Matrix Problems Associated to Some Brauer Configuration Algebras Maurice Auslander Distinguished Lectures Falmouth-USA

Agustín Moreno Cañadas jointly with; Pedro Fernández, José A. Velez-Marulanda, Hernán Giraldo

04/25/2019

Road Map

1 Aims and Scope
2 Brauer Configuration Algebras
3 Some Matrix Problems

- The Kronecker Problem

4 Helices

- Helices and Exceptional Sequences
- Cycles
- The Four Subspace Problem (FSP)

5 References

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Road Map

1 Aims and Scope
2 Brauer Configuration Algebras
3 Some Matrix Problems

- The Kronecker Problem

4 Helices

- Helices and Exceptional Sequences
- Cycles
- The Four Subspace Problem (FSP)

5 References

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Road Map

1 Aims and Scope
2 Brauer Configuration Algebras
3 Some Matrix Problems

- The Kronecker Problem

4 Helices

- Helices and Exceptional Sequences
- Cycles
- The Four Subspace Problem (FSP)

5 References

Road Map

1 Aims and Scope
2 Brauer Configuration Algebras
3 Some Matrix Problems

- The Kronecker Problem

4 Helices

- Helices and Exceptional Sequences
- Cycles
- The Four Subspace Problem (FSP)

5 References

Road Map

1 Aims and Scope
2 Brauer Configuration Algebras
3 Some Matrix Problems

- The Kronecker Problem

4 Helices

- Helices and Exceptional Sequences
- Cycles
- The Four Subspace Problem (FSP)

5 References

Aims and Scope

Bijections between solutions of the Kronecker problem and the four subspace problem with indecomposable projective modules over some Brauer configuration algebras are obtained by interpreting elements of some integer sequences as polygons of suitable Brauer configurations.

Ideas from the Medellin CIMPA School

Universidad Nacional de Colombia
Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Brauer Configuration Algebras

Definition

Recently, E.L. Green and S. Schroll introduced Brauer configuration algebras as a way to deal with research of algebras of wild representation type (Brauer configuration algebras: A generalization of Brauer graph algebras, E.L. Green, S. Schroll, Bull. Sci. Math. vol. 141, 2017, 539-572).

A Brauer configuration is a tuple $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mu, \mathcal{O}\right)$ where Γ_{0} is a set of vertices, Γ_{1} is a set of polygons, $\mu: \Gamma_{0} \rightarrow \mathbb{N}$ is a multiplicity function and \mathcal{O} is an orientation, such that the following conditions hold:
$C(1)$ Every vertex in Γ_{0} is a vertex in at least one polygon in Γ_{1}.
$C(2)$ Every polygon has at least two vertices.
$C(3)$ Every polygon has at least a vertex happening more than once (nontruncated vertex)

A Brauer configuration is a tuple $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mu, \mathcal{O}\right)$ where Γ_{0} is a set of vertices, Γ_{1} is a set of polygons, $\mu: \Gamma_{0} \rightarrow \mathbb{N}$ is a multiplicity function and \mathcal{O} is an orientation, such that the following conditions hold:
$C(1)$ Every vertex in Γ_{0} is a vertex in at least one polygon in Γ_{1}. $C(2)$ Every polygon has at least two vertices.
C(3) Every polygon has at least a vertex happening more than once (nontruncated vertex)

A Brauer configuration is a tuple $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mu, \mathcal{O}\right)$ where Γ_{0} is a set of vertices, Γ_{1} is a set of polygons, $\mu: \Gamma_{0} \rightarrow \mathbb{N}$ is a multiplicity function and \mathcal{O} is an orientation, such that the following conditions hold:
$C(1)$ Every vertex in Γ_{0} is a vertex in at least one polygon in Γ_{1}.
$C(2)$ Every polygon has at least two vertices.
$C(3)$ Every polygon has at least a vertex happening more than once (nontruncated vertex).

The cyclic ordering at vertex α is obtained by linearly ordering the list (i.e., $V_{i_{1}}<\cdots<V_{i_{t}}$ and by adding $V_{i_{t}}<V_{i_{1}}$). Such a list is said to be the successor sequence at α.

The Quiver of a Brauer Configuration Algebra

The quiver Q_{Γ} of a Brauer configuration algebra is defined in such a way that the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ of Q_{Γ} is in correspondence with the set of polygons $\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$ in Γ_{1}, noting that there is one vertex in Q_{Γ} for every polygon in Γ_{1}.

Arrows in Q_{Γ} are defined by the successor sequences.
For each non-truncated vertex $\alpha \in \Gamma_{0}$ and each successor V^{\prime} of V at α, there is an arrow from v to v^{\prime} in Q_{Γ} where v and v^{\prime} are the vertices in Q_{Γ} associated to the polygons V and V^{\prime} in Γ_{1}, respectively.

