamma_1, \mathcal{O}, \mu)$ such that: $T_0 = \{x_1, x_2\},$ $\Gamma_0 = \{x_1, x_2\},$ $\Gamma_1 = \{V_k = x_1^{(2k+2)!} x_2^{\binom{k}{2}(\frac{2k+2)!}} \}_{1 \le k \le n}.$ (2) The orientation \mathcal{O} is defined in such a way that for $n \ge 1$ At vertex x_1 : $V_1^{(4)} \le V_2^{(6)} \le V_3^{(8)} \le \dots \le V_n^{\binom{(2n+2)!}{2}},$ $At vertex x_2: V_1^{(12)} \le V_2^{(720)} \le V_3^{(60480)} \le \dots \le V_n^{\binom{(2n+2)!}{2}}, \mu(\alpha) = 1, \text{ for any vertex } \alpha \in \Gamma_0. Then there exists a bijective correspondence between indecomposable projective \Lambda_{\Gamma}-modules and indecomposable preprojective Kronecker modules of the form (2k + 3, 2k + 2), 1 \le k \le n.$					
For $n \ge 3$ fixed, let Γ be the Brauer configuration $\Gamma = (\Gamma_0, \Gamma_1, \mathcal{O}, \mu)$ such that: $\Gamma_0 = \{x_1, x_2\},$ $\Gamma_1 = \{V_k = x_1^{(2k+2)!} x_2^{\binom{k}{2}(2k+2)!}\}_{1 \le k \le n}.$ (2) (2) The orientation \mathcal{O} is defined in such a way that for $n \ge 1$ At vertex x_1 ; $V_1^{(4)} \le V_2^{(6)} \le V_3^{(8)} \le \dots \le V_n^{((2n+2)!)},$ At vertex x_2 ; $V_1^{(12)} \le V_2^{(720)} \le V_3^{(60480)} \le \dots \le V_n^{\binom{((n)(2n+2)!)}{2}},$ (3) $\mu(\alpha) = 1, \text{ for any vertex } \alpha \in \Gamma_0.$ Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \le k \le n.$	Corollar	у			
$ \begin{aligned} \mathbf{O} \\ & \Gamma_0 = \{x_1, x_2\}, \\ & \Gamma_1 = \{V_k = x_1^{(2k+2)!}, x_2^{(k)(2k+2)!}\}_{1 \le k \le n}. \end{aligned} $ $ \begin{aligned} \mathbf{O} \text{ is defined in such a way that for } n \ge 1 \end{aligned} $ $ At \text{ vertex } x_1; \ V_1^{(4)} \le V_2^{(6)} \le V_3^{(8)} \le \cdots \le V_n^{((2n+2)!)}, \\ & At \text{ vertex } x_2; \ V_1^{(12)} \le V_2^{(720)} \le V_3^{(60480)} \le \cdots \le V_n^{((m)(2n+2)!)}, \\ & \mu(\alpha) = 1, \text{for any vertex } \alpha \in \Gamma_0. \end{aligned} $ $ \end{aligned} $ $ \textbf{Then there exists a bijective correspondence between indecomposable projective A_{\Gamma}-modules and indecomposable preprojective Kronecker modules of the form (2k + 3, 2k + 2), 1 \le k \le n. \end{aligned} $	For $n \ge 3$ fix	red, let Γ be the Brauer configuration Γ =	= $(\Gamma_0, \Gamma_1, \mathcal{O}, \mu)$ such that:		
$\Gamma_{0} = \{x_{1}, x_{2}\},$ $\Gamma_{1} = \{V_{k} = x_{1}^{(2k+2)!} x_{2}^{\binom{(k)(2k+2)!}{2}}\}_{1 \le k \le n}.$ (2) The orientation \mathcal{O} is defined in such a way that for $n \ge 1$ At vertex x_{1} : $V_{1}^{(4)} \le V_{2}^{(6)!} \le V_{3}^{(8)!} \le \cdots \le V_{n}^{\binom{(2n+2)!}{2}},$ At vertex x_{2} : $V_{1}^{(12)} \le V_{2}^{(720)} \le V_{3}^{(60480)} \le \cdots \le V_{n}^{\binom{(m)(2n+2)!}{2}},$ (3) $\mu(\alpha) = 1, \text{ for any vertex } \alpha \in \Gamma_{0}.$ (3) Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable projective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \le k \le n.$	0				
(2) $\Gamma_{1} = \{V_{k} = x_{1}^{(2k+2)!} x_{2}^{\binom{k}{2}(2k+2)!}\}_{1 \le k \le n}.$ (2) The orientation \mathcal{O} is defined in such a way that for $n \ge 1$ At vertex x_{1} ; $V_{1}^{(4)} \le V_{2}^{(6)} \le V_{3}^{(8)} \le \dots \le V_{n}^{\binom{(2n+2)!}{2}},$ At vertex x_{2} ; $V_{1}^{(12)} \le V_{2}^{(720)} \le V_{3}^{(60480)} \le \dots \le V_{n}^{\binom{(2n+2)!}{2}},$ $\mu(\alpha) = 1, \text{ for any vertex } \alpha \in \Gamma_{0}.$ (3) Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \le k \le n.$		$\Gamma_0 = \{x_1, x_2\}$,		
