# **Representations of quantum groups at** $p^{r}$ **th root of 1 over** p**-adic fields**

### Zongzhu Lin Kansas State University

## Auslander Distinguished Lectures and International Conference Woods Hole, MA April 29, 2019

## I. Various representation theories of algebraic groups

#### The groups

• Let G be a reductive algebraic group defined over  $\mathbb{F}_q$ and  $\mathbf{k} = \overline{\mathbb{F}}_q$ .

**Example:**  $GL_n$  is defined over  $\mathbb{Z}$ . For any commutative ring A,  $GL_n(A)$  is the group of all invertible matrices in with entries in A.

Ring homomorphism  $f: A \rightarrow B$  gives a group homomorphism

$$\mathbf{G}L_n(f)$$
:  $\mathbf{G}L_n(A) \to \mathbf{G}L_n(B)$ .

- There are many groups associated to  $\mathbf{G}$  by taking rational points over various fields:
- Finite groups  $G(q^r) = \mathbf{G}(\mathbb{F}_{q^r})$
- Infinite groups  $G = \mathbf{G}(\mathbf{k})$  for any field extension  $\mathbf{k} \supseteq \mathbb{F}_q$
- The groups  $\mathrm{G}(\mathbb{F}_q[t]/t^n)$  and the limit  $\mathrm{G}(\mathbb{F}_q[[t]]) \subseteq \mathrm{G}(\mathbb{F}_q((t)$
- The groups  ${
  m G}(ar{\mathbb{F}}_q[t]/t^n)$  and the limit  ${
  m G}(ar{\mathbb{F}}_q[[t]])\subseteq {
  m G}(ar{\mathbb{F}}_q((t)$
- *p*-adic groups  $\mathbf{G}(\mathbb{Q}_p)$
- Profinite groups and proalgebraic groups Consider smooth representations.
- Representation theory of  $G(q^r)$  over a field K: The classical question: for characteristics of K being the same as that of  $\mathbb{F}_q$  or different.

- Rational representation theory of G (representations over k), one of the main topics.
- Representations of the infinite groups G = G(k) as an abstract group over a field K
- Representations of the Lie algebra  $\mathfrak{g} = \text{Lie}(G)$  (over the defining field k), both restricted representations and other representations.

**Example:** For  $G = GL_n$ ,  $\mathfrak{g} = \mathfrak{gl}_n(\mathbf{k}) = End_{\mathbf{k}}(\mathbf{k}^n)$ . The restricted structure is the map  $x \mapsto x^p \in End_{\mathbf{k}}(\mathbf{k}^n)$ .

• Representations of the Frobenius kernels  $G_r$  and their thickenings.

**Example:** For  $G = GL_n$ ,  $G_r(A) = \ker(Fr : G(A) \rightarrow G(A))$  with  $Fr((a_{ij}) = (a_{ij}^q)$ .

• Representations of the hyperalgebra (or distribution algebra)  $D(\mathbf{G}) = \text{Dist}(\mathbf{G})$  and its finite dimensional subalgebras  $D_r(\mathbf{G}) = \text{Dist}(\mathbf{G}_r)$ .

Example: For  $G = G_a$ ,  $Dist(G) = k - span\{x^{(n)} | n \in \mathbb{N}\}/ \sim$   $x^{(n)}x^{(m)} = {n+m \choose n}x^{(n+m)}$ 

"think of"  $x^{(n)} = x^n/n!$ Dist(G<sub>r</sub>) = k-span{ $x^{(n)} \mid n < q^r$ } Example: For  $\mathbf{G} = \mathbf{G}_m$ ,  $\text{Dist}(\mathbf{G}) = \mathbf{k} \operatorname{-span} \{ \delta_{(n)} \mid n \in \mathbb{N} \}$  $\delta_{(n)} \delta_{(m)} = \sum_{i \ge 0} {n+m-i \choose n-i, m-i, i} \delta_{(n+m-i)}$ 

think of' 
$$\delta_{(n)} = {\delta_1 \choose n}$$
  
ist $(\mathbf{G}_r) = \mathbf{k}$ -span $\{\delta_{(n)} \mid n < q^r\}.$ 

#### Relations

11-



• Relations among these representation theories are complicated. Some of them have quantum analog and others, not known yet.

