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I. Various representation theories of alge-
braic groups

The groups

e Let G be a reductive algebraic group defined over F
and k = Fy.

Example: GL, is defined over Z. For any commutative
ring A, GL,(A) is the group of all invertible matrices in
with entries in A.

Ring homomorphism f : A — B gives a group homomor-
phism

GLn(f) : GLn(A) — GLn(B).



e T here are many groups associated to G by taking ra-
tional points over various fields:

— Finite groups G(q") = G(F )

— Infinite groups G = G(k) for any field extension k D F,
— The groups G(FFy[t]/t™) and the limit G(Fq[[t]]) C G(Fq((¢)
— The groups G(F4[t]/t"™) and the limit G(F,[[t]]) € G(Fq((t)
— p-adic groups G(Qp)

e Profinite groups and proalgebraic groups Consider
smooth representations.

e Representation theory of G(q") over a field K: The
classical question: for characteristics of K being the same
as that of F, or different.



e Rational representation theory of G (representations
over k), one of the main topics.

e Representations of the infinite groups G = G(k) as
an abstract group over a field K

e Representations of the Lie algebra g = Lie(G) (over
the defining field k), both restricted representations and
other representations.

Example: For G = GL;,, g = gln(k) = Endy (k™). The
restricted structure is the map z — zP € Endy (k™).

e Representations of the Frobenius kernels G, and their
thickenings.



Example: For G = GL,, G,(A) = ker(Fr : G(A) —

e Representations of the hyperalgebra (or distribution
algebra) D(G) = Dist(G) and its finite dimensional sub-
algebras D,((G) = Dist(Gy).

Example: For G = Gg,
Dist(G) = k-span{z{™ | n € N}/ ~

2 (Mg(m) = (" + ™ g ntm)
n
“think of" z(") = " /n/
Dist(G,) = k-span{z(™) | n < ¢}



Example: For G = G,
Dist(G) = k-span{d(,,) | n € N}

n—l—m—z

O(n)0(m) :g% (n—z,m J3utm—i)
“think of” 5( ) = $51>
Dist(Gr) = k-span{d(,y | n < q"}.

Relations

Rational Reps-(G)

Res \K

Rep-(G(p"))/k Rep- Dist,-(G)



e Relations among these representation theories are com-
plicated. Some of them have quantum analog and oth-
ers, not known yet.

e Representations of G(¢") over k and that of D,(G)
and G,, and rational representations are well studied.
Irreducibles, projectives, cohomology theories etc.

e Representations of G(q") over C, or Q; (I % p)for all r.
Character theory controls everything: How to compute
the characters? directly compute, one group at a time.
Deligne-Lusztig characters, and Lusztig’s character sheaf
theory: certain perverse sheaves on the algebraic variety
G (k) (constructible I-adic sheaves with values in Q.



e Representations of G(¢") and over K = K with ch(K) #
ch(IE“q), there are also geometric approach by considering
the constructible sheaves with coefficient in K by Juteau
and many others using Langland dual group.

Theorem 1 (Borel-Tits-1973). Let G and G’ be two
simple algebraic groups over two different fields k and k’
respectively. If there is an abstract group homomorphism
a: G(k) = G'(K) such that o([G, G]) is dense in G'(k"),
then o “almost’” rational algebraic group homomorphism.
In particular there is field homomorphism k — k’ and
char(k) = char(k’).

Essentially if E and k have different characteristic, the
infinite group G(k) does not have finite dimensional non-
trivial representations.



Example 1.lLet G = Gy, = GL;1 be the multiplicative
group scheme. G(k) = k~*.

Wy(k) — the ring of Witt vectors of the field k.
K — the field of fractions of Wj(k).

Then the commutative group G,,(k) has plenty one di-
mensional representations. For example, the Teichmiller
representative 7 : k* — Wy(k)* C GL1(K) is a group
character. The Galois groups Gal(k) acts on the set of
all characters.

Remark: Wy,(F,) = Zp, the p-adic integers, K = Qp.

More general

Det : GLp(k) — k* 5 Wy(k)* C GL1(K).



Example 2. G = Gg4, Gg(k) = (k,+). Fix any pth root
ceKofl ¢:Z/pZ — pup CK* by ¢p(n) =¢&™. kis a Fp
vector space and choose a basis, one has non-countablely
many irreducible representations if Ch(K) # p and one
single irreducible representation if Ch(K) = p.

Remark 1. G(k) = U,>1G(q") is a union of finite groups.

Reductive groups are built up from G,,'s and Gg4's through
the root systems.

There are subgroups G D B=Tx U and W = Ng(T)/T
all defined over F; and they have corresponding sub-
groups of rational points.



e The representations of the infinite group G(k) were
considered by Nanhua Xiin 2011 using the fact that G(k)
is a directed union of finite groups of Lie type.