$I_{1} = \{V_{k} = x_{1}^{1} \cdots x_{2}^{n} \\ I_{1} \leq k \leq n^{*} \}$ The orientation O is defined in such a way that for $n \geq 1$ At vertex x_{1} : $V_{1}^{(4)} \leq V_{2}^{(6)} \leq V_{3}^{(8)} \leq \cdots \leq V_{n}^{((2n+2))},$ At vertex x_{2} : $V_{1}^{(12)} \leq V_{2}^{(720)} \leq V_{3}^{(60480)} \leq \cdots \leq V_{n}^{(\frac{(m(2n+2)!}{2}))},$ $\mu(\alpha) = 1, \text{ for any vertex } \alpha \in \Gamma_{0}.$ Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \leq k \leq n.$			$(2k+2)! (\frac{(k)(2k+2)!}{2})$		(2)
 (2) The orientation O is defined in such a way that for n ≥ 1 At vertex x₁; V₁⁽⁴⁾ ≤ V₂⁽⁶⁾ ≤ V₃⁽⁸⁾ ≤ ··· ≤ V_n^{((2n+2)!)}, At vertex x₂; V₁⁽¹²⁾ ≤ V₂⁽⁷²⁰⁾ ≤ V₃⁽⁶⁰⁴⁸⁰⁾ ≤ ··· ≤ V_n^{(((n)(2n+2)!)}), (3) µ(α) = 1, for any vertex α ∈ Γ₀. (3) the multiplicity function µ is such that µ(j) = 1, for any j ∈ Γ₀. Then there exists a bijective correspondence between indecomposable projective Λ_Γ-modules and indecomposable preprojective Kronecker modules of the form (2k + 3, 2k + 2), 1 ≤ k ≤ n. 		$\Gamma_1 = \{V_k = x\}$	$1 \qquad x_2 \qquad y_{1 \le k \le n}$		
At vertex x_1 : $V_1^{(41)} \leq V_2^{(61)} \leq V_3^{(81)} \leq \cdots \leq V_n^{((2n+2)!)}$, At vertex x_2 : $V_1^{(12)} \leq V_2^{(720)} \leq V_3^{(60480)} \leq \cdots \leq V_n^{(\frac{(m)(2n+2)!}{2})}$, (3) $\mu(\alpha) = 1$, for any vertex $\alpha \in \Gamma_0$. (3) the multiplicity function μ is such that $\mu(j) = 1$, for any $j \in \Gamma_0$. Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \leq k \leq n$.	2 The c				
At vertex x_1 : $V_1^{(4)} \leq V_2^{(61)} \leq V_3^{(81)} \leq \cdots \leq V_n^{((2n+2)!)}$, At vertex x_2 : $V_1^{(12)} \leq V_2^{(720)} \leq V_3^{(60480)} \leq \cdots \leq V_n^{((\frac{(n)(2n+2)!}{2}))}$, (3) $\mu(\alpha) = 1$, for any vertex $\alpha \in \Gamma_0$. (3) the multiplicity function μ is such that $\mu(j) = 1$, for any $j \in \Gamma_0$. Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \leq k \leq n$.					
At vertex x_1 : $V_1^{(4)} \le V_2^{(6)} \le V_3^{(8)} \le \cdots \le V_n^{((2n+2)!)}$, At vertex x_2 : $V_1^{(12)} \le V_2^{(720)} \le V_3^{(60480)} \le \cdots \le V_n^{((\frac{(n)(2n+2)!}{2}))}$, (3) $\mu(\alpha) = 1$, for any vertex $\alpha \in \Gamma_0$. (3) the multiplicity function μ is such that $\mu(j) = 1$, for any $j \in \Gamma_0$. Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \le k \le n$.					
At vertex v_2 ; $V_1^{(12)} \leq V_2^{(720)} \leq V_3^{(60480)} \leq \cdots \leq V_n^{(\left(\frac{(n)(2n+2)!}{2}\right))}$. (3) $\mu(\alpha) = 1$, for any vertex $\alpha \in \Gamma_0$. (3) the multiplicity function μ is such that $\mu(j) = 1$, for any $j \in \Gamma_0$. Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \leq k \leq n$.					
At vertex x_0 : $V_1 \to \leq V_2 \to \leq V_3 \to \leq \cdots \leq V_n$ $\mu(\alpha) = 1$, for any vertex $\alpha \in \Gamma_0$. (3) the multiplicity function μ is such that $\mu(j) = 1$, for any $j \in \Gamma_0$. Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \leq k \leq n$.					
$\mu(\alpha) = 1$, for any vertex $\alpha \in I_0$. (3) the multiplicity function μ is such that $\mu(j) = 1$, for any $j \in \Gamma_0$. Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \le k \le n$.					
3 the multiplicity function μ is such that $\mu(j) = 1$, for any $j \in \Gamma_0$. Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \le k \le n$.					
Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2)$, $1 \le k \le n$.	(3) the n				
	Then there expreprojective	xists a bijective correspondence between Kronecker modules of the form (2k + 3,	indecomposable projective Λ_{Γ} -m 2k + 2), 1 < k < n.	odules and indecomp	osable
					= .000