As an example consider a configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mu, \mathcal{O}\right)$ such that:
(1) $\Gamma_{0}=\{1,2,3,4\}$,
(2) $\Gamma_{1}=\{U=\{1,1,2,3,3,4\}, V=\{1,2,3,4,4,4\}\}$,
(3) At vertex 1, it holds that; $U<U<V, \quad \operatorname{val}(1)=3$,
(4) At vertex 2 , it holds that; $U<V, \quad \operatorname{val}(2)=2$,
(5) At vertex 3, it holds that; $U<U<V, \quad \operatorname{val}(3)=3$
(0) At vertex 4, it holds that; $U<V<V<V, \quad \operatorname{val}(4)=4$,
(1) $\mu(\alpha)=1$ for any vertex α.

As an example consider a configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mu, \mathcal{O}\right)$ such that:
(1) $\Gamma_{0}=\{1,2,3,4\}$,
(2) $\Gamma_{1}=\{U=\{1,1,2,3,3,4\}, V=\{1,2,3,4,4,4\}\}$,
(3) At vertex 1 , it holds that; $U<U<V, \quad \operatorname{val}(1)=3$,
(C) At vertex 2, it holds that; $U<V, \quad \operatorname{val}(2)=2$,
(5) At vertex 3 , it holds that; $U<U<V, \quad \operatorname{val}(3)=3$
(0) At vertex 4, it holds that; $U<V<V<V, \quad \operatorname{val}(4)=4$,
(1) $\mu(\alpha)=1$ for any vertex α.

As an example consider a configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mu, \mathcal{O}\right)$ such that:
(1) $\Gamma_{0}=\{1,2,3,4\}$,
(2) $\Gamma_{1}=\{U=\{1,1,2,3,3,4\}, V=\{1,2,3,4,4,4\}\}$,
(3) At vertex 1 , it holds that; $U<U<V, \quad \operatorname{val}(1)=3$,
(4) At vertex 2, it holds that; $U<V, \quad \operatorname{val}(2)=2$,
(5) At vertex 3, it holds that; $U<U<V, \quad \operatorname{val}(3)=3$
(0) At vertex 4, it holds that; $U<V<V<V, \quad \operatorname{val}(4)=4$,
(1) $\mu(\alpha)=1$ for any vertex α.

As an example consider a configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mu, \mathcal{O}\right)$ such that:
(1) $\Gamma_{0}=\{1,2,3,4\}$,
(2) $\Gamma_{1}=\{U=\{1,1,2,3,3,4\}, V=\{1,2,3,4,4,4\}\}$,
(3) At vertex 1 , it holds that; $U<U<V, \quad \operatorname{val}(1)=3$,
(4) At vertex 2 , it holds that; $U<V, \quad \operatorname{val}(2)=2$,
(5) At vertex 3, it holds that; $U<U<V, \quad \operatorname{val}(3)=3$
(0) At vertex 4, it holds that; $U<V<V<V, \quad \operatorname{val}(4)=4$,
(7) $\mu(\alpha)=1$ for any vertex α.

As an example consider a configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mu, \mathcal{O}\right)$ such that:
(1) $\Gamma_{0}=\{1,2,3,4\}$,
(2) $\Gamma_{1}=\{U=\{1,1,2,3,3,4\}, V=\{1,2,3,4,4,4\}\}$,
(3) At vertex 1 , it holds that; $U<U<V, \quad \operatorname{val}(1)=3$,
(4) At vertex 2, it holds that; $U<V, \quad \operatorname{val}(2)=2$,
(5) At vertex 3 , it holds that; $U<U<V, \quad \operatorname{val}(3)=3$
(0) At vertex 4, it holds that; $U<V<V<V, \operatorname{val}(4)=4$,
(1) $\mu(\alpha)=1$ for any vertex α.

As an example consider a configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mu, \mathcal{O}\right)$ such that:
(1) $\Gamma_{0}=\{1,2,3,4\}$,
(2) $\Gamma_{1}=\{U=\{1,1,2,3,3,4\}, V=\{1,2,3,4,4,4\}\}$,
(3) At vertex 1 , it holds that; $U<U<V, \quad \operatorname{val}(1)=3$,
(4) At vertex 2, it holds that; $U<V, \quad \operatorname{val}(2)=2$,
(5) At vertex 3 , it holds that; $U<U<V, \quad \operatorname{val}(3)=3$
(6) At vertex 4, it holds that; $U<V<V<V, \quad \operatorname{val}(4)=4$,
(7) $\mu(\alpha)=1$ for any vertex α.

As an example consider a configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mu, \mathcal{O}\right)$ such that:
(1) $\Gamma_{0}=\{1,2,3,4\}$,
(2) $\Gamma_{1}=\{U=\{1,1,2,3,3,4\}, V=\{1,2,3,4,4,4\}\}$,
(3) At vertex 1 , it holds that; $U<U<V, \quad \operatorname{val}(1)=3$,
(4) At vertex 2, it holds that; $U<V, \quad \operatorname{val}(2)=2$,
(5) At vertex 3 , it holds that; $U<U<V, \quad \operatorname{val}(3)=3$
(6) At vertex 4, it holds that; $U<V<V<V, \quad \operatorname{val}(4)=4$,
(1) $\mu(\alpha)=1$ for any vertex α.

