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I. Various representation theories of alge-
braic groups

The groups

• Let G be a reductive algebraic group defined over Fq
and k = F̄q.

Example: GLn is defined over Z. For any commutative
ring A, GLn(A) is the group of all invertible matrices in
with entries in A.

Ring homomorphism f : A→ B gives a group homomor-
phism

GLn(f) : GLn(A)→ GLn(B).



• There are many groups associated to G by taking ra-

tional points over various fields:

– Finite groups G(qr) = G(Fqr)
– Infinite groups G = G(k) for any field extension k ⊇ Fq
– The groups G(Fq[t]/tn) and the limit G(Fq[[t]]) ⊆ G(Fq((t)))

– The groups G(F̄q[t]/tn) and the limit G(F̄q[[t]]) ⊆ G(F̄q((t)))

– p-adic groups G(Qp)

• Profinite groups and proalgebraic groups Consider

smooth representations.

• Representation theory of G(qr) over a field K: The

classical question: for characteristics of K being the same

as that of Fq or different.



• Rational representation theory of G (representations
over k), one of the main topics.

• Representations of the infinite groups G = G(k) as
an abstract group over a field K

• Representations of the Lie algebra g = Lie(G) (over
the defining field k), both restricted representations and
other representations.

Example: For G = GLn, g = gln(k) = Endk(kn). The
restricted structure is the map x 7→ xp ∈ Endk(kn).

• Representations of the Frobenius kernels Gr and their
thickenings.



Example: For G = GLn, Gr(A) = ker(Fr : G(A) →
G(A)) with Fr((aij) = (aqij).

• Representations of the hyperalgebra (or distribution

algebra) D(G) = Dist(G) and its finite dimensional sub-

algebras Dr(G) = Dist(Gr).

Example: For G = Ga,

Dist(G) = k -span{x(n) | n ∈ N}/ ∼

x(n)x(m) =
(n+m

n

)
x(n+m)

“think of” x(n) = xn/n!

Dist(Gr) = k -span{x(n) | n < qr}



Example: For G = Gm,

Dist(G) = k -span{δ(n) | n ∈ N}

δ(n)δ(m) =
∑
i≥0

( n+m− i
n− i,m− i, i

)
δ(n+m−i)

“think of” δ(n) =
(
δ1
n

)
Dist(Gr) = k -span{δ(n) | n < qr}.

Relations

Rational Reps-(G)

Res

uu

Res

((

Rep-(G(pr))/k Rep- Distr(G)



• Relations among these representation theories are com-

plicated. Some of them have quantum analog and oth-

ers, not known yet.

• Representations of G(qr) over k and that of Dr(G)

and Gr, and rational representations are well studied.

Irreducibles, projectives, cohomology theories etc.

• Representations of G(qr) over C, or Q̄l (l 6= p)for all r.

Character theory controls everything: How to compute

the characters? directly compute, one group at a time.

Deligne-Lusztig characters, and Lusztig’s character sheaf

theory: certain perverse sheaves on the algebraic variety

G(k) (constructible l-adic sheaves with values in Q̄l.



• Representations of G(qr) and over K = K̄ with ch(K) 6=
ch(Fq), there are also geometric approach by considering
the constructible sheaves with coefficient in K by Juteau
and many others using Langland dual group.

Theorem 1 (Borel-Tits-1973). Let G and G′ be two
simple algebraic groups over two different fields k and k′

respectively. If there is an abstract group homomorphism
α : G(k)→ G′(k′) such that α([G,G]) is dense in G′(k′),
then α “almost” rational algebraic group homomorphism.
In particular there is field homomorphism k → k′ and
char(k) = char(k′).

Essentially if E and k have different characteristic, the
infinite group G(k) does not have finite dimensional non-
trivial representations.



Example 1. Let G = Gm = GL1 be the multiplicative
group scheme. G(k) = k×.

Wp(k) — the ring of Witt vectors of the field k.

K — the field of fractions of Wp(k).

Then the commutative group Gm(k) has plenty one di-
mensional representations. For example, the Teichmüller
representative τ : k× → Wp(k)× ⊂ GL1(K) is a group
character. The Galois groups Gal(k) acts on the set of
all characters.