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

SHIP IN STATE

nd Scope	Brauer Configuration Algebra		Some Matrix Problems	Helices 0000	References
Corollary					
For $n \ge 3$ fixed,	let Γ be the Brauer configuration	ion $\Gamma = ($	$(\Gamma_0,\Gamma_1,\mathcal{O},\mu)$ such that:		
	$\Gamma_0 = \{x\}$	1, x ₂ },			
	$\Gamma_1 = \{V$	$V_k = x_1^{(2k)}$	$+2)! x_{2}^{\left(\frac{(k)(2k+2)!}{2}\right)} }_{x_{2}} \}_{1 \le k \le n}.$		(2)
2 The orie	ntation ${\mathcal O}$ is defined in such a	way that	for $n \ge 1$		

At vertex
$$x_1$$
: $V_1^{(4!)} \le V_2^{(6!)} \le V_3^{(8!)} \le \dots \le V_n^{((2n+2)!)}$,
At vertex x_2 : $V_1^{(12)} \le V_2^{(720)} \le V_3^{(60480)} \le \dots \le V_n^{((\frac{n}{2}(2n+2)!))}$,
 $\mu(\alpha) = 1$, for any vertex $\alpha \in \Gamma_0$.
(3)

<ロ> <同> <同> < 回> < 回>

3

the multiplicity function μ is such that $\mu(j)=1$, for any $j\in \Gamma_0$.

Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \le k \le n$.

Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References
Corollary	,			

For $n\geq 3$ fixed, let Γ be the Brauer configuration $\Gamma=(\Gamma_0,\Gamma_1,\mathcal{O},\mu)$ such that:

$$\Gamma_{0} = \{x_{1}, x_{2}\},$$

$$\Gamma_{1} = \{V_{k} = x_{1}^{(2k+2)!} x_{2}^{(\frac{(k)(2k+2)!}{2})}\}_{1 \le k \le n}.$$
(2)

<ロ> <同> <同> < 回> < 回>

э

At vertex
$$x_1$$
; $V_1^{(4!)} \le V_2^{(6!)} \le V_3^{(8!)} \le \dots \le V_n^{((2n+2)!)}$,
At vertex x_2 ; $V_1^{(12)} \le V_2^{(720)} \le V_3^{(60480)} \le \dots \le V_n^{((\frac{(n)(2n+2)!}{2}))}$, (3)
 $\mu(\alpha) = 1$, for any vertex $\alpha \in \Gamma_0$.