Quiver of the BCA:

(1)

Universidad Nacional de Colombia
Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Some Properties of Brauer Configuration Algebras

Definition

Let k be a field and Γ a Brauer configuration. The Brauer configuration algebra associated to Γ is defined to be $k Q_{\Gamma} / l_{\Gamma}$, where Q_{Γ} is the quiver associated to Γ and I_{Γ} is the ideal in $k Q_{\Gamma}$ generated by a set of relations ρ_{Γ} of type I, II and III.

The ideal of relations I_{Γ} of the Brauer configuration algebra associated to the Brauer configuration Γ is generated by three types of relations:
(1) Relations of type \mathbf{I}. For each polygon
$V=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \in \Gamma_{1}$ and each pair of non-truncated vertices α_{i} and α_{j} in V, the set of relations ρ_{Γ} contains all relations of the form $C^{\mu\left(\alpha_{i}\right)}-C^{\mu\left(\alpha_{j}\right)}$ where C is a special α_{i}-cycle and C^{\prime} is a special α_{j}-cycle.
(2) Relations of type II. Relations of type II are all paths of the form $C^{\mu(\alpha)}$ a where C is a special α-cycle and a is the first
arrow in C.
(3) Relations of type III. These relations are quadratic monomial relations of the form $a b$ in $k Q_{\Gamma}$ where $a b$ is not a subpath of any special cycle unless $a=b$ and a is a loop associated to a vertex of valency 1 and

The ideal of relations I_{Γ} of the Brauer configuration algebra associated to the Brauer configuration Γ is generated by three types of relations:
(1) Relations of type I. For each polygon
$V=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \in \Gamma_{1}$ and each pair of non-truncated vertices α_{i} and α_{j} in V, the set of relations ρ_{Γ} contains all relations of the form $C^{\mu\left(\alpha_{i}\right)}-C^{\mu\left(\alpha_{j}\right)}$ where C is a special α_{i}-cycle and C^{\prime} is a special α_{j}-cycle.
(2) Relations of type II. Relations of type II are all paths of the form $C^{\mu(\alpha)} a$ where C is a special α-cycle and a is the first arrow in C.
(3) Relations of type III. These relations are quadratic monomial relations of the form $a b$ in $k Q_{\Gamma}$ where $a b$ is not a subpath of any snecial cycle unless $a=h$ and a is a loon associated to a vertex of valency 1 and

The ideal of relations I_{Γ} of the Brauer configuration algebra associated to the Brauer configuration Γ is generated by three types of relations:
(1) Relations of type I. For each polygon
$V=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \in \Gamma_{1}$ and each pair of non-truncated vertices α_{i} and α_{j} in V, the set of relations ρ_{Γ} contains all relations of the form $C^{\mu\left(\alpha_{i}\right)}-C^{\mu\left(\alpha_{j}\right)}$ where C is a special α_{i}-cycle and C^{\prime} is a special α_{j}-cycle.
(2) Relations of type II. Relations of type II are all paths of the form $C^{\mu(\alpha)} a$ where C is a special α-cycle and a is the first arrow in C.
(3) Relations of type III. These relations are quadratic monomial relations of the form $a b$ in $k Q_{\Gamma}$ where $a b$ is not a subpath of any special cycle unless $a=b$ and a is a loop associated to a vertex of valency 1 and $\mu(\alpha)>1$.

Theorem

Let \wedge be a Brauer configuration algebra with Brauer configuration Γ.
(1) There is a bijective correspondence between the set of projective indecomposable Λ-modules and the polygons in Γ.
(2) If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ. Then $\operatorname{rad} P$ is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices of V and where the intersection of any two of the uniserial modules is a simple Λ-module.
(3) A Brauer configuration algebra is a multiserial algebra.
(4) The number of summands in the heart of a projective indecomposable Λ-module P such that $\operatorname{rad}^{2} P \neq 0$ equals the number of non-truncated vertices of the polygons in 「

Theorem

Let \wedge be a Brauer configuration algebra with Brauer configuration Γ.
(1) There is a bijective correspondence between the set of projective indecomposable Λ-modules and the polygons in Γ.
(2) If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ. Then $\operatorname{rad} P$ is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices of V and where the intersection of any two of the uniserial modules is a simple Λ-module.
(3) A Brauer configuration algehra is a multiserial algehra
(4) The number of summands in the heart of a projective indecomposable Λ-module P such that $\operatorname{rad}^{2} P \neq 0$ equals the number of non-truncated vertices of the polygons in Γ