The standard constructions of induced representations
and Harish-Chandra induced representations have inter-
esting decompositions (with finite length). But induced
modules are no longer semisimple (even over C) and the
Hecke algebras are trivial.

Example The induced module KG(F)) ®KB(F,) K has
only finitely many composition factors indexed by sub-
sets of simple roots and each appears exactly once in all
characteristics. But End(KG(Fp) RKB(F,) K) =K. The
Hecke algebra is trivial even for K = C.



e When K = k, then both finite dimensional represen-
tations (rational representations) and non-rational repre-
sentations (infinite dimensional representations) all ap-
pear.

Remark 2. D(G) = U,>1Dr(G) is also a union of finite
dimensional Hopf subalgebras.

The goal is to relate representations of D(G) and that
G (k) over k, in terms of Harish-Chandra inductions. The
best analog is the category O of the Hyperalgebra D(QG).



II. Irreducible characters in category O

Let U = Dist(G) Then U = U~ @, U° ®, UT, as k-vector
space.

The commutative and cocommutative Hopf k-algebra
U9 = ® Dist(G.,) (not finitely generated) defines an abelian
group scheme X = Spec(U9) with group operation writ-
ten additively. Let X (k) denote the k-rational points of
X.

Kostant Z-form defines a Z structure on X and X(K) =
(hz®7zK)* if char(K) = 0 and X (k) = X(Wy(k)) 2 X(Zyp).



X(k) = X(Wp(k)) is a free Wp(k)-module with a basis
{w;} (the fundamental weights).

If Q = Zd is the root lattice, then there is a paring
Q x X (k) — Wp(k) with (a, A) = (a¥, \).

0—p X(k)— X(k) —X,—0

e Verma modules M(\) = U ®;;>o0 ky with X € X (k).
e M(X) has unique irreducible quotient L(\).

Inductive limit property:



o M()) = U2, Dist(Gr)v}.
o L(\) =U, Dist(Gy)vy

e FEach module M in the category O defines function
chys 1 X(k) — N, written as formal series:

chyy= Y dim(My)et.
rex (k)

e One has to replace group algebra Z[X (k)] by function
algebra with convex conical supports on X (k) in order for
convolution product to make sense.



e Frobenius morphism Fr : G — G over F,; defines a
map X (k) — X(k) (A — A1) = g)\). Similarly (") = g7\
Frobenius twisted representation.

Theorem 2 (Haboush 1980). For each A = 22 yp" A" €
X (k),

L) =L))o L(AHDM e L()P g ...

Infinite tensor product should be understood as direct
limit.

Goal: compute the character chL()\) in terms of the func-
tion ChM(,u)'



Haboush theorem implies

chy = ] (ChL()\r))(r).

r=1
The infinite product makes sense in the function spaces.
Example 3.Let A= —pec X(Z) C X(Zp) = X (k). Then
L(—p) = M(—p) = L((¢—1)p)®L((q—1)p) VD L((g—1)p) ("
using the fact —1 =3>2 ;(¢ — 1)q".



III. Generic quantum groups over a p-adic
field—Nonintegral weights

e Let Q)= Qp[{] where ¢ is a p"-th root of 1.

o Q,; is a discrete valuation field and let A be the ring
of integers in ng over Zp. Then A is a complete discrete
valuation ring with maximal ideal pA generated by p.

o Each \ € Z, defines a ng algebra homomorphism
Q,[K, K~1] — @/, by sending K — ¢*.

e ¢ €A Infact £ € Q) is a p'th-root of 1 implies
z=&—1 € pA and
S
(1 —|—z)>‘ = Z <n>z” converges in Q;?, VA e A.

n=0



e For an indeterminate v, set z = v — 1 € Z[v,v 1].
vl = >0 o(=1)"2™ € Al[z]] implies Zlv, v~ 1] C A[[2]]
and Q(v) C Qg,((z)). For any X € Zp[[z]]

A
T Z ( )zn
n=0
is convergent in Zy[[z]] by noting that ( ) € Zpllz]].

° Let UC(,U) (generic case) be the quantum envelop-
ing algebra of g¢ over the field C(v). Let UZ[U ,—1] be

the Z[v,v~1]-form in Ug,) constructed by Lusztig using
divided powers.