3 the multiplicity function μ is such that $\mu(j) = 1$, for any $j \in \Gamma_0$. Then there exists a bijective correspondence between indecomposable projective Λ_{Γ} -modules and indecomposable preprojective Kronecker modules of the form $(2k + 3, 2k + 2), 1 \le k \le n$.

Universidad Nacional de Colombia

0

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

Proof.

The specialization $x_1 = 1$, $x_2 = 2$ makes of each polygon V_k , $k \ge 1$ a unique partition λ of the number

$$h_{2k+2}^p = (2k+2)!\lceil k+1\rceil$$

into parts $\{1,2\}$ where $occ(x_i, V_k)$ coincides with the number of times that the part x_i occurs in the corresponding partition since h_{2k+2}^p gives the number of helices associated in a unique form to the indecomposable preprojective Kronecker module (2k + 3, 2k + 2).

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

▲ □ ▶ ▲ 三 ▶ ▲

∃ ► = √QC

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices ●000 00000000	References
Helices and Exception	al Sequences			

Helices and Exceptional Sequences

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ロン ・四 ・ ・ ヨン ・ ヨン

ъ.

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0●00 0000000	References
Helices and Exception	al Sequences			

P.F. Fernandez et al proved recently the following result which establishes a relationship between some helices and some exceptional sequences:

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

→ < Ξ >

э

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 00●0	References
Helices and Exceptio	nal Sequences			
		Auslander- Reiten guive	er of \mathbb{A}_3 .	

 $(X_{0,3}, X_{2,3}, X_{1,2})$

For each integers $0 \le i < j \le n$ we write X_{ij} the indecomposable whose representations is given by

$$1 \quad i \quad i+1 \quad j \quad j+1 \quad n \\ (0 \leftarrow \dots \leftarrow 0 \leftarrow k \leftarrow \dots \leftarrow k \leftarrow 0 \quad \leftarrow \dots \leftarrow 0)$$

Figure: Helices associated to some exceptional sequences. For notation see T. Araya, *Exceptional sequences over path algebras of type* \mathbb{A}_n and *non-crossing spanning trees*, Algebr. Represent. Theory, **16** (1), 239-250,

Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 000●	References
Helices and Exceptiona	I Sequences			

Theorem

If (n + 1, n) denotes an indecomposable preprojective Kronecker module then helices of the form;

 $a_{1,1}, b_{1,1}, b_{n+1,1}, a_{n+1,n}, a_{n,n}, b_{n,n}, b_{n-1,n}, a_{n-1,n-2}, \dots, a_{3,2}, a_{2,2}, b_{2,2}$ when n is even.

 $a_{1,1}, b_{1,1}, b_{n+1,1}, a_{n+1,n}, a_{n,n}, b_{n,n}, b_{n-1,n}, \dots, b_{3,3}, b_{2,3}, a_{2,1}$ when n is odd.

correspond to complete exceptional sequences of type \mathbb{A}_n .

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

◆□ → ◆□ → ◆三 → ◆三 → ● ● のへの

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References
			0000000	
The Four Subspace Prob	lem (FSP)			

The Four Subspace Problem

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・日・・四・・日・・日・

ъ.

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References
			0000000	
The Four Subspace P	roblem (FSP)			

The four subspace problem consists of classifying all indecomposable quadruples (indecomposable representations of four incomparable points as a poset) up to isomorphism.

Zavadskij and Medina gave an elementary solution of this problem (2004).

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

A B A A B A

э

Some Matrix Problems

Helices

References

2

- - モト - モト

0000000

The Four Subspace Problem (FSP)

Regular Component

Universidad Nacional de Colombia

Aims an	d Sco	pe
---------	-------	----

00000000

A (1) > A (1) > A

The Four Subspace Problem (FSP)

The following result establishes a bijection between preprojective representations of type IV and indecomposable projective modules over some Brauer configuration algebras.