Theorem

Let \wedge be a Brauer configuration algebra with Brauer configuration Γ.
(1) There is a bijective correspondence between the set of projective indecomposable Λ-modules and the polygons in Γ.
(2) If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ. Then $\operatorname{rad} P$ is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices of V and where the intersection of any two of the uniserial modules is a simple Λ-module.
(3) A Brauer configuration algebra is a multiserial algebra.
(4) The number of summands in the heart of a projective indecomposable Λ-module P such that $\operatorname{rad}^{2} P \neq 0$ equal the number of non-truncated vertices of the polygons in Γ

Theorem

Let \wedge be a Brauer configuration algebra with Brauer configuration Γ.
(1) There is a bijective correspondence between the set of projective indecomposable Λ-modules and the polygons in Γ.
(2) If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ. Then $\operatorname{rad} P$ is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices of V and where the intersection of any two of the uniserial modules is a simple Λ-module.
(3) A Brauer configuration algebra is a multiserial algebra.
(4) The number of summands in the heart of a projective indecomposable Λ-module P such that $\operatorname{rad}^{2} P \neq 0$ equals the number of non-truncated vertices of the polygons in Γ

Theorem

Let \wedge be a Brauer configuration algebra with Brauer configuration Γ.
(1) There is a bijective correspondence between the set of projective indecomposable Λ-modules and the polygons in Γ.
(2) If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ. Then $\operatorname{rad} P$ is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated) vertices of V and where the intersection of any two of the uniserial modules is a simple Λ-module.
(3) A Brauer configuration algebra is a multiserial algebra.
(4) The number of summands in the heart of a projective indecomposable Λ-module P such that $\operatorname{rad}^{2} P \neq 0$ equals the number of non-truncated vertices of the polygons in Γ

Proposition

Let Λ be the Brauer configuration algebra associated to the Brauer configuration Γ. For each $V \in \Gamma_{1}$ choose a non-truncated vertex α and exactly one special α-cycle C_{V} at V then
$\left\{\bar{p} \mid p\right.$ is a proper prefix of some $C^{\mu(\alpha)}$ where C is a special $\alpha-$ cycle $\} \bigcup\left\{\overline{C^{\mu(\alpha)}} \mid V \in \Gamma_{1}\right\}$ is a k-basis of Λ.

Some Matrix Problems

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

The Kronecker Problem

The classification of indecomposable Kronecker modules was solved by Weierstrass in 1867 for some particular cases and by Kronecker in 1890 for the complex number field case.

This flat matrix problem of type Gelfand is equivalent to the problem of finding canonical Jordan form of pairs (A, B) of matrices with respect to the following elementary transformations:
(i) All elementary transformations on rows of the block matrix (A, B).
(ii) All elementary transformations made simultaneously on columns of A and B having the same index number.

The classification of indecomposable Kronecker modules was solved by Weierstrass in 1867 for some particular cases and by Kronecker in 1890 for the complex number field case.

This flat matrix problem of type Gelfand is equivalent to the problem of finding canonical Jordan form of pairs (A, B) of matrices with respect to the following elementary transformations:
(i) All elementary transformations on rows of the block matrix (A, B).
(ii) All elementary transformations made simultaneously on columns of A and B having the same index number.

If k is an algebraically closed field then up to isomorphism every indecomposable Kronecker module belongs to one of the following three classes:

0 :

where F_{n} is a Frobenius matrix or companion matrix of a minimal polynomial $p^{s}(t)$ with $n=s \partial p(t), \partial p(t)$ denotes the degree of the polynomial $p(t)$.

where $J_{n}(0) \in\left\{J_{n}^{+}(0), J_{n}^{-}(0)\right\}$ and $J_{n}^{ \pm}(0)$ denotes a corresponding upper or lower Jordan block. Whereas, I^{*} denotes the dual case defined by the classification problem.

$\mathrm{II}=\mathrm{III}^{*}:$| $\overrightarrow{\mathrm{I}_{n}}$ | $\overleftarrow{\mathrm{I}_{n}}$ |
| :--- | :--- |

$$
\mathrm{III}=\mathrm{II}^{*} \text { : }
$$

Preprojective Component of the Kronecker Quiver

Helices

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Pedro Fernández, Hernán Giraldo and A.M.C associated to each indecomposable preprojective Kronecker module some helices which are paths running through the rows of the matrix block as follows:
$\left\{a_{1, j}, b_{1,1}, b_{r_{1}, 1}, a_{r_{1}, s_{1}}, a_{r_{2}, s_{1}}, b_{r_{2}, s_{2}}, b_{r_{3}, s_{2}}, a_{r_{3}, s_{3}}, \ldots, I_{r_{t}, s_{t}}\right\}$ where starting vertices are entries in the null row of matrix A.