• Representations of  $G(q^r)$  over k and that of  $D_r(G)$ and  $G_r$ , and rational representations are well studied. Irreducibles, projectives, cohomology theories etc.

• Representations of  $G(q^r)$  over  $\mathbb{C}$ , or  $\overline{\mathbb{Q}}_l$   $(l \neq p)$  for all r. Character theory controls everything: How to compute the characters? directly compute, one group at a time. Deligne-Lusztig characters, and Lusztig's character sheaf theory: certain perverse sheaves on the algebraic variety  $G(\mathbf{k})$  (constructible *l*-adic sheaves with values in  $\overline{\mathbb{Q}}_l$ . • Representations of  $G(q^r)$  and over  $\mathbf{K} = \overline{\mathbf{K}}$  with  $ch(\mathbf{K}) \neq ch(\mathbb{F}_q)$ , there are also geometric approach by considering the constructible sheaves with coefficient in  $\mathbf{K}$  by Juteau and many others using Langland dual group.

**Theorem 1** (Borel-Tits-1973). Let G and G' be two simple algebraic groups over two different fields k and k' respectively. If there is an abstract group homomorphism  $\alpha : G(k) \to G'(k')$  such that  $\alpha([G,G])$  is dense in G'(k'), then  $\alpha$  "almost" rational algebraic group homomorphism. In particular there is field homomorphism  $k \to k'$  and char(k) = char(k').

Essentially if  $\mathbb{E}$  and  $\mathbf{k}$  have different characteristic, the infinite group  $\mathbf{G}(\mathbf{k})$  does not have finite dimensional non-trivial representations.

**Example** 1. Let  $G = \mathbb{G}_m = GL_1$  be the multiplicative group scheme.  $G(k) = k^{\times}$ .

 $W_p(\mathbf{k})$  — the ring of Witt vectors of the field  $\mathbf{k}$ .

**K** — the field of fractions of  $W_p(\mathbf{k})$ .

Then the commutative group  $\mathbb{G}_m(\mathbf{k})$  has plenty one dimensional representations. For example, the Teichmüller representative  $\tau : \mathbf{k}^{\times} \to W_p(\mathbf{k})^{\times} \subset \mathbf{G}L_1(\mathbf{K})$  is a group character. The Galois groups  $\mathbf{Gal}(\mathbf{k})$  acts on the set of all characters.

**Remark:**  $W_p(\mathbb{F}_p) = \mathbb{Z}_p$ , the *p*-adic integers,  $\mathbf{K} = \mathbb{Q}_p$ .

More general

Det : 
$$\mathbf{G}L_n(\mathbf{k}) \to \mathbf{k}^{\times} \xrightarrow{\tau} W_p(\mathbf{k})^{\times} \subset \mathbf{G}L_1(\mathbf{K}).$$

**Example 2.**  $\mathbf{G} = \mathbb{G}_a$ ,  $\mathbb{G}_a(\mathbf{k}) = (\mathbf{k}, +)$ . Fix any *p*th root  $\xi \in \mathbf{K}$  of 1,  $\psi : \mathbb{Z}/p\mathbb{Z} \to \mu_p \subseteq \mathbf{K}^{\times}$  by  $\psi(n) = \xi^n$ .  $\mathbf{k}$  is a  $\mathbb{F}_p$  vector space and choose a basis, one has non-countablely many irreducible representations if  $Ch(\mathbf{K}) \neq p$  and one single irreducible representation if  $Ch(\mathbf{K}) = p$ .

**Remark 1.**  $G(\mathbf{k}) = \bigcup_{r \ge 1} G(q^r)$  is a union of finite groups.

Reductive groups are built up from  $G_m$ 's and  $G_a$ 's through the root systems.

There are subgroups  $\mathbf{G} \supset \mathbf{B} = \mathbf{T} \ltimes \mathbf{U}$  and  $W = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$ all defined over  $\mathbb{F}_q$  and they have corresponding subgroups of rational points. • The representations of the infinite group G(k) were considered by Nanhua Xi in 2011 using the fact that G(k) is a directed union of finite groups of Lie type.