Remark: Wp(Fp) = Zp, the p-adic integers, K = Qp.

More general

Det : GLn(k)→ k× τ→Wp(k)× ⊂ GL1(K).



Example 2. G = Ga, Ga(k) = (k,+). Fix any pth root

ξ ∈ K of 1, ψ : Z/pZ → µp ⊆ K× by ψ(n) = ξn. k is a Fp
vector space and choose a basis, one has non-countablely

many irreducible representations if Ch(K) 6= p and one

single irreducible representation if Ch(K) = p.

Remark 1. G(k) = ∪r≥1G(qr) is a union of finite groups.

Reductive groups are built up from Gm’s and Ga’s through

the root systems.

There are subgroups G ⊃ B = TnU and W = NG(T)/T

all defined over Fq and they have corresponding sub-

groups of rational points.



• The representations of the infinite group G(k) were

considered by Nanhua Xi in 2011 using the fact that G(k)

is a directed union of finite groups of Lie type.

The standard constructions of induced representations

and Harish-Chandra induced representations have inter-

esting decompositions (with finite length). But induced

modules are no longer semisimple (even over C) and the

Hecke algebras are trivial.

Example The induced module KG(F̄p) ⊗KB(F̄p) K has

only finitely many composition factors indexed by sub-

sets of simple roots and each appears exactly once in all

characteristics. But End(KG(F̄p) ⊗KB(F̄p) K) = K. The

Hecke algebra is trivial even for K = C.



• When K = k, then both finite dimensional represen-

tations (rational representations) and non-rational repre-

sentations (infinite dimensional representations) all ap-

pear.

Remark 2. D(G) = ∪r≥1Dr(G) is also a union of finite

dimensional Hopf subalgebras.

The goal is to relate representations of D(G) and that

G(k) over k, in terms of Harish-Chandra inductions. The

best analog is the category O of the Hyperalgebra D(G).



II. Irreducible characters in category O

Let U = Dist(G) Then U = U−⊗kU
0⊗kU

+, as k-vector

space.

The commutative and cocommutative Hopf k-algebra

U0 = ⊗Dist(Gm) (not finitely generated) defines an abelian

group scheme X = Spec(U0) with group operation writ-

ten additively. Let X(k) denote the k-rational points of

X.

Kostant Z-form defines a Z structure on X and X(K) =

(hZ⊗ZK)∗ if char(K) = 0 and X(k) = X(Wp(k)) ⊇ X(Zp).



X(k) = X(Wp(k)) is a free Wp(k)-module with a basis

{ωi} (the fundamental weights).

If Q = ZΦ is the root lattice, then there is a paring

Q×X(k)→Wp(k) with (α, λ) = 〈α∨, λ〉.

0→ prX(k)→ X(k)→ Xr → 0

• Verma modules M(λ) = U ⊗U≥0 kλ with λ ∈ X(k).

• M(λ) has unique irreducible quotient L(λ).

Inductive limit property:



• M(λ) = ∪∞r=1 Dist(Gr)v
+
λ .

• L(λ) = ∪∞r=1 Dist(Gr)v
+
λ .

• Each module M in the category O defines function

chM : X(k)→ N, written as formal series:

chM =
∑

λ∈X(k)

dim(Mλ)eλ.

• One has to replace group algebra Z[X(k)] by function

algebra with convex conical supports on X(k) in order for

convolution product to make sense.



• Frobenius morphism Fr : G → G over Fq defines a

map X(k) → X(k) (λ 7→ λ(1) = qλ). Similarly λ(r) = qrλ

Frobenius twisted representation.

Theorem 2 (Haboush 1980). For each λ =
∑∞
r=0 p

rλr ∈
X(k),

L(λ) = L(λ0)⊗ L(λ1)(1) ⊗ L(λ2)(2) ⊗ · · ·

Infinite tensor product should be understood as direct

limit.

Goal: compute the character chL(λ) in terms of the func-

tion chM(µ).



Haboush theorem implies

chλ =
∞∏
r=1

(chL(λr))(r).

The infinite product makes sense in the function spaces.

