Maurice Auslander International Conference April 28, 2019, Woods Hole

Supersymmetry and Littlewood-Richardson tableaux

Frantisek Marko
Pennsylvania State University
Hazleton, USA

ABSTRACT. The Littlewood-Richardson coefficients $C_{\mu'\nu}^{\lambda'}$, counting the number of Littlewood-Richardson tableaux of skew shape λ'/μ' and content ν appear in the description of Hook Schur functions. They are characters of simple supermodules over general linear supergroups G = GL(m|n) and the ground field \mathbb{C} . The representation theory of GL(m|n) enjoys a natural "supersymmetry," while Littlewood-Richardson tableaux, originating in the representation theory of symmetric groups, lack such a "supersymmetry." The purpose of the talk is to show how to replace Littlewood-Richardson tableaux T by a pair (T^+, T^-) of tableaux related by a "supersymmetry."

We choose a reading P^+ of the entries in the skew-shape diagram

as

$$P^{+} = 3$$

$$\begin{bmatrix} 6 \\ 1 & 4 & 7 \\ 2 & 5 & 8 \end{bmatrix}$$

and to the tableau

$$T^{+} = \begin{bmatrix} 4 \\ 4 & 4 & 5 \\ 5 & 6 & 6 \end{bmatrix}$$

we assign the multi-index

$$(I|J) = (11122333|45646456).$$

Analogously, to the tableau

$$T^{-} = \begin{array}{c|c} & 3 & 2 & 1 \\ \hline & 3 & 1 \\ \hline & 3 & 2 & 1 \\ \hline \end{array}$$

and reading

$$P^{-} = \begin{array}{c|c} & 3 & 2 & 1 \\ \hline & 5 & 4 \\ \hline & 8 & 7 & 6 \\ \hline \end{array}$$

we assign the multi-index

$$(K|L) = (12313123|44455666).$$

Using supercommutativity, we infer

$$c_{14}c_{15}c_{16}c_{24}c_{26}c_{34}c_{35}c_{36} = c_{I|J} = \pm c_{K|L} = c_{14}c_{24}c_{34}c_{15}c_{25}c_{16}c_{26}c_{36}.$$

Recall that

$$(I|J) = (11122333|45646456).$$

The diagram

represents a (3|3)-hook partition $\lambda = (5, 4, 4, 3, 2)$ and corresponds to a weight $(\lambda^+|\lambda^-)$ of the general linear supergroup GL(3|3), where $\lambda^+ = (5, 4, 4)$ and $\lambda^- = (2, 2, 1)$ are depicted by diagrams

Consider a partition $\mu = (2, 2, 1) \triangleleft \lambda^+$ and the skew shape λ/μ depicted as

The transpose of λ/μ is the shew shape λ'/μ' depicted as

Consider a tableau T of the skew shape λ'/μ' and content $\nu=(5,4,4)$ depicted as

$$T = \begin{bmatrix} 4 & 4 \\ 4 & 5 & 5 \\ 4 & 4 & 5 & 6 \\ 5 & 6 & 6 \end{bmatrix}$$

By restriction of T, we define the tableau T^+

$$T^{+} = \begin{bmatrix} 4 & 4 & 5 \\ 5 & 6 & 6 \\ \end{bmatrix}$$

of skew shape $\lambda^{+\prime}/\mu'$ and content ν/λ^- .

To the tableau

$$T^{+} = \begin{bmatrix} 4 & 4 & 5 \\ 5 & 6 & 6 \end{bmatrix}$$

of skew shape $\lambda^{+\prime}/\mu'$ and content ν/λ^- we assign a tableau

$$T^{-} = \begin{array}{c|c} & 3 & 2 & 1 \\ \hline & 3 & 1 \\ \hline & 3 & 2 & 1 \end{array}$$

of skew shape ν/λ^- and content $\lambda^{+\prime}/\mu'$ by reading the entries of T^+ from right to left and from top to bottom, and consecutively recording in rows of T^- from left to right the column of the entries in T^+ that equal to a fixed symbol 4, 5 or 6.

In the above example, the tableau T^+ is semi-standard, that is, entries in its rows are weakly increasing (\leq), and entries in its columns are increasing (<).

The tableau T^- is anti-semistandard, that is, entries in its rows are decreasing (>), and entries in its columns are weakly decreasing (\geq).

Proposition 1. Let $\lambda = (\lambda^+|\lambda^-)$ be an (m|n)-hook partition, $\mu \triangleleft \lambda^+$, and ν be a partition such that $\lambda^- \triangleleft \nu$. Let T be a tableau of the skew shape λ'/μ' and content ν . Then T is a Littlewood-Richardson tableau if and only if T^+ is semistandard and T^- is anti-semistandard.

Moreover, each tableau T^+ as above that is semi-standard and for which T^- is anti-semistandard is the row reading of a picture f: $\lambda^{+\prime}/\mu' \to \nu/\lambda^-$ in the sense of Zelevinski and vice-versa.

References

- M.: Primitive vectors in induced supermodules for general linear supergroups,
 J. Pure Appl. Algebra 219 (2015), no. 4, 978–1007.
- [2] M.: Even-primitive vectors in induced supermodules for general linear supergroups and costandard supermodules for Schur superalgebras, J. Algebraic Combin., https://doi.org/10.1007/s10801-019-00879-6, 49pp.
- [3] Zelevinsky, A. V.: A generalization of the Littlewood-Richardson rule and the Richardson-Schensted-Knuth correspondence, J. Algebra 69 (1981), no. 1, 82– 94.