The standard constructions of induced representations and Harish-Chandra induced representations have interesting decompositions (with finite length). But induced modules are no longer semisimple (even over  $\mathbb{C}$ ) and the Hecke algebras are trivial.

**Example** The induced module  $\mathrm{KG}(\bar{\mathbb{F}}_p) \otimes_{\mathrm{KB}(\bar{\mathbb{F}}_p)} \mathrm{K}$  has only finitely many composition factors indexed by subsets of simple roots and each appears exactly once in all characteristics. But  $\mathrm{End}(\mathrm{KG}(\bar{\mathbb{F}}_p) \otimes_{\mathrm{KB}(\bar{\mathbb{F}}_p)} \mathrm{K}) = \mathrm{K}$ . The Hecke algebra is trivial even for  $\mathrm{K} = \mathbb{C}$ . • When  $\mathbf{K} = \mathbf{k}$ , then both finite dimensional representations (rational representations) and non-rational representations (infinite dimensional representations) all appear.

**Remark 2.**  $D(\mathbf{G}) = \bigcup_{r \ge 1} D_r(\mathbf{G})$  is also a union of finite dimensional Hopf subalgebras.

The goal is to relate representations of D(G) and that G(k) over k, in terms of Harish-Chandra inductions. The best analog is the category  $\mathcal{O}$  of the Hyperalgebra D(G).

## II. Irreducible characters in category ${\cal O}$

Let U = Dist(G) Then  $U = U^- \otimes_k U^0 \otimes_k U^+$ , as k-vector space.

The commutative and cocommutative Hopf k-algebra  $U^0 = \otimes \text{Dist}(\mathbb{G}_m)$  (not finitely generated) defines an abelian group scheme  $X = \text{Spec}(U^0)$  with group operation written additively. Let  $X(\mathbf{k})$  denote the k-rational points of X.

Kostant  $\mathbb{Z}$ -form defines a  $\mathbb{Z}$  structure on X and  $X(\mathbf{K}) = (\mathfrak{h}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbf{K})^*$  if char $(\mathbf{K}) = 0$  and  $X(\mathbf{k}) = X(W_p(\mathbf{k})) \supseteq X(\mathbb{Z}_p)$ .

 $X(\mathbf{k}) = X(W_p(\mathbf{k}))$  is a free  $W_p(\mathbf{k})$ -module with a basis  $\{\omega_i\}$  (the fundamental weights).

If  $Q = \mathbb{Z}\Phi$  is the root lattice, then there is a paring  $Q \times X(\mathbf{k}) \to W_p(\mathbf{k})$  with  $(\alpha, \lambda) = \langle \alpha^{\vee}, \lambda \rangle$ .

$$0 \to p^r X(\mathbf{k}) \to X(\mathbf{k}) \to X_r \to 0$$

- Verma modules  $M(\lambda) = U \otimes_{U \ge 0} \mathbf{k}_{\lambda}$  with  $\lambda \in X(\mathbf{k})$ .
- $M(\lambda)$  has unique irreducible quotient  $L(\lambda)$ .

Inductive limit property:

•  $M(\lambda) = \bigcup_{r=1}^{\infty} \text{Dist}(\mathbf{G}_r) v_{\lambda}^+.$ 

• 
$$L(\lambda) = \bigcup_{r=1}^{\infty} \text{Dist}(\mathbf{G}_r) v_{\lambda}^+.$$

• Each module M in the category  $\mathcal{O}$  defines function  $\operatorname{ch}_M : X(\mathbf{k}) \to \mathbb{N}$ , written as formal series:

$$\operatorname{ch}_M = \sum_{\lambda \in X(\mathbf{k})} \dim(M_\lambda) e^{\lambda}.$$

• One has to replace group algebra  $\mathbb{Z}[X(\mathbf{k})]$  by function algebra with convex conical supports on  $X(\mathbf{k})$  in order for convolution product to make sense.

• Frobenius morphism  $Fr : \mathbf{G} \to \mathbf{G}$  over  $\mathbb{F}_q$  defines a map  $X(\mathbf{k}) \to X(\mathbf{k})$  ( $\lambda \mapsto \lambda^{(1)} = q\lambda$ ). Similarly  $\lambda^{(r)} = q^r\lambda$ Frobenius twisted representation.