Example 3. Let λ = −ρ ∈ X(Z) ⊆ X(Zp) = X(k). Then

L(−ρ) = M(−ρ) = L((q−1)ρ)⊗L((q−1)ρ)(1)⊗L((q−1)ρ)(r)⊗· · ·

using the fact −1 =
∑∞
r=0(q − 1)qr.



III. Generic quantum groups over a p-adic
field–Nonintegral weights

• Let Q′p = Qp[ξ] where ξ is a pr-th root of 1.

• Q′p is a discrete valuation field and let A be the ring
of integers in Q′p over Zp. Then A is a complete discrete
valuation ring with maximal ideal pA generated by p.

• Each λ ∈ Zp defines a Q′p algebra homomorphism
Q′p[K,K−1]]→ Q′p by sending K → ξλ.

• ξλ ∈ A. In fact ξ ∈ Q′p is a prth-root of 1 implies
z = ξ − 1 ∈ pA and

(1 + z)λ =
∞∑
n=0

(λ
n

)
zn converges in Q′p, ∀λ ∈ A.



• For an indeterminate v, set z = v − 1 ∈ Z[v, v−1].
v−1 =

∑∞
n=0(−1)nzn ∈ A[[z]] implies Z[v, v−1] ⊆ A[[z]]

and Q(v) ⊆ Q′p((z)). For any λ ∈ Zp[[z]]

vλ =
∞∑
n=0

(λ
n

)
zn

is convergent in Zp[[z]] by noting that
(
λ
n

)
∈ Zp[[z]].

• Let UC(v) (generic case) be the quantum envelop-
ing algebra of gC over the field C(v). Let UZ[v,v−1] be

the Z[v, v−1]-form in UC(v) constructed by Lusztig using
divided powers.

• Set UQ′p = UZ[v,v−1] ⊗Z[v,v−1] Q
′
p and UQ′p((z)) and



UA((z)) etc. They all have compatible triangular decom-

positions.

• The subring U0
Z[v,v−1]

is a commutative and cocom-

mutative Hopf algebra over Z[v, v−1]

• Each λ = (λi) ∈ Q′p((z))I defines a Q′p((z))- algebra

homomorphism

λ : U0
Q′p((z)) → Q′p((z)) Ki 7→ v

λi
i .

Then λ(UA[[z]]) ⊆ A[[z]] if λ ∈ A[[z]]I and λ(UZp[[z]]) ⊆
Zp[[z]] if λ ∈ Zp[[z]]I.



• For λ ∈ Q′((z))I, the quantum Verma module for the
algebra UQ′p((z)) is

MQ′p((z))(λ) = UQ′p((z)) ⊗U≥0
Q′((zz))

Q′((z))λ

with irreducible quotient LQ′p((z))(λ). The characters are

similarly defined as functions Q′p((z))I → Z.

• Standard argument implies LQ′p((z))(λ) = MQ′p((z))(λ)

unless 〈α̌, λ+ ρ〉 ∈ Z≥0 ⊆ Q′p((z)). In general we have

chLQ′p((z))(λ) = ch ∆Q′p((z))(λ).

Here ∆Q′p((z))(λ) is the irreducible gQ′p((z))-module.

• The characters ch ∆Q′p((z))(λ) can be determined by
an argument similar that in the category O for gC as



outlined in Humphreys’ book by replacing the field C
with Q′p((z)).

• The generalized Kazhdan-Lusztig conjecture for non-

regular blocks (OQ′p((z)))λ gives the following decompo-

sition of characters

chLQ′p((z))(λ) =
∑
µ

p0
µ,λ chMQ′p((z))(µ) (1)



IV. Quantum groups at prth roots of unit
over a p-adic field

• Let ξ be a prth root of 1.

• The map Q′p[[z]]→ Q′p (z 7→ ξ−1) induces A[[z]]→ A.

Define

UQ′p = UZ[v,v−1] ⊗Z[v,v−1] Q
′
p = UA[[z]] ⊗A[[z]] Q

′
p

with A-form UAp = UA[[z]] ⊗A[[z]] A with tensor product

decomposition

UA = U−A ⊗A U0
A ⊗A U+

A .



• Let OQ′p be the category O construction by Andersen

and Mazorchuk for the quantum group UQ′p.

