Representations of quantum groups at p^{r} th root of 1 over p-adic fields

Zongzhu Lin
Kansas State University

Auslander Distinguished Lectures

 andInternational Conference
Woods Hole, MA
April 29, 2019

I. Various representation theories of algebraic groups

The groups

- Let G be a reductive algebraic group defined over \mathbb{F}_{q} and $\mathbf{k}=\overline{\mathbb{F}}_{q}$.

Example: $\mathbf{G} L_{n}$ is defined over \mathbb{Z}. For any commutative ring $A, \mathrm{G} L_{n}(A)$ is the group of all invertible matrices in with entries in A.

Ring homomorphism $f: A \rightarrow B$ gives a group homomorphism

$$
\mathbf{G} L_{n}(f): \mathbf{G} L_{n}(A) \rightarrow \mathbf{G} L_{n}(B) .
$$

- There are many groups associated to G by taking rational points over various fields:
- Finite groups $G\left(q^{r}\right)=\mathbf{G}\left(\mathbb{F}_{q^{r}}\right)$
- Infinite groups $G=\mathbf{G}(\mathbf{k})$ for any field extension $\mathbf{k} \supseteq \mathbb{F}_{q}$
- The groups $\mathbf{G}\left(\mathbb{F}_{q}[t] / t^{n}\right)$ and the limit $\mathbf{G}\left(\mathbb{F}_{q}[[t]]\right) \subseteq \mathbf{G}\left(\mathbb{F}_{q}((t)\right.$
- The groups $\mathbf{G}\left(\overline{\mathbb{F}}_{q}[t] / t^{n}\right)$ and the limit $\mathbf{G}\left(\overline{\mathbb{F}}_{q}[[t]]\right) \subseteq \mathbf{G}\left(\overline{\mathbb{F}}_{q}((t)\right.$
- p-adic groups $\mathbf{G}\left(\mathbb{Q}_{p}\right)$
- Profinite groups and proalgebraic groups Consider smooth representations.
- Representation theory of $G\left(q^{r}\right)$ over a field K: The classical question: for characteristics of \mathbf{K} being the same as that of \mathbb{F}_{q} or different.
- Rational representation theory of G (representations over \mathbf{k}), one of the main topics.
- Representations of the infinite groups $G=\mathrm{G}(\mathrm{k})$ as an abstract group over a field \mathbf{K}
- Representations of the Lie algebra $\mathfrak{g}=\operatorname{Lie}(\mathbf{G})$ (over the defining field \mathbf{k}), both restricted representations and other representations.

Example: For $\mathrm{G}=\mathrm{GL}_{n}, \mathfrak{g}=\mathfrak{g l}_{n}(\mathbf{k})=\mathrm{End}_{\mathbf{k}}\left(\mathrm{k}^{n}\right)$. The restricted structure is the map $x \mapsto x^{p} \in \operatorname{End}_{\mathbf{k}}\left(\mathbf{k}^{n}\right)$.

- Representations of the Frobenius kernels \mathbf{G}_{r} and their thickenings.

Example: For $\mathbf{G}=\mathbf{G L}_{n}, \mathbf{G}_{r}(A)=\operatorname{ker}(F r: G(A) \rightarrow$ $G(A))$ with $\operatorname{Fr}\left(\left(a_{i j}\right)=\left(a_{i j}^{q}\right)\right.$.

- Representations of the hyperalgebra (or distribution algebra) $D(\mathbf{G})=\operatorname{Dist}(\mathbf{G})$ and its finite dimensional subalgebras $D_{r}(\mathbf{G})=\operatorname{Dist}\left(\mathbf{G}_{r}\right)$.