**Theorem 2** (Haboush 1980). For each  $\lambda = \sum_{r=0}^{\infty} p^r \lambda^r \in X(\mathbf{k})$ ,

$$L(\lambda) = L(\lambda^0) \otimes L(\lambda^1)^{(1)} \otimes L(\lambda^2)^{(2)} \otimes \cdots$$

Infinite tensor product should be understood as direct limit.

**Goal:** compute the character  $ch_{L(\lambda)}$  in terms of the function  $ch_{M(\mu)}$ .

Haboush theorem implies

$$ch_{\lambda} = \prod_{r=1}^{\infty} (ch_{L(\lambda^{r})})^{(r)}.$$

The infinite product makes sense in the function spaces. **Example 3.** Let  $\lambda = -\rho \in X(\mathbb{Z}) \subseteq X(\mathbb{Z}_p) = X(\mathbf{k})$ . Then

 $L(-\rho) = M(-\rho) = L((q-1)\rho) \otimes L((q-1)\rho)^{(1)} \otimes L((q-1)\rho)^{(r)} \otimes$ 

## **III.** Generic quantum groups over a *p*-adic field–Nonintegral weights

• Let 
$$\mathbb{Q}'_p = \mathbb{Q}_p[\xi]$$
 where  $\xi$  is a  $p^r$ -th root of 1.

•  $\mathbb{Q}'_p$  is a discrete valuation field and let  $\mathbb{A}$  be the ring of integers in  $\mathbb{Q}'_p$  over  $\mathbb{Z}_p$ . Then  $\mathbb{A}$  is a complete discrete valuation ring with maximal ideal  $p\mathbb{A}$  generated by p.

• Each  $\lambda \in \mathbb{Z}_p$  defines a  $\mathbb{Q}'_p$  algebra homomorphism  $\mathbb{Q}'_p[K, K^{-1}] \to \mathbb{Q}'_p$  by sending  $K \to \xi^{\lambda}$ .

•  $\xi^{\lambda} \in \mathbb{A}$ . In fact  $\xi \in \mathbb{Q}'_p$  is a  $p^r$ th-root of 1 implies  $z = \xi - 1 \in p\mathbb{A}$  and

$$(1+z)^{\lambda} = \sum_{n=0}^{\infty} {\lambda \choose n} z^n$$
 converges in  $\mathbb{Q}'_p, \ \forall \lambda \in \mathbb{A}.$ 

• For an indeterminate v, set  $z = v - 1 \in \mathbb{Z}[v, v^{-1}]$ .  $v^{-1} = \sum_{n=0}^{\infty} (-1)^n z^n \in \mathbb{A}[[z]]$  implies  $\mathbb{Z}[v, v^{-1}] \subseteq \mathbb{A}[[z]]$ and  $\mathbb{Q}(v) \subseteq \mathbb{Q}'_p((z))$ . For any  $\lambda \in \mathbb{Z}_p[[z]]$ 

$$v^{\lambda} = \sum_{n=0}^{\infty} {\lambda \choose n} z^n$$

is convergent in  $\mathbb{Z}_p[[z]]$  by noting that  $\binom{\lambda}{n} \in \mathbb{Z}_p[[z]]$ .

• Let  $U_{\mathbb{C}(v)}$  (generic case) be the quantum enveloping algebra of  $\mathfrak{g}_{\mathbb{C}}$  over the field  $\mathbb{C}(v)$ . Let  $U_{\mathbb{Z}[v,v^{-1}]}$  be the  $\mathbb{Z}[v,v^{-1}]$ -form in  $U_{\mathbb{C}(v)}$  constructed by Lusztig using divided powers.

• Set 
$$\mathrm{U}_{\mathbb{Q}'_p} = \mathrm{U}_{\mathbb{Z}[v,v^{-1}]} \otimes_{\mathbb{Z}[v,v^{-1}]} \mathbb{Q}'_p$$
 and  $\mathrm{U}_{\mathbb{Q}'_p((z))}$  and

 $\mathbf{U}_{\mathbb{A}((z))}$  etc. They all have compatible triangular decompositions.