• The Verma module MQ′p(λ) and irreducible quotient

LQ′p(λ) in OQ′p with λ ∈ X(Zp) ⊆ X(Q′p).

• For λ ∈ X(Zp), LAp[[z]](λ) = UAp[[z]]v
+
λ ⊆ LQ′p((z))(λ)

is an A[[z]]-lattice.

• Define VQ′p(λ) = LAp[[z]](λ)⊗Ap[[z]]Q′p to be the Weyl

module with the surjective maps MQ′p(λ) → VQ′p(λ) →
LQ′p(λ).



Proposition 1 (Andersen-Mazorchuk). For any λ = λ′+
pλ′′ ∈ X(k) with λ′ ∈ X1,

LQ′p(λ) = LQ′p(λ
′)⊗ (∆Q′p(λ

′′))(1).

Taking A-lattices generated by highest weight vectors

and then tensor with A → k, we get representations of

Dist(G)

Proposition 2. For λ = λ′+ pλ′′ ∈ X(k),

LAp(λ) = LAp(λ
′)⊗∆(λ′′)(1).



V. Decomposition Multiplicities in Quan-
tum Verma Modules

• For λ ∈ X(Zp), define.

E0
λ = ch ∆(λ) = ch ∆Q′p(λ).

Here ∆Q′p(λ) is the irreducible representation of the Lie
algebra gQ′p with “A-integral” highest weight λ.

• For each r ≥ 0, any λ ∈ X(Zp) can be uniquely written
as λ′+ prλ′′ with λ ∈ Xr. Define recursively

Ek+1
λ =

∑
µ∈X(k)

pµ,λ′′E
k
λ′+(p)kµ. (2)



Standard argument by Lusztig to get:

Ekλ =
∑

µ∈X(k)

d
q
µ,λ′′E

k+1
λ′+prµ

;

Ekλ = E1
λ0(E1

λ1)(1) · · · (E1
λk−1)(k−1)(E0∑

j≥k p
r(j−k)λj

)(k).

• Define

E∞λ = E1
λ0(E1

λ1)(1) · · · (E1
λk−1)(k−1)(E1

λk
)(k) · · · . (3)

• Recursively define F kλ as follows: F0
λ = chM(λ) and

for k ≥ 0

F k+1
λ =

∑
µ∈X(k)

a
q
µ,λ′′F

k
λ′+(p)kµ. (4)



Lusztig’s argument implies

F kλ =
∑

µ∈X(k)

d
q
µ,λ′′F

k+1
λ′+prµ

.

F kλ = F1
λ0(F1

λ1)(1) · · · (F1
λk−1)(k−1)(F0∑

j≥k p
r(j−k)λj

)(k).

• As before, the infinite product converges in F [X(k)].

Note that E1
λ = F1

λ = chLq(λ) for all λ. We have E∞λ =

F∞λ . But for other k, Ekλ and F kλ are different.

Proposition 3. For any k, both sets {Ekλ | λ ∈ X(Zp)}
and {F kλ | λ ∈ X(Zp)} are basis of F [X(Zp)].



We define that following decomposition of characters

F kλ =
∑

µ∈X(Zp)

d
(k)
µ,λE

k
µ;

Ekλ =
∑

µ∈X(Zp)

a
(k)
µ,λF

k
µ

• For each fixed k and λ ∈ X(k), define

∆k(λ) = L(λ0)⊗ · · · ⊗L(λk−1)(k−1)⊗ (∆(
∑
j≥k

pj−kλj))(k).

Then ch ∆k(λ) = Ekλ.

• ∆k+1(λ) is a quotient of ∆k
λ to get surjective maps

of Dist(G)-modules

∆(λ) = ∆0(λ)→ · · · →∆k(λ)→ · · · →∆∞(λ) = L(λ).



• For fixed k and λ ∈ X(k), define a highest weight

module

Mk
λ = L(λ0)⊗ · · · ⊗ L(λk−1)(k−1) ⊗ (M(

∑
j≥k

pj−kλj))(k).

Then chMk
λ = F kλ . Furthermore, we have surjective maps

of Dist(G)-modules

M(λ) = M0(λ)→ · · · →Mk(λ)→ · · · →M∞(λ) = L(λ).



THANK YOU!