Example: For $\mathrm{G}=\mathrm{G}_{a}$,

$$
\begin{gathered}
\operatorname{Dist}(\mathbf{G})=\mathbf{k}-\operatorname{span}\left\{x^{(n)} \mid n \in \mathbb{N}\right\} / \sim \\
x^{(n)} x^{(m)}=\binom{n+m}{n} x^{(n+m)}
\end{gathered}
$$

"think of" $x^{(n)}=x^{n} / n$!
$\operatorname{Dist}\left(\mathbf{G}_{r}\right)=\mathbf{k}-\operatorname{span}\left\{x^{(n)} \mid n<q^{r}\right\}$

Example: For $\mathbf{G}=\mathbf{G}_{m}$,

$$
\begin{gathered}
\operatorname{Dist}(\mathbf{G})=\mathbf{k}-\operatorname{span}\left\{\delta_{(n)} \mid n \in \mathbb{N}\right\} \\
\delta_{(n)} \delta_{(m)}=\sum_{i \geq 0}\binom{n+m-i}{n-i, m-i, i} \delta_{(n+m-i)}
\end{gathered}
$$

"think of" $\delta_{(n)}=\binom{\delta_{1}}{n}$
$\operatorname{Dist}\left(\mathbf{G}_{r}\right)=\mathrm{k}-\mathrm{span}\left\{\hat{\delta}_{(n)} \mid n<q^{r}\right\}$.

Relations

- Relations among these representation theories are complicated. Some of them have quantum analog and others, not known yet.
- Representations of $G\left(q^{r}\right)$ over \mathbf{k} and that of $D_{r}(\mathbf{G})$ and \mathbf{G}_{r}, and rational representations are well studied. Irreducibles, projectives, cohomology theories etc.
- Representations of $G\left(q^{r}\right)$ over \mathbb{C}, or $\overline{\mathbb{Q}}_{l}(l \neq p)$ for all r. Character theory controls everything: How to compute the characters? directly compute, one group at a time. Deligne-Lusztig characters, and Lusztig's character sheaf theory: certain perverse sheaves on the algebraic variety $\mathbf{G}(\mathbf{k})$ (constructible l-adic sheaves with values in $\overline{\mathbb{Q}}_{l}$.
- Representations of $G\left(q^{r}\right)$ and over $\mathbf{K}=\overline{\mathbf{K}}$ with $\operatorname{ch}(\mathbf{K}) \neq$ $\mathrm{ch}\left(\mathbb{F}_{q}\right)$, there are also geometric approach by considering the constructible sheaves with coefficient in \mathbf{K} by Juteau and many others using Langland dual group.

Theorem 1 (Borel-Tits-1973). Let G and G^{\prime} be two simple algebraic groups over two different fields k and k^{\prime} respectively. If there is an abstract group homomorphism $\alpha: G(k) \rightarrow \mathrm{G}^{\prime}\left(\mathrm{k}^{\prime}\right)$ such that $\alpha([\mathrm{G}, \mathrm{G}])$ is dense in $\mathrm{G}^{\prime}\left(\mathrm{k}^{\prime}\right)$, then α "almost" rational algebraic group homomorphism. In particular there is field homomorphism $\mathrm{k} \rightarrow \mathrm{k}^{\prime}$ and $\operatorname{char}(\mathrm{k})=\operatorname{char}\left(\mathrm{k}^{\prime}\right)$.

Essentially if \mathbb{E} and k have different characteristic, the infinite group $\mathrm{G}(\mathrm{k})$ does not have finite dimensional nontrivial representations.

Example 1. Let $\mathbf{G}=\mathbb{G}_{m}=\mathrm{GL}_{1}$ be the multiplicative group scheme. $\mathbf{G}(\mathrm{k})=\mathrm{k}^{\times}$.
$W_{p}(\mathbf{k})$ - the ring of Witt vectors of the field \mathbf{k}.
\mathbf{K} - the field of fractions of $W_{p}(\mathbf{k})$.
Then the commutative group $\mathbb{G}_{m}(\mathbf{k})$ has plenty one dimensional representations. For example, the Teichmüller representative $\tau: \mathbf{k}^{\times} \rightarrow W_{p}(\mathbf{k})^{\times} \subset \mathbf{G} L_{1}(\mathbf{K})$ is a group character. The Galois groups Gal(k) acts on the set of all characters.