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

<ロ> <同> <同> < 回> < 回>

э

		Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References
				00000000	
The Four	Subspace Pr	oblem (FSP)			
	hoorom				
Eo	r n > 2 five	d let E be the Brower configuration E	$-(\Gamma_0, \Gamma_1, (2, \mu))$ such that:		
10			$f_{1} = (f_{0}, f_{1}, O, \mu)$ such that.		
	•				
		$\Gamma_0 = \{1, 2,$	$3, n, n+1$ }		(4)
		$\Gamma_1 = \{V_k\}$	$1 \le k \le n$, $V_i \ne V_j$ if $i \ne j$.		()
	3 the m				
Th	en there exi	sts a bijective correspondence between i	indecomposable projective Λ_{Γ_n} -n	nodules and indecomp	osable
pre	projective re	\geq	2 of the tetrad.		

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

SHIBING 7

・ロト ・回ト ・ヨト ・ヨト

ъ.

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References
			00000000	
The Four Subspace Pr	roblem (FSP)			

Theorem

For $n \ge 2$ fixed, let Γ_n be the Brauer configuration $\Gamma_n = (\Gamma_0, \Gamma_1, \mathcal{O}, \mu)$ such that:

2 The orientation O is defined in such a way that

 $\operatorname{occ}(1, V_1) = 1$, $\operatorname{occ}(n + 1, V_n) = n + 1$, and for $2 \le i \le n$ at vertex *i*, $V_{i-1}^{(i+1,<)} < V_i^{(i^2,<)}$, where $V_y^{(x,<)}$ means that the polygon V_y occurs x times in the successor sequence of the corresponding vertex,

the multiplicity function μ is such that $\mu(j) = 1$, for any $j \in \Gamma_0$.

Then there exists a bijective correspondence between indecomposable projective Λ_{Γ_n} -modules and indecomposable preprojective representations of type IV and order $n \ge 2$ of the tetrad.

Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References
			00000000	
The Four Subspace Prob	olem (FSP)			

Theorem

For $n \ge 2$ fixed, let Γ_n be the Brauer configuration $\Gamma_n = (\Gamma_0, \Gamma_1, \mathcal{O}, \mu)$ such that:

2 The orientation O is defined in such a way that

 $\operatorname{occ}(1, V_1) = 1$, $\operatorname{occ}(n + 1, V_n) = n + 1$, and for $2 \le i \le n$ at vertex *i*, $V_{i-1}^{(i+1,<)} < V_i^{(i^2,<)}$, where $V_V^{(x,<)}$ means that the polygon V_Y occurs x times in the successor sequence of the corresponding vertex,

3 the multiplicity function μ is such that $\mu(j) = 1$, for any $j \in \Gamma_0$. Then there exists a bijective correspondence between indecomposable projective Λ_{Γ_n} -modules and indecomposable preprojective representations of type IV and order n > 2 of the tetrad.

Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices	References
			00000000	
The Four Subspace P	roblem (FSP)			

Firstly, we note that the Brauer configuration (4) allows to see each polygon V_n as a partition of the number h_n into two parts of the form $\{n, n + 1\}$ where n occurs $(n)^2$ times and n + 1 occurs n + 1 times. Assuming the classical notation for partitions [2] each number h_n can be expressed as follows:

$$h_n = (n)^{(n^2)} (n+1)^{(n+1)}, \quad n \ge 1.$$
 (25)

we let P_n denote such a partition. The following is the quiver Q_{Γ_n} associated to such Brauer configuration. In this case, we use the symbol [x; y] to denote that the vertex x occurs y times at the corresponding polygon.

For instance:

$$\begin{aligned} 5 &= (1) + (2+2) \\ 17 &= (2+3) + (2+3) + (2+2+3) \\ 43 &= (3+3+4) + (3+3+4) + (3+3+4) + (3+3+3+4) \\ 89 &= (4+4+4+5) + (4+4+4+5) + (4+4+4+5) + (4+4+4+5) + (4+4+4+5) \end{aligned}$$

Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References
			0000000	
The Four Subspace Pro	oblem (FSP)			

References

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ロト ・回ト ・ヨト ・ヨト

ъ.