Figure: Preprojective $(5,4) ; A 052558=\{4,12,48,72, \ldots\}$ (the number of helices associated to a preprojective Kronecker module equals the number of ways of connecting $n+1$ equally spaced points on a circle with a path of n line segments ignoring reflections)

Regarding the number of helices associated to preprojective Kronecker modules, we have the following result (Pedro Fernández, Hernán Giraldo, A.M.C)

Theorem

If $(n+1, n)$ denotes an indecomposable preprojective Kronecker module then the number of helices associated to $(n+1, n)$ is $h_{n}^{p}=$ $n!\left\lceil\frac{n}{2}\right\rceil$ where $\lceil x\rceil$ denotes the smallest integer greatest than x. In particular,

$$
h_{n}^{p}=(n-1)(n-2) h_{n-1}^{p}+h_{n-1}^{i}
$$

where h_{n}^{i} denotes the number of helices associated to the preinjective module ($n, n+1$).

Proof.

Corollary

For $n \geq 3$ fixed, let Γ be the Brauer configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mathcal{O}, \mu\right)$ such that:

(2) The orientation \mathcal{O} is defined in such a way that for $n \geq 1$

Then there exists a bijective correspondence between indecomposable projective Λ_{Γ}-modules and indecomposable preprojective Kronecker modules of the form $(2 k+3,2 k+2), 1 \leq k \leq n$.

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Corollary

For $n \geq 3$ fixed, let Γ be the Brauer configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mathcal{O}, \mu\right)$ such that:
(1)

$$
\begin{align*}
& \Gamma_{0}=\left\{x_{1}, x_{2}\right\}, \\
& \Gamma_{1}=\left\{V_{k}=x_{1}^{(2 k+2)!} x_{2}^{\left(\frac{(k)(2 k+2)!}{2}\right)}\right\}_{1 \leq k \leq n} . \tag{2}
\end{align*}
$$The orientation \mathcal{O} is defined in such a way that for $n \geq 1$

Then there exists a bijective correspondence between indecomposable projective Λ_{Γ}-modules and indecomposable preprojective Kronecker modules of the form $(2 k+3,2 k+2), 1 \leq k \leq n$.

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

Corollary

For $n \geq 3$ fixed, let Γ be the Brauer configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mathcal{O}, \mu\right)$ such that:
(1)

$$
\begin{align*}
& \Gamma_{0}=\left\{x_{1}, x_{2}\right\}, \\
& \Gamma_{1}=\left\{V_{k}=x_{1}^{(2 k+2)!} x_{2}^{\left(\frac{(k)(2 k+2)!}{2}\right)}\right\}_{1 \leq k \leq n} . \tag{2}
\end{align*}
$$

(2) The orientation \mathcal{O} is defined in such a way that for $n \geq 1$

$$
\begin{align*}
& \text { At vertex } x_{1} ; v_{1}^{(4!)} \leq v_{2}^{(6!)} \leq v_{3}^{(8!)} \leq \cdots \leq V_{n}^{((2 n+2)!)} \\
& \text { At vertex } x_{2} ; v_{1}^{(12)} \leq v_{2}^{(720)} \leq v_{3}^{(60480)} \leq \cdots \leq V_{n}^{\left(\left(\frac{(n)(2 n+2)!}{2}\right)\right)}, \tag{3}\\
& \qquad \mu(\alpha)=1, \quad \text { for any vertex } \alpha \in \Gamma_{0} \text {. }
\end{align*}
$$

Then there exists a bijective correspondence between indecomposable projective Λ_{Γ}-modules and indecomposable preprojective Kronecker modules of the form $(2 k+3,2 k+2), 1 \leq k \leq n$.

Corollary

For $n \geq 3$ fixed, let Γ be the Brauer configuration $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \mathcal{O}, \mu\right)$ such that:
(1)

$$
\begin{align*}
& \Gamma_{0}=\left\{x_{1}, x_{2}\right\}, \\
& \Gamma_{1}=\left\{V_{k}=x_{1}^{(2 k+2)!} x_{2}^{\left(\frac{(k)(2 k+2)!}{2}\right)}\right\}_{1 \leq k \leq n} . \tag{2}
\end{align*}
$$

(2) The orientation \mathcal{O} is defined in such a way that for $n \geq 1$

$$
\begin{align*}
& \text { At vertex } x_{1} ; v_{1}^{(4!)} \leq v_{2}^{(6!)} \leq v_{3}^{(8!)} \leq \cdots \leq V_{n}^{((2 n+2)!)} \\
& \text { At vertex } x_{2} ; v_{1}^{(12)} \leq v_{2}^{(720)} \leq v_{3}^{(60480)} \leq \cdots \leq v_{n}^{\left(\left(\frac{(n)(2 n+2)!}{2}\right)\right)} \tag{3}\\
& \qquad \mu(\alpha)=1, \quad \text { for any vertex } \alpha \in \Gamma_{0} \text {. }
\end{align*}
$$

(3) the multiplicity function μ is such that $\mu(j)=1$, for any $j \in \Gamma_{0}$.