Remark: $W_{p}\left(\mathbb{F}_{p}\right)=\mathbb{Z}_{p}$, the p-adic integers, $\mathbf{K}=\mathbb{Q}_{p}$.
More general

$$
\text { Det }: \mathbf{G} L_{n}(\mathbf{k}) \rightarrow \mathbf{k}^{\times} \xrightarrow{\tau} W_{p}(\mathbf{k})^{\times} \subset \mathbf{G} L_{1}(\mathbf{K}) .
$$

Example 2. $\mathbf{G}=\mathbb{G}_{a}, \mathbb{G}_{a}(\mathbf{k})=(\mathbf{k},+)$. Fix any p th root $\xi \in \mathbf{K}$ of $1, \psi: \mathbb{Z} / p \mathbb{Z} \rightarrow \mu_{p} \subseteq \mathbf{K}^{\times}$by $\psi(n)=\xi^{n}$. \mathbf{k} is a \mathbb{F}_{p} vector space and choose a basis, one has non-countablely many irreducible representations if $\mathrm{Ch}(\mathbf{K}) \neq p$ and one single irreducible representation if $\mathbf{C h}(\mathbf{K})=p$.
Remark 1. $\mathbf{G}(\mathbf{k})=\cup_{r \geq 1} G\left(q^{r}\right)$ is a union of finite groups.

Reductive groups are built up from \mathbf{G}_{m} 's and \mathbf{G}_{a} 's through the root systems.

There are subgroups $\mathbf{G} \supset \mathbf{B}=\mathbf{T} \ltimes \mathbf{U}$ and $W=N_{\mathbf{G}}(\mathbf{T}) / \mathbf{T}$ all defined over \mathbb{F}_{q} and they have corresponding subgroups of rational points.

- The representations of the infinite group $G(k)$ were considered by Nanhua Xi in 2011 using the fact that G(k) is a directed union of finite groups of Lie type.
The standard constructions of induced representations and Harish-Chandra induced representations have interesting decompositions (with finite length). But induced modules are no longer semisimple (even over \mathbb{C}) and the Hecke algebras are trivial.

Example The induced module $\operatorname{KG}\left(\overline{\mathbb{F}}_{p}\right) \otimes_{\mathrm{KB}\left(\overline{\mathbb{F}}_{p}\right)} \mathbf{K}$ has only finitely many composition factors indexed by subsets of simple roots and each appears exactly once in all characteristics. But End $\left(\mathbf{K G}\left(\overline{\mathbb{F}}_{p}\right) \otimes_{\mathbf{K B}\left(\overline{\mathbb{F}}_{p}\right)} \mathbf{K}\right)=\mathbf{K}$. The Hecke algebra is trivial even for $K=\mathbb{C}$.

- When $\mathbf{K}=\mathbf{k}$, then both finite dimensional representations (rational representations) and non-rational representations (infinite dimensional representations) all appear.
Remark 2. $D(\mathbf{G})=\cup_{r \geq 1} D_{r}(\mathbf{G})$ is also a union of finite dimensional Hopf subalgebras.

The goal is to relate representations of $D(\mathbf{G})$ and that $\mathbf{G}(\mathbf{k})$ over \mathbf{k}, in terms of Harish-Chandra inductions. The best analog is the category \mathcal{O} of the Hyperalgebra $D(\mathbf{G})$.

II. Irreducible characters in category \mathcal{O}

Let $U=\operatorname{Dist}(\mathbf{G})$ Then $U=U^{-} \otimes_{\mathbf{k}} U^{0} \otimes_{\mathbf{k}} U^{+}$, as \mathbf{k}-vector space.

The commutative and cocommutative Hopf k-algebra $U^{0}=\otimes \operatorname{Dist}\left(\mathbb{G}_{m}\right)$ (not finitely generated) defines an abelian group scheme $X=\operatorname{Spec}\left(U^{0}\right)$ with group operation written additively. Let $X(\mathbf{k})$ denote the \mathbf{k}-rational points of X.

Kostant \mathbb{Z}-form defines a \mathbb{Z} structure on X and $X(\mathbf{K})=$ $\left(\mathfrak{h}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbf{K}\right)^{*}$ if $\operatorname{char}(\mathbf{K})=0$ and $X(\mathbf{k})=X\left(W_{p}(\mathbf{k})\right) \supseteq X\left(\mathbb{Z}_{p}\right)$.
$X(\mathbf{k})=X\left(W_{p}(\mathbf{k})\right)$ is a free $W_{p}(\mathbf{k})$-module with a basis $\left\{\omega_{i}\right\}$ (the fundamental weights).