- The subring  $\mathbf{U}^0_{\mathbb{Z}[v,v^{-1}]}$  is a commutative and cocommutative Hopf algebra over  $\mathbb{Z}[v,v^{-1}]$
- Each  $\lambda = (\lambda_i) \in \mathbb{Q}'_p((z))^I$  defines a  $\mathbb{Q}'_p((z))$  algebra homomorphism

$$\lambda: \mathbf{U}^{\mathbf{0}}_{\mathbb{Q}'_p((z))} \to \mathbb{Q}'_p((z)) \quad K_i \mapsto v_i^{\lambda_i}.$$

Then  $\lambda(\mathbf{U}_{\mathbb{A}[[z]]}) \subseteq \mathbf{A}[[z]]$  if  $\lambda \in \mathbb{A}[[z]]^I$  and  $\lambda(\mathbf{U}_{\mathbb{Z}_p[[z]]}) \subseteq \mathbb{Z}_p[[z]]$  if  $\lambda \in \mathbb{Z}_p[[z]]^I$ .

• For  $\lambda \in \mathbb{Q}'((z))^I$ , the quantum Verma module for the algebra  $\mathrm{U}_{\mathbb{Q}'_p((z))}$  is

$$\mathbf{M}_{\mathbb{Q}'_p((z))}(\lambda) = \mathbf{U}_{\mathbb{Q}'_p((z))} \otimes_{\mathbf{U}_{\mathbb{Q}'((zz))}^{\geq 0}} \mathbb{Q}'((z))_{\lambda}$$

with irreducible quotient  $L_{\mathbb{Q}'_p((z))}(\lambda)$ . The characters are similarly defined as functions  $\mathbb{Q}'_p((z))^I \to \mathbb{Z}$ .

• Standard argument implies  $L_{\mathbb{Q}'_p((z))}(\lambda) = M_{\mathbb{Q}'_p((z))}(\lambda)$ unless  $\langle \check{\alpha}, \lambda + \rho \rangle \in \mathbb{Z}_{\geq 0} \subseteq \mathbb{Q}'_p((z))$ . In general we have

$$\operatorname{ch} \mathcal{L}_{\mathbb{Q}'_p((z))}(\lambda) = \operatorname{ch} \Delta_{\mathbb{Q}'_p((z))}(\lambda).$$

Here  $\Delta_{\mathbb{Q}'_p((z))}(\lambda)$  is the irreducible  $\mathfrak{g}_{\mathbb{Q}'_p((z))}$ -module.

• The characters ch  $\Delta_{\mathbb{Q}'_p((z))}(\lambda)$  can be determined by an argument similar that in the category  $\mathcal{O}$  for  $\mathfrak{g}_{\mathbb{C}}$  as

outlined in Humphreys' book by replacing the field  $\mathbb{C}$  with  $\mathbb{Q}'_p((z))$ .

• The generalized Kazhdan-Lusztig conjecture for non-regular blocks  $(\mathcal{O}_{\mathbb{Q}'_p((z))})_{\lambda}$  gives the following decomposition of characters

$$\operatorname{ch} \mathbf{L}_{\mathbb{Q}_p'((z))}(\lambda) = \sum_{\mu} \mathbf{p}_{\mu,\lambda}^0 \operatorname{ch} \mathbf{M}_{\mathbb{Q}_p'((z))}(\mu) \tag{1}$$

# IV. Quantum groups at $p^r$ th roots of unit over a p-adic field

- Let  $\xi$  be a  $p^r$ th root of 1.
- The map  $\mathbb{Q}'_p[[z]] \to \mathbb{Q}'_p(z \mapsto \xi 1)$  induces  $\mathbb{A}[[z]] \to \mathbb{A}$ . Define

$$\begin{split} \mathbf{U}_{\mathbb{Q}'_p} &= \mathbf{U}_{\mathbb{Z}[v,v^{-1}]} \otimes_{\mathbb{Z}[v,v^{-1}]} \mathbb{Q}'_p = \mathbf{U}_{\mathbb{A}[[z]]} \otimes_{\mathbb{A}[[z]]} \mathbb{Q}'_p \\ \text{with } \mathbb{A}\text{-form } \mathbf{U}_{\mathbb{A}_p} &= \mathbf{U}_{\mathbb{A}[[z]]} \otimes_{\mathbb{A}[[z]]} \mathbb{A} \text{ with tensor product } \\ \text{decomposition} \end{split}$$

$$\mathbf{U}_{\mathbb{A}} = \mathbf{U}_{\mathbb{A}}^{-} \otimes_{\mathbb{A}} \mathbf{U}_{\mathbb{A}}^{0} \otimes_{\mathbb{A}} \mathbf{U}_{\mathbb{A}}^{+}.$$