Then there exists a bijective correspondence between indecomposable projective Λ_{Γ}-modules and indecomposable preprojective Kronecker modules of the form $(2 k+3,2 k+2), 1 \leq k \leq n$.

Proof.

The specialization $x_{1}=1, x_{2}=2$ makes of each polygon $V_{k}, k \geq 1$ a unique partition λ of the number

$$
h_{2 k+2}^{p}=(2 k+2)!\lceil k+1\rceil
$$

into parts $\{1,2\}$ where $\operatorname{occ}\left(x_{i}, V_{k}\right)$ coincides with the number of times that the part x_{i} occurs in the corresponding partition since $h_{2 k+2}^{p}$ gives the number of helices associated in a unique form to the indecomposable preprojective Kronecker module $(2 k+3,2 k+2)$.

Helices and Exceptional Sequences

P.F. Fernandez et al proved recently the following result which establishes a relationship between some helices and some exceptional sequences:

Auslander- Reiten quiver of \mathbb{A}_{3}.

$$
\left(X_{0,3}, X_{2,3}, X_{1,2}\right)
$$

For each integers $0 \leq i<j \leq n$ we write $X_{i j}$ the indecomposable whose representations is given by

$$
\left.\stackrel{1}{0} \leftarrow \cdots \leftarrow{ }_{0}^{i} \leftarrow \stackrel{i+1}{k} \leftarrow \cdots \leftarrow k \leftarrow \stackrel{j+1}{0} \leftarrow \cdots \leftarrow \stackrel{n}{0}\right)
$$

Figure: Helices associated to some exceptional sequences. For notation see T. Araya, Exceptional sequences over path algebras of type \mathbb{A}_{n} and non-crossing spanning trees, Algebr. Represent. Theory, 16 (1), 239-250,

Theorem

If $(n+1, n)$ denotes an indecomposable preprojective Kronecker module then helices of the form;
$a_{1,1}, b_{1,1}, b_{n+1,1}, a_{n+1, n}, a_{n, n}, b_{n, n}, b_{n-1, n}, a_{n-1, n-2}, \ldots, a_{3,2}, a_{2,2}, b_{2,2}$ when n is even.
$a_{1,1}, b_{1,1}, b_{n+1,1}, a_{n+1, n}, a_{n, n}, b_{n, n}, b_{n-1, n}, \ldots, b_{3,3}, b_{2,3}, a_{2,1}$ when n is odd.
correspond to complete exceptional sequences of type \mathbb{A}_{n}.

The Four Subspace Problem

The four subspace problem consists of classifying all indecomposable quadruples (indecomposable representations of four incomparable points as a poset) up to isomorphism.

Zavadskij and Medina gave an elementary solution of this problem (2004).

Regular Component

Non - Regular Component

III
:---:
0

$\underset{n}{\circ}{\underset{n}{\circ}}_{\substack{0}}^{\substack{0}}$
IV

I_{n+1}	0	I_{n+1}	$\mathrm{I}_{n}^{\uparrow}$
0	I_{n+1}	I_{n+1}	I_{n}^{\dagger}

III *

I_{n}	0	I_{n}^{+}	$\mathrm{I}_{n}^{\overrightarrow{ }}$
0	I_{n+1}	I_{n+1}	I_{n+1}
$\mathrm{IV} \mathrm{V}^{*}$			
I_{n+1}	0	I_{n+1}	I_{n}^{+}
0	I_{n+1}	I_{n+1}	$\mathrm{I}_{n}^{\overrightarrow{-}}$

$$
{ }^{n}
$$

V

I_{n}	0	$\mathrm{~J}_{n}^{+}(0)$	I_{n}
0	I_{n}	I_{n}	$\mathrm{~J}_{n}^{+}(0)$
$\infty \ldots 0$	$0 \ldots \ldots 0$	$10 \ldots 0$	$10 \ldots 0$

V^{*}

I_{n}^{+}	$\mathrm{I}_{n}^{\leftarrow}$	I_{n}^{+}	0
0	I_{n}^{-}	I_{n}^{+}	I_{n}^{+}
$20 \ldots 0$	$10 \ldots 0$	$10 \ldots 0$	$10 \ldots 0$

Universidad Nacional de Colombia
Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

The following result establishes a bijection between preprojective representations of type IV and indecomposable projective modules over some Brauer configuration algebras.

Theorem

For $n \geq 2$ fixed, let Γ_{n} be the Brauer configuration $\Gamma_{n}=\left(\Gamma_{0}, \Gamma_{1}, \mathcal{O}, \mu\right)$ such that:
(2) The orientation \mathcal{O} is defined in such a way that
$\operatorname{occ}\left(1, V_{1}\right)=1, \operatorname{occ}\left(n+1, V_{n}\right)=n+1$, and for $2 \leq i \leq n$ at vertex $i, V_{i-1}^{(i+1,<)}<V_{i}^{\left(i^{2},<\right)}$, where
$V_{.}(x,<)$ means that the polvgon V_{1}. occurs x times in the successor seauence of the corresponding vertex.
(3) the multiplicity function μ is such that $\mu(j)=1$, for any $j \in \Gamma_{0}$.