If $Q=\mathbb{Z} \Phi$ is the root lattice, then there is a paring $Q \times X(\mathbf{k}) \rightarrow W_{p}(\mathbf{k})$ with $(\alpha, \lambda)=\left\langle\alpha^{\vee}, \lambda\right\rangle$.

$$
0 \rightarrow p^{r} X(\mathbf{k}) \rightarrow X(\mathbf{k}) \rightarrow X_{r} \rightarrow 0
$$

- Verma modules $M(\lambda)=U \otimes_{U \geq 0} \mathbf{k}_{\lambda}$ with $\lambda \in X(\mathbf{k})$.
- $\quad M(\lambda)$ has unique irreducible quotient $L(\lambda)$.

Inductive limit property:

- $\quad M(\lambda)=\cup_{r=1}^{\infty} \operatorname{Dist}\left(\mathbf{G}_{r}\right) v_{\lambda}^{+}$.
- $\quad L(\lambda)=\cup_{r=1}^{\infty} \operatorname{Dist}\left(\mathbf{G}_{r}\right) v_{\lambda}^{+}$.
- Each module M in the category \mathcal{O} defines function $\mathrm{ch}_{M}: X(\mathbf{k}) \rightarrow \mathbb{N}$, written as formal series:

$$
\mathrm{ch}_{M}=\sum_{\lambda \in X(\mathbf{k})} \operatorname{dim}\left(M_{\lambda}\right) e^{\lambda}
$$

- One has to replace group algebra $\mathbb{Z}[X(\mathbf{k})]$ by function algebra with convex conical supports on $X(\mathbf{k})$ in order for convolution product to make sense.
- Frobenius morphism Fr: $\mathbf{G} \rightarrow \mathbf{G}$ over \mathbb{F}_{q} defines a $\operatorname{map} X(\mathbf{k}) \rightarrow X(\mathbf{k})\left(\lambda \mapsto \lambda^{(1)}=q \lambda\right)$. Similarly $\lambda^{(r)}=q^{r} \lambda$ Frobenius twisted representation.
Theorem 2 (Haboush 1980). For each $\lambda=\sum_{r=0}^{\infty} p^{r} \lambda^{r} \in$ $X(\mathbf{k})$,

$$
L(\lambda)=L\left(\lambda^{0}\right) \otimes L\left(\lambda^{1}\right)^{(1)} \otimes L\left(\lambda^{2}\right)^{(2)} \otimes \cdots
$$

Infinite tensor product should be understood as direct limit.

Goal: compute the character $\mathrm{ch}_{L(\lambda)}$ in terms of the function $\mathrm{ch}_{M(\mu)}$.

Haboush theorem implies

$$
\mathrm{ch}_{\lambda}=\prod_{r=1}^{\infty}\left(\mathrm{ch}_{L\left(\lambda^{r}\right)}\right)^{(r)} .
$$

The infinite product makes sense in the function spaces. Example 3. Let $\lambda=-\rho \in X(\mathbb{Z}) \subseteq X\left(\mathbb{Z}_{p}\right)=X(\mathbf{k})$. Then $L(-\rho)=M(-\rho)=L((q-1) \rho) \otimes L((q-1) \rho)^{(1)} \otimes L((q-1) \rho)^{(r)}$ using the fact $-1=\sum_{r=0}^{\infty}(q-1) q^{r}$.

III. Generic quantum groups over a p-adic field-Nonintegral weights

- Let $\mathbb{Q}_{p}^{\prime}=\mathbb{Q}_{p}[\xi]$ where ξ is a p^{r}-th root of 1 .
- \mathbb{Q}_{p}^{\prime} is a discrete valuation field and let \mathbb{A} be the ring of integers in \mathbb{Q}_{p}^{\prime} over \mathbb{Z}_{p}. Then \mathbb{A} is a complete discrete valuation ring with maximal ideal $p \mathbb{A}$ generated by p.
- Each $\lambda \in \mathbb{Z}_{p}$ defines a \mathbb{Q}_{p}^{\prime} algebra homomorphism $\mathbb{Q}_{p}^{\prime}\left[K, K^{-1]}\right] \rightarrow \mathbb{Q}_{p}^{\prime}$ by sending $K \rightarrow \xi^{\lambda}$.
- $\quad \xi^{\lambda} \in \mathbb{A}$. In fact $\xi \in \mathbb{Q}_{p}^{\prime}$ is a p^{r} th-root of 1 implies $z=\xi-1 \in p \mathbb{A}$ and

$$
(1+z)^{\lambda}=\sum_{n=0}^{\infty}\binom{\lambda}{n} z^{n} \text { converges in } \mathbb{Q}_{p}^{\prime}, \forall \lambda \in \mathbb{A} .
$$