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

 Categorification of some integer sequences, A. M. Cañadas, H. Giraldo, P.F.F. Espinosa, FMJS, 92, 2014, no. 2, 125-139.

- A partition formula for Fibonacci numbers, P. Fahr, C. M. Ringel, Journal of integer sequences, 11, 2008, no. 08.14.
- Brauer Configuration Algebras: A Generalization of Brauer Graph Algebras, E.L. Green, S. Schroll, Bull. Sci. Math., 141, 2017, 539-572, 2017.
- A052558, A100705, OEIS (On-Line Encyclopedia of Integer Sequences).
- The four subspace problem; An elementary solution, A.G. Zavadskij, G.Medina, Linear Algebra App, 392, 11-23, 2004.

< 回 > < 三 > < 三 >

3

Universidad Nacional de Colombia

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

- Categorification of some integer sequences, A. M. Cañadas, H. Giraldo, P.F.F. Espinosa, FMJS, 92, 2014, no. 2, 125-139.
- A partition formula for Fibonacci numbers, P. Fahr, C. M. Ringel, Journal of integer sequences, 11, 2008, no. 08.14.
- Brauer Configuration Algebras: A Generalization of Brauer Graph Algebras, E.L. Green, S. Schroll, Bull. Sci. Math., 141, 2017, 539-572, 2017.
- A052558, A100705, OEIS (On-Line Encyclopedia of Integer Sequences).
- The four subspace problem; An elementary solution, A.G. Zavadskij, G.Medina, Linear Algebra App, 392, 11-23, 2004.

- 4 同 6 4 日 6 4 日 6

3

Universidad Nacional de Colombia
Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

- Categorification of some integer sequences, A. M. Cañadas, H. Giraldo, P.F.F. Espinosa, FMJS, 92, 2014, no. 2, 125-139.
- A partition formula for Fibonacci numbers, P. Fahr, C. M. Ringel, Journal of integer sequences, 11, 2008, no. 08.14.
- Brauer Configuration Algebras: A Generalization of Brauer Graph Algebras, E.L. Green, S. Schroll, Bull. Sci. Math., 141, 2017, 539-572, 2017.
- A052558, A100705, OEIS (On-Line Encyclopedia of Integer Sequences).
- The four subspace problem; An elementary solution, A.G. Zavadskij, G.Medina, Linear Algebra App, 392, 11-23, 2004.

< 回 > < 三 > < 三 >

э

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

- Categorification of some integer sequences, A. M. Cañadas, H. Giraldo, P.F.F. Espinosa, FMJS, 92, 2014, no. 2, 125-139.
- A partition formula for Fibonacci numbers, P. Fahr, C. M. Ringel, Journal of integer sequences, 11, 2008, no. 08.14.
- Brauer Configuration Algebras: A Generalization of Brauer Graph Algebras, E.L. Green, S. Schroll, Bull. Sci. Math., 141, 2017, 539-572, 2017.
- A052558, A100705, OEIS (On-Line Encyclopedia of Integer Sequences).
- The four subspace problem; An elementary solution, A.G. Zavadskij, G.Medina, Linear Algebra App, 392, 11-23, 2004.

< 回 > < 三 > < 三 >

3

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems	Helices 0000	References

- Categorification of some integer sequences, A. M. Cañadas, H. Giraldo, P.F.F. Espinosa, FMJS, 92, 2014, no. 2, 125-139.
- A partition formula for Fibonacci numbers, P. Fahr, C. M. Ringel, Journal of integer sequences, 11, 2008, no. 08.14.
- Brauer Configuration Algebras: A Generalization of Brauer Graph Algebras, E.L. Green, S. Schroll, Bull. Sci. Math., 141, 2017, 539-572, 2017.
- A052558, A100705, OEIS (On-Line Encyclopedia of Integer Sequences).
- The four subspace problem; An elementary solution, A.G. Zavadskij, G.Medina, Linear Algebra App, **392**, 11-23, 2004.

通 と く ヨ と く ヨ と

э

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Aims and Scope	Brauer Configuration Algebras	Some Matrix Problems 00000	Helices 0000	References

Thank You

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

・ロト ・四ト ・ヨト ・ヨト

ъ.