Then there exists a bijective correspondence between indecomposable projective $\Lambda_{\Gamma_{n}}$-modules and indecomposable preprojective representations of type IV and order $n \geq 2$ of the tetrad.

Theorem

For $n \geq 2$ fixed, let Γ_{n} be the Brauer configuration $\Gamma_{n}=\left(\Gamma_{0}, \Gamma_{1}, \mathcal{O}, \mu\right)$ such that: (1)

$$
\begin{align*}
& \Gamma_{0}=\{1,2,3 \ldots, n, n+1\} \\
& \Gamma_{1}=\left\{V_{k}\right\}_{1 \leq k \leq n}, V_{i} \neq V_{j} \text { if } i \neq j \tag{4}
\end{align*}
$$The orientation \mathcal{O} is defined in such a way that

$\operatorname{occ}\left(1, V_{1}\right)=1, \operatorname{occ}\left(n+1, V_{n}\right)=n+1$, and for $2 \leq i \leq n$ at vertex $i, V_{i-1}^{(i+1,<)}<V_{i}^{\left(i^{2},<\right)}$, where
$V^{(}(x,<)$ means that the nolvgon V. occurs x times in the successor seauence of the corresnonding vertex
(3) the multiplicity function μ is such that $\mu(j)=1$, for any $j \in \Gamma_{0}$.

Then there exists a bijective correspondence between indecomposable projective $\Lambda_{\Gamma_{n}}$-modules and indecomposable preprojective representations of type IV and order $n \geq 2$ of the tetrad.

Theorem

For $n \geq 2$ fixed, let Γ_{n} be the Brauer configuration $\Gamma_{n}=\left(\Gamma_{0}, \Gamma_{1}, \mathcal{O}, \mu\right)$ such that: (1)

$$
\begin{align*}
& \Gamma_{0}=\{1,2,3 \ldots, n, n+1\} \\
& \Gamma_{1}=\left\{V_{k}\right\}_{1 \leq k \leq n}, V_{i} \neq V_{j} \text { if } i \neq j \tag{4}
\end{align*}
$$

(2) The orientation \mathcal{O} is defined in such a way that
$\operatorname{occ}\left(1, V_{1}\right)=1, \operatorname{occ}\left(n+1, V_{n}\right)=n+1$, and for $2 \leq i \leq n$ at vertex $i, V_{i-1}^{(i+1,<)}<V_{i}^{\left(i^{2},<\right)}$, where $V_{y}^{(x,<)}$ means that the polygon V_{y} occurs x times in the successor sequence of the corresponding vertex,
(3) the multiplicity function μ is such that $\mu(j)=1$, for any $j \in \Gamma_{0}$.

Then there exists a bijective correspondence between indecomposable projective $\Lambda_{\Gamma_{n}}$-modules and indecomposable preprojective representations of type IV and order $n \geq 2$ of the tetrad.

Theorem

For $n \geq 2$ fixed, let Γ_{n} be the Brauer configuration $\Gamma_{n}=\left(\Gamma_{0}, \Gamma_{1}, \mathcal{O}, \mu\right)$ such that: (1)

$$
\begin{align*}
& \Gamma_{0}=\{1,2,3 \ldots, n, n+1\} \\
& \Gamma_{1}=\left\{V_{k}\right\}_{1 \leq k \leq n}, V_{i} \neq V_{j} \text { if } i \neq j \tag{4}
\end{align*}
$$

(2) The orientation \mathcal{O} is defined in such a way that
$\operatorname{occ}\left(1, V_{1}\right)=1, \operatorname{occ}\left(n+1, V_{n}\right)=n+1$, and for $2 \leq i \leq n$ at vertex $i, V_{i-1}^{(i+1,<)}<V_{i}^{\left(i^{2},<\right)}$, where $V_{y}^{(x,<)}$ means that the polygon V_{y} occurs x times in the successor sequence of the corresponding vertex,
(3) the multiplicity function μ is such that $\mu(j)=1$, for any $j \in \Gamma_{0}$.

Then there exists a bijective correspondence between indecomposable projective $\Lambda_{\Gamma_{n}}$-modules and indecomposable preprojective representations of type IV and order $n \geq 2$ of the tetrad.

Firstly, we note that the Brauer configuration (4) allows to see each polygon V_{n} as a partition of the number h_{n} into two parts of the form $\{n, n+1\}$ where n occurs $(n)^{2}$ times and $n+1$ occurs $n+1$ times. Assuming the classical notation for partitions [2] each number h_{n} can be expressed as follows:

$$
\begin{equation*}
h_{n}=(n)^{\left(n^{2}\right)}(n+1)^{(n+1)}, \quad n \geq 1 . \tag{25}
\end{equation*}
$$

we let P_{n} denote such a partition. The following is the quiver $Q_{\Gamma_{n}}$ associated to such Brauer configuration. In this case, we use the symbol $[x ; y]$ to denote that the vertex x occurs y times at the corresponding polygon.