- For an indeterminate v, set $z=v-1 \in \mathbb{Z}\left[v, v^{-1}\right]$. $v^{-1}=\sum_{n=0}^{\infty}(-1)^{n} z^{n} \in \mathbb{A}[[z]]$ implies $\mathbb{Z}\left[v, v^{-1}\right] \subseteq \mathbb{A}[[z]]$ and $\mathbb{Q}(v) \subseteq \mathbb{Q}_{p}^{\prime}((z))$. For any $\lambda \in \mathbb{Z}_{p}[[z]]$

$$
v^{\lambda}=\sum_{n=0}^{\infty}\binom{\lambda}{n} z^{n}
$$

is convergent in $\mathbb{Z}_{p}[[z]]$ by noting that $\binom{\lambda}{n} \in \mathbb{Z}_{p}[[z]]$.

- Let $\mathrm{U}_{\mathbb{C}(v)}$ (generic case) be the quantum enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$ over the field $\mathbb{C}(v)$. Let $\mathbf{U}_{\mathbb{Z}\left[v, v^{-1}\right]}$ be the $\mathbb{Z}\left[v, v^{-1}\right]$-form in $\mathbf{U}_{\mathbb{C}(v)}$ constructed by Lusztig using divided powers.
- Set $\mathbf{U}_{\mathbb{Q}_{p}^{\prime}}=\mathbf{U}_{\mathbb{Z}\left[v, v^{-1}\right]} \otimes_{\mathbb{Z}\left[v, v^{-1}\right]} \mathbb{Q}_{p}^{\prime}$ and $\mathbf{U}_{\mathbb{Q}_{p}^{\prime}((z))}$ and
$\mathrm{U}_{\mathbb{A}((z))}$ etc. They all have compatible triangular decompositions.
- The subring $\mathbf{U}_{\mathbb{Z}\left[v, v^{-1}\right]}^{0}$ is a commutative and cocommutative Hopf algebra over $\mathbb{Z}\left[v, v^{-1}\right]$
- Each $\lambda=\left(\lambda_{i}\right) \in \mathbb{Q}_{p}^{\prime}((z))^{I}$ defines a $\mathbb{Q}_{p}^{\prime}((z))$ - algebra homomorphism

$$
\lambda: \mathrm{U}_{\mathbb{Q}_{p}^{\prime}((z))}^{0} \rightarrow \mathbb{Q}_{p}^{\prime}((z)) \quad K_{i} \mapsto v_{i}^{\lambda_{i}} .
$$

Then $\lambda\left(\mathbf{U}_{\mathbb{A}[[z]]}\right) \subseteq \mathbf{A}[[z]]$ if $\lambda \in \mathbb{A}[[z]]^{I}$ and $\lambda\left(\mathbf{U}_{\mathbb{Z}_{p}[[z]]}\right) \subseteq$ $\mathbb{Z}_{p}[[z]]$ if $\lambda \in \mathbb{Z}_{p}[[z]]^{I}$.

- For $\lambda \in \mathbb{Q}^{\prime}((z))^{I}$, the quantum Verma module for the algebra $\mathbf{U}_{\mathbb{Q}_{p}^{\prime}((z))}$ is

$$
\mathbf{M}_{\mathbb{Q}_{p}^{\prime}((z))}(\lambda)=\mathbf{U}_{\mathbb{Q}_{p}^{\prime}((z))} \otimes_{\mathbf{U}_{\mathbb{Q}^{\prime}((z z))}^{\geq 0}} \mathbb{Q}^{\prime}((z))_{\lambda}
$$

with irreducible quotient $\mathbf{L}_{\mathbb{Q}_{p}^{\prime}((z))}(\lambda)$. The characters are similarly defined as functions $\mathbb{Q}_{p}^{\prime}((z))^{I} \rightarrow \mathbb{Z}$.