® Set U@/ = UZ[fU,v_l] ®Z[’U,’U_1] Q;j and U@g((z)) and



UA((Z)) etc. They all have compatible triangular decom-
positions.

e The subring U%[U oo1] is a commutative and cocom-

mutative Hopf algebra over Z[v,v—1]

e Each X = ()\;) € Q,((2))! defines a Q),((2))- algebra
homomorphism

Then A(UA[[z]]) C A[[Z]] if X &€ A[[Z]]I and A(UZP[[Z]]) C
Zpl[2]] if X € Zp[[2]]!.



e For )\ e Q((2))!, the quantum Verma module for the
algebra UQ’((Z)) IS
p

Moy = Ugye Bze, | QD

with irreducible quotient L@g((z))(A). The characters are
similarly defined as functions Q},((2))! — Z.

e Standard argument implies LQQ/D((Z))(A) = MQ;?((Z))()‘)
unless (&, A + p) € Z>o € Q,((2)). In general we have

N Ligy,((2) (A = €N Ay () (V-
Here A@%((z))(A) is the irreducible g@%((z))—module.

e The characters ch AQ/( y(A) can be determined by
an argument similar that |n the category O for gc as



outlined in Humphreys' book by replacing the field C
with ng((z)).

e [ he generalized Kazhdan-Lusztig conjecture for non-
regular blocks (OQ%((Z)))A gives the following decompo-
sition of characters

Ch Loy ((2))(A) = %: P, 5 ch My ((2)) () (1)



IV. Quantum groups at p"th roots of unit
over a p-adic field

o Let & beap'th root of 1.

e The map Q)[[z]] = Q, (z — &—1) induces A[[z]] — A.
Define

Ug;, = Uz-1) @2000-1) @ = Unfe]) @agien
with A-form UAp = UA[[Z]] ®A[[z]] A with tensor product
decomposition

U, = U, ®, U @, UY.



o Let O@]’o be the category O construction by Andersen
and Mazorchuk for the quantum group U@ﬁg'

e The Verma module MQ%(A) and irreducible quotient
Lo, (A) in Ogy with A € X(Zp) € X Q).

* For A€ X(Zp), Ly = Uy € Ly
is an A[[z]]-l1attice.

e Define Vigr (A) = Ly, 1] (M) ©p, (1)) Q), to be the Wey!
module with the surjective maps MQ%(A) — VQ%()\) —
LQ;(A)'



Proposition 1 (Andersen-Mazorchuk). For any A = X'+
pN! e X (k) with X € X1,

Loy, (N) = Loy (\) @ (Ag, (W),

Taking A-lattices generated by highest weight vectors
and then tensor with A — k, we get representations of
Dist(G)

Proposition 2. For A = X + p)' € X (k),

L, () = Lo, (W) @ AW,



V. Decomposition Multiplicities in Quan-
tum Verma Modules

e For e X(Zyp), define.
EY =chA()\) =ch Agy (V).
Here AQ/ (A) is the irreducible representation of the Lie

algebra ng with “A-integral” highest weight \.

e Foreachr >0, any XA € X(Zp) can be uniquely written
as M + "\ with X\ € X,.. Define recursively

k+1 __
E)\ — E : p,u,)\”E)\/_l_(p)k (2)
peX (k)



Standard argument by Lusztig to get:

Bf = > BV
peX (k)
Elf‘ - EiO(Eil)(l) o (Eik1)(k_1)(EOZj>kpr(jk))\j)(k)-
e Define
B = EL(EL)MD . (BL_)FD(ELH® . (3)

e Recursively define Ff as follows: F)(\) = chM(\) and
for k>0
At = Y o, FF (4)

a L'y k.
LA N4 (p)F
pneX (k)



Lusztig’'s argument implies

k __ q k+1
F)\ -_— Z d ,)\//F)\/—FpT,LL'
neX (k)

F)l‘c - FjO(Fil)(l) o (Fik—l)(k_l)(F%j>kpr(j—k)>\j)(k)-

e As before, the infinite product converges in F[X (k)].
Note that E} = F} = ch Ly()) for all . We have ES° =
F°. But for other k, Ef and F} are different.
Proposition 3. For any k, both sets {E§ | A € X(Zp)}
and {F} | X € X(Zp)} are basis of F[X(Zp)].



We define that following decomposition of characters

k . k) —k.
o= Y dNEk
peEX (Zp)

k _ k k
B = Y JNF
peX (Zp)

e For each fixed k and X\ € X(k), define

AP =L @ - @ LOFHFD g (A(S pFad)) k),
j=>k

Then ch AF()\) = EX.
e AFTL(X) is a quotient of A% to get surjective maps
of Dist(G)-modules

AN =20 = 5 AFQ) 5 - AR = LO).



e For fixed £k and A € X(k), define a highest weight
module

MY =LY @@ LOFHED o (M (3 pPENT)) R,
j>k

Then ch MY = FY. Furthermore, we have surjective maps
of Dist(G)-modules

M) = MO = - = MF(\) = - = M) = L.



THANK YOU!