For instance:

$$
\begin{aligned}
5 & =(1)+(2+2) \\
17 & =(2+3)+(2+3)+(2+2+3) \\
43 & =(3+3+4)+(3+3+4)+(3+3+4)+(3+3+3+4) \\
89 & =(4+4+4+5)+(4+4+4+5)+(4+4+4+5)+(4+4+4+5)+(4+4+4+4+5)
\end{aligned}
$$

Proof.

Figure: Partition tree and cycles associated to a preprojective of type IV $(n=3)$. Note that, polygon $17=(2+3)+(2+3)+(2+2+3)$.

References

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA
(1) Categorification of some integer sequences, A. M. Cañadas, H. Giraldo, P.F.F. Espinosa, FMJS, 92, 2014, no. 2, 125-139.
(2) A partition formula for Fibonacci numbers, P. Fahr, C. M Ringel, Journal of integer sequences, 11, 2008, no. 08.14
(3) Brauer Configuration Algebras: A Generalization of Brauer Graph Algebras, E.L. Green, S. Schroll, Bull. Sci. Math., 141, 2017, 539-572, 2017
(4) A052558, A100705, OFIS (On-Line Encyclopedia of Integer Sequences)
(5) The four subspace problem; An elementary solution, A.G Zavadskij, G.Medina, Linear Algebra App, 392, 11-23, 2004
(1) Categorification of some integer sequences, A. M. Cañadas, H. Giraldo, P.F.F. Espinosa, FMJS, 92, 2014, no. 2, 125-139.
(2) A partition formula for Fibonacci numbers, P. Fahr, C. M. Ringel, Journal of integer sequences, 11, 2008, no. 08.14.
(3) Brauer Configuration Algebras: A Generalization of Brauer Graph Algebras, E.L. Green, S. Schroll, Bull. Sci. Math., 141, 2017, 539-572, 2017
(9) A052558, A100705, OEIS (On-Line Encyclopedia of Integer Sequences)
(5) The four subspace problem; An elementary solution, A.G Zavadskij, G.Medina, Linear Algebra App, 392, 11-23, 2004.
(1) Categorification of some integer sequences, A. M. Cañadas, H. Giraldo, P.F.F. Espinosa, FMJS, 92, 2014, no. 2, 125-139.
(2) A partition formula for Fibonacci numbers, P. Fahr, C. M. Ringel, Journal of integer sequences, 11, 2008, no. 08.14.
(3) Brauer Configuration Algebras: A Generalization of Brauer Graph Algebras, E.L. Green, S. Schroll, Bull. Sci. Math., 141, 2017, 539-572, 2017.
© A052558, A100705, OEIS (On-Line Encyclopedia of Integer Sequences).
(5) The four subspace problem; An elementary solution, A. G Zavadskij, G.Medina, Linear Algebra App, 392, 11-23, 2004
(1) Categorification of some integer sequences, A. M. Cañadas, H. Giraldo, P.F.F. Espinosa, FMJS, 92, 2014, no. 2, 125-139.
(2) A partition formula for Fibonacci numbers, P. Fahr, C. M. Ringel, Journal of integer sequences, 11, 2008, no. 08.14.
(3) Brauer Configuration Algebras: A Generalization of Brauer Graph Algebras, E.L. Green, S. Schroll, Bull. Sci. Math., 141, 2017, 539-572, 2017.
(4) A052558, A100705, OEIS (On-Line Encyclopedia of Integer Sequences).
(5) The four subspace problem; An elementary solution, A.G. Zavadskij, G.Medina, Linear Algebra App, 392, 11-23, 2004.
(1) Categorification of some integer sequences, A. M. Cañadas, H. Giraldo, P.F.F. Espinosa, FMJS, 92, 2014, no. 2, 125-139.
(2) A partition formula for Fibonacci numbers, P. Fahr, C. M. Ringel, Journal of integer sequences, 11, 2008, no. 08.14.
(3) Brauer Configuration Algebras: A Generalization of Brauer Graph Algebras, E.L. Green, S. Schroll, Bull. Sci. Math., 141, 2017, 539-572, 2017.
(4) A052558, A100705, OEIS (On-Line Encyclopedia of Integer Sequences).
(5) The four subspace problem; An elementary solution, A.G. Zavadskij, G.Medina, Linear Algebra App, 392, 11-23, 2004.

Thank You

Universidad Nacional de Colombia

Matrix Problems Associated to Some Brauer Configuration AlgebrasMaurice Auslander Distinguished LecturesFalmouth-USA