- \quad Standard argument implies $\mathbf{L}_{\mathbb{Q}_{p}^{\prime}((z))}(\lambda)=\mathrm{M}_{\mathbb{Q}_{p}^{\prime}((z))}(\lambda)$ unless $\langle\check{\alpha}, \lambda+\rho\rangle \in \mathbb{Z}_{\geq 0} \subseteq \mathbb{Q}_{p}^{\prime}((z))$. In general we have

$$
\operatorname{ch} \mathbf{L}_{\mathbb{Q}_{p}^{\prime}((z))}(\lambda)=\operatorname{ch} \Delta_{\mathbb{Q}_{p}^{\prime}((z))}(\lambda)
$$

Here $\Delta_{\mathbb{Q}_{p}^{\prime}((z))}(\lambda)$ is the irreducible $\mathfrak{g}_{\mathbb{Q}_{p}^{\prime}((z))^{-m o d u l e}}$.

- The characters ch $\Delta_{\mathbb{Q}_{p}^{\prime}((z))}(\lambda)$ can be determined by an argument similar that in the category \mathcal{O} for $\mathfrak{g}_{\mathbb{C}}$ as
outlined in Humphreys' book by replacing the field \mathbb{C} with $\mathbb{Q}_{p}^{\prime}((z))$.
- The generalized Kazhdan-Lusztig conjecture for nonregular blocks $\left.\left(\mathcal{O}_{\mathbb{Q}_{p}^{\prime}((z))}\right)\right)_{\lambda}$ gives the following decomposition of characters

$$
\begin{equation*}
\operatorname{ch} \mathbf{L}_{\mathbb{Q}_{p}^{\prime}((z))}(\lambda)=\sum_{\mu} \mathbf{p}_{\mu, \lambda}^{0} \operatorname{ch} \mathrm{M}_{\mathbb{Q}_{p}^{\prime}((z))}(\mu) \tag{1}
\end{equation*}
$$

IV. Quantum groups at p^{r} th roots of unit over a p-adic field

- Let ξ be a p^{r} th root of 1 .
- The map $\mathbb{Q}_{p}^{\prime}[[z]] \rightarrow \mathbb{Q}_{p}^{\prime}(z \mapsto \xi-1)$ induces $\mathbb{A}[[z]] \rightarrow \mathbb{A}$. Define

$$
\mathbf{U}_{\mathbb{Q}_{p}^{\prime}}=\mathbf{U}_{\mathbb{Z}\left[v, v^{-1}\right]} \otimes_{\mathbb{Z}\left[v, v^{-1}\right]} \mathbb{Q}_{p}^{\prime}=\mathbf{U}_{\mathbb{A}[[z]]} \otimes_{\mathbb{A}[[z]]} \mathbb{Q}_{p}^{\prime}
$$

with \mathbb{A}-form $\mathbf{U}_{\mathbb{A}_{p}}=\mathbf{U}_{\mathbb{A}[[z]]} \otimes_{\mathbb{A}[[z]]} \mathbb{A}$ with tensor product decomposition

$$
\mathbf{U}_{\mathbb{A}}=\mathbf{U}_{\mathbb{A}}^{-} \otimes_{\mathbb{A}} \mathbf{U}_{\mathbb{A}}^{0} \otimes_{\mathbb{A}} \mathbf{U}_{\mathbb{A}}^{+}
$$