- Let  $\mathcal{O}_{\mathbb{Q}'_p}$  be the category  $\mathcal{O}$  construction by Andersen and Mazorchuk for the quantum group  $\mathbf{U}_{\mathbb{Q}'_p}$ .
- The Verma module  $M_{\mathbb{Q}'_p}(\lambda)$  and irreducible quotient  $L_{\mathbb{Q}'_p}(\lambda)$  in  $\mathcal{O}_{\mathbb{Q}'_p}$  with  $\lambda \in X(\mathbb{Z}_p) \subseteq X(\mathbb{Q}'_p)$ .

• For  $\lambda \in X(\mathbb{Z}_p)$ ,  $\mathbf{L}_{\mathbb{A}_p[[z]]}(\lambda) = \mathbf{U}_{\mathbb{A}_p[[z]]}v_{\lambda}^+ \subseteq \mathbf{L}_{\mathbb{Q}'_p((z))}(\lambda)$ is an  $\mathbb{A}[[z]]$ -lattice.

• Define  $V_{\mathbb{Q}'_p}(\lambda) = L_{\mathbb{A}_p[[z]]}(\lambda) \otimes_{\mathbb{A}_p[[z]]} \mathbb{Q}'_p$  to be the Weyl module with the surjective maps  $M_{\mathbb{Q}'_p}(\lambda) \to V_{\mathbb{Q}'_p}(\lambda) \to L_{\mathbb{Q}'_p}(\lambda)$ .

**Proposition** 1 (Andersen-Mazorchuk). For any  $\lambda = \lambda' + p\lambda'' \in X(\mathbf{k})$  with  $\lambda' \in X_1$ ,

$$L_{\mathbb{Q}'_p}(\lambda) = L_{\mathbb{Q}'_p}(\lambda') \otimes (\Delta_{\mathbb{Q}'_p}(\lambda''))^{(1)}.$$

Taking A-lattices generated by highest weight vectors and then tensor with  $\mathbb{A} \to \mathbf{k}$ , we get representations of  $\text{Dist}(\mathbf{G})$ 

**Proposition** 2. For  $\lambda = \lambda' + p\lambda'' \in X(\mathbf{k})$ ,

$$\overline{L_{\mathbb{A}_p}(\lambda)} = \overline{L_{\mathbb{A}_p}(\lambda')} \otimes \Delta(\lambda'')^{(1)}$$

### V. Decomposition Multiplicities in Quantum Verma Modules

• For 
$$\lambda \in X(\mathbf{Z}_p)$$
, define.

$$E_{\lambda}^{0} = \operatorname{ch} \Delta(\lambda) = \operatorname{ch} \Delta_{\mathbb{Q}'_{p}}(\lambda).$$

Here  $\Delta_{\mathbb{Q}'_p}(\lambda)$  is the irreducible representation of the Lie algebra  $\mathfrak{g}_{\mathbb{Q}'_p}$  with "A-integral" highest weight  $\lambda$ .

• For each  $r \ge 0$ , any  $\lambda \in X(\mathbf{Z}_p)$  can be uniquely written as  $\lambda' + p^r \lambda''$  with  $\lambda \in X_r$ . Define recursively

$$E_{\lambda}^{k+1} = \sum_{\mu \in X(\mathbf{k})} \mathbf{p}_{\mu,\lambda''} E_{\lambda'+(p)^k \mu}^k.$$
 (2)

Standard argument by Lusztig to get:

$$E_{\lambda}^{k} = \sum_{\mu \in X(\mathbf{k})} d_{\mu,\lambda''}^{q} E_{\lambda'+p^{r}\mu}^{k+1};$$
  

$$E_{\lambda}^{k} = E_{\lambda^{0}}^{1} (E_{\lambda^{1}}^{1})^{(1)} \cdots (E_{\lambda^{k-1}}^{1})^{(k-1)} (E_{\sum_{j \ge k}}^{0} p^{r(j-k)} \lambda^{j})^{(k)}.$$