- Let $\mathcal{O}_{\mathbb{Q}_{p}^{\prime}}$ be the category \mathcal{O} construction by Andersen and Mazorchuk for the quantum group $\mathrm{U}_{\mathbb{Q}_{p}^{\prime}}$.
- The Verma module $\mathrm{M}_{\mathbb{Q}_{p}^{\prime}}(\lambda)$ and irreducible quotient $\mathbf{L}_{\mathbb{Q}_{p}^{\prime}}(\lambda)$ in $\mathcal{O}_{\mathbb{Q}_{p}^{\prime}}$ with $\lambda \in X\left(\mathbb{Z}_{p}\right) \subseteq X\left(\mathbb{Q}_{p}^{\prime}\right)$.
- For $\lambda \in X\left(\mathbb{Z}_{p}\right), \mathbf{L}_{\mathbb{A}_{p}[[z]]}(\lambda)=\mathbf{U}_{\mathbb{A}_{p}[[z]]} v_{\lambda}^{+} \subseteq \mathbf{L}_{\mathbb{Q}_{p}^{\prime}((z))}(\lambda)$ is an $\mathbb{A}[[z]]$-lattice.
- Define $\mathbf{V}_{\mathbb{Q}_{p}^{\prime}}(\lambda)=\mathbf{L}_{\mathbb{A}_{p}[[z]]}(\lambda) \otimes_{\mathbb{A}_{p}[[z]]} \mathbb{Q}_{p}^{\prime}$ to be the Weyl module with the surjective maps $\mathrm{M}_{\mathbb{Q}_{p}^{\prime}}(\lambda) \rightarrow \mathbf{V}_{\mathbb{Q}_{p}^{\prime}}(\lambda) \rightarrow$ $\mathbf{L}_{\mathbb{Q}_{p}^{\prime}}(\lambda)$.

Proposition 1 (Andersen-Mazorchuk). For any $\lambda=\lambda^{\prime}+$ $p \lambda^{\prime \prime} \in X(\mathbf{k})$ with $\lambda^{\prime} \in X_{1}$,

$$
L_{\mathbb{Q}_{p}^{\prime}}(\lambda)=L_{\mathbb{Q}_{p}^{\prime}}\left(\lambda^{\prime}\right) \otimes\left(\Delta_{\mathbb{Q}_{p}^{\prime}}\left(\lambda^{\prime \prime}\right)\right)^{(1)}
$$

Taking \mathbb{A}-lattices generated by highest weight vectors and then tensor with $\mathbb{A} \rightarrow \mathbf{k}$, we get representations of Dist(G)
Proposition 2. For $\lambda=\lambda^{\prime}+p \lambda^{\prime \prime} \in X(\mathbf{k})$,

$$
\overline{L_{\mathbb{A}_{p}}(\lambda)}=\overline{L_{\mathbb{A}_{p}}\left(\lambda^{\prime}\right)} \otimes \Delta\left(\lambda^{\prime \prime}\right)^{(1)} .
$$

V. Decomposition Multiplicities in Quantum Verma Modules

- For $\lambda \in X\left(\mathbf{Z}_{p}\right)$, define.

$$
E_{\lambda}^{0}=\operatorname{ch} \Delta(\lambda)=\operatorname{ch} \Delta_{\mathbb{Q}_{p}^{\prime}}(\lambda)
$$

Here $\Delta_{\mathbb{Q}_{p}^{\prime}}(\lambda)$ is the irreducible representation of the Lie algebra $\mathfrak{g}_{\mathbb{Q}_{p}^{\prime}}$ with "A-integral" highest weight λ.

- For each $r \geq 0$, any $\lambda \in X\left(\mathbf{Z}_{p}\right)$ can be uniquely written as $\lambda^{\prime}+p^{r} \lambda^{\prime \prime}$ with $\lambda \in X_{r}$. Define recursively

$$
\begin{equation*}
E_{\lambda}^{k+1}=\sum_{\mu \in X(\mathbf{k})} \mathbf{p}_{\mu, \lambda^{\prime \prime}} E_{\lambda^{\prime}+(p)^{k} \mu}^{k} \tag{2}
\end{equation*}
$$

Standard argument by Lusztig to get:

$$
\begin{aligned}
E_{\lambda}^{k} & =\sum_{\mu \in X(\mathbf{k})} d_{\mu, \lambda^{\prime \prime}}^{q} E_{\lambda^{\prime}+p^{r} \mu^{\prime}}^{k+1} ; \\
E_{\lambda}^{k} & =E_{\lambda^{0}}^{1}\left(E_{\lambda^{1}}^{1}\right)^{(1)} \cdots\left(E_{\lambda^{k-1}}^{1}\right)^{(k-1)}\left(E_{\sum_{j \geq k}^{0} p^{r(j-k)} \lambda^{j}}\right)^{(k)} .
\end{aligned}
$$

- Define

$$
\begin{equation*}
E_{\lambda}^{\infty}=E_{\lambda^{0}}^{1}\left(E_{\lambda^{1}}^{1}\right)^{(1)} \cdots\left(E_{\lambda^{k-1}}^{1}\right)^{(k-1)}\left(E_{\lambda^{k}}^{1}\right)^{(k)} \cdots \tag{3}
\end{equation*}
$$

- Recursively define F_{λ}^{k} as follows: $F_{\lambda}^{0}=\operatorname{ch} M(\lambda)$ and for $k \geq 0$

$$
\begin{equation*}
F_{\lambda}^{k+1}=\sum_{\mu \in X(\mathbf{k})} a_{\mu, \lambda^{\prime \prime}}^{q} F_{\lambda^{\prime}+(p)^{k} \mu^{\prime}}^{k} \tag{4}
\end{equation*}
$$

Lusztig's argument implies

$$
\begin{gathered}
F_{\lambda}^{k}=\sum_{\mu \in X(\mathbf{k})} d_{\mu, \lambda^{\prime \prime}}^{q} F_{\lambda^{\prime}+p^{r} \mu}^{k+1} \\
F_{\lambda}^{k}=F_{\lambda^{0}}^{1}\left(F_{\lambda^{1}}^{1}\right)^{(1)} \cdots\left(F_{\lambda^{k-1}}^{1}\right)^{(k-1)}\left(F_{\sum_{j \geq k} p^{r(j-k)} \lambda^{j}}\right)^{(k)} .
\end{gathered}
$$

- As before, the infinite product converges in $F[X(\mathbf{k})]$. Note that $E_{\lambda}^{1}=F_{\lambda}^{1}=\mathrm{ch} L_{q}(\lambda)$ for all λ. We have $E_{\lambda}^{\infty}=$ F_{λ}^{∞}. But for other k, E_{λ}^{k} and F_{λ}^{k} are different.
Proposition 3. For any k, both sets $\left\{E_{\lambda}^{k} \mid \lambda \in X\left(\mathbf{Z}_{p}\right)\right\}$ and $\left\{F_{\lambda}^{k} \mid \lambda \in X\left(\mathbf{Z}_{p}\right)\right\}$ are basis of $F\left[X\left(\mathbf{Z}_{p}\right)\right]$.

We define that following decomposition of characters

$$
\begin{aligned}
F_{\lambda}^{k} & =\sum_{\mu \in X\left(\mathbf{Z}_{p}\right)} d_{\mu, \lambda}^{(k)} E_{\mu}^{k} ; \\
E_{\lambda}^{k} & =\sum_{\mu \in X\left(\mathbf{Z}_{p}\right)} a_{\mu, \lambda}^{(k)} F_{\mu}^{k}
\end{aligned}
$$

- For each fixed k and $\lambda \in X(\mathbf{k})$, define

$$
\Delta^{k}(\lambda)=L\left(\lambda^{0}\right) \otimes \cdots \otimes L\left(\lambda^{k-1}\right)^{(k-1)} \otimes\left(\Delta\left(\sum_{j \geq k} p^{j-k} \lambda^{j}\right)\right)^{(k)}
$$

Then ch $\Delta^{k}(\lambda)=E_{\lambda}^{k}$.

- $\Delta^{k+1}(\lambda)$ is a quotient of Δ_{λ}^{k} to get surjective maps of $\operatorname{Dist}(\mathbf{G})$-modules

$$
\Delta(\lambda)=\Delta^{0}(\lambda) \rightarrow \cdots \rightarrow \Delta^{k}(\lambda) \rightarrow \cdots \rightarrow \Delta^{\infty}(\lambda)=L(\lambda)
$$

- For fixed k and $\lambda \in X(\mathbf{k})$, define a highest weight module

$$
M_{\lambda}^{k}=L\left(\lambda^{0}\right) \otimes \cdots \otimes L\left(\lambda^{k-1}\right)^{(k-1)} \otimes\left(M\left(\sum_{j \geq k} p^{j-k} \lambda^{j}\right)\right)^{(k)}
$$

Then ch $M_{\lambda}^{k}=F_{\lambda}^{k}$. Furthermore, we have surjective maps of $\operatorname{Dist}(\mathbf{G})$-modules

$$
M(\lambda)=M^{0}(\lambda) \rightarrow \cdots \rightarrow M^{k}(\lambda) \rightarrow \cdots \rightarrow M^{\infty}(\lambda)=L(\lambda)
$$