• Define

$$E_{\lambda}^{\infty} = E_{\lambda^{0}}^{1} (E_{\lambda^{1}}^{1})^{(1)} \cdots (E_{\lambda^{k-1}}^{1})^{(k-1)} (E_{\lambda^{k}}^{1})^{(k)} \cdots$$
(3)

• Recursively define  $F_{\lambda}^k$  as follows:  $F_{\lambda}^0 = \operatorname{ch} M(\lambda)$  and for  $k \ge 0$ 

$$F_{\lambda}^{k+1} = \sum_{\mu \in X(\mathbf{k})} a_{\mu,\lambda''}^q F_{\lambda'+(p)^k\mu}^k.$$
 (4)

Lusztig's argument implies

$$F_{\lambda}^{k} = \sum_{\mu \in X(\mathbf{k})} d_{\mu,\lambda''}^{q} F_{\lambda'+p^{r}\mu}^{k+1}.$$

$$F_{\lambda}^{k} = F_{\lambda^{0}}^{1}(F_{\lambda^{1}}^{1})^{(1)} \cdots (F_{\lambda^{k-1}}^{1})^{(k-1)}(F_{\sum_{j \ge k}p^{r(j-k)}\lambda^{j}}^{0})^{(k)}.$$

• As before, the infinite product converges in  $F[X(\mathbf{k})]$ . Note that  $E_{\lambda}^{1} = F_{\lambda}^{1} = \operatorname{ch} L_{q}(\lambda)$  for all  $\lambda$ . We have  $E_{\lambda}^{\infty} = F_{\lambda}^{\infty}$ . But for other k,  $E_{\lambda}^{k}$  and  $F_{\lambda}^{k}$  are different. **Proposition 3.** For any k, both sets  $\{E_{\lambda}^{k} \mid \lambda \in X(\mathbf{Z}_{p})\}$ and  $\{F_{\lambda}^{k} \mid \lambda \in X(\mathbf{Z}_{p})\}$  are basis of  $F[X(\mathbf{Z}_{p})]$ . We define that following decomposition of characters

$$F_{\lambda}^{k} = \sum_{\mu \in X(\mathbf{Z}_{p})} d_{\mu,\lambda}^{(k)} E_{\mu}^{k};$$
$$E_{\lambda}^{k} = \sum_{\mu \in X(\mathbf{Z}_{p})} a_{\mu,\lambda}^{(k)} F_{\mu}^{k}$$

• For each fixed k and  $\lambda \in X(\mathbf{k})$ , define  $\Delta^{k}(\lambda) = L(\lambda^{0}) \otimes \cdots \otimes L(\lambda^{k-1})^{(k-1)} \otimes (\Delta(\sum_{j \ge k} p^{j-k} \lambda^{j}))^{(k)}.$ 

Then  $\operatorname{ch} \Delta^k(\lambda) = E_{\lambda}^k$ .

•  $\Delta^{k+1}(\lambda)$  is a quotient of  $\Delta^k_{\lambda}$  to get surjective maps of  $\text{Dist}(\mathbf{G})$ -modules

$$\Delta(\lambda) = \Delta^{0}(\lambda) \to \cdots \to \Delta^{k}(\lambda) \to \cdots \to \Delta^{\infty}(\lambda) = L(\lambda).$$

• For fixed k and  $\lambda \in X(\mathbf{k})$ , define a highest weight module

$$M_{\lambda}^{k} = L(\lambda^{0}) \otimes \cdots \otimes L(\lambda^{k-1})^{(k-1)} \otimes (M(\sum_{j \ge k} p^{j-k} \lambda^{j}))^{(k)}.$$

Then ch  $M_{\lambda}^{k} = F_{\lambda}^{k}$ . Furthermore, we have surjective maps of Dist(G)-modules

$$M(\lambda) = M^{0}(\lambda) \to \cdots \to M^{k}(\lambda) \to \cdots \to M^{\infty}(\lambda) = L(\lambda).$$

