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Classical and Noncommutative Invariant Theory

Classical Invariant Theory:
Group G acting linearly on the algebra k[z4, ..., z,| and
study k[zy, ..., 2,]°.

Noncommutative Invariant Theory:
Replace:

k[zy, ..., x,] with appropriate noncommutative algebra A
G with a group (or Hopf algebra) that acts on A

to extend classical results.



Shephard-Todd-Chevalley Theorem

Let k be a field of characteristic zero.

Theorem (1954). The ring of invariants k[, - -, z,]“
under a finite group G is a polynomial ring if and only if G
is generated by reflections.

A linear map g on V' is called a reflection of V' if all but one
of the eigenvalues of g are 1,
i.e. dim V9 =dimV — 1.

Example: Transposition permutation matrices are
reflections, and S,, is generated by reflections.



Examples of reflection groups:

(1). G=S,onklzy... z,.
(2) G = D2n - {p,”f’ . p” =€ = T’Q,T’p = p_lr}
acts on k[z, y| as

(€ O 7“—01
P=Xo ') "7 \10)

(3). G = (g) acts on k[x, 1] as

(10
g_Oen'



Commutative Case A = k[z1,...,x,]

The Jacobian

When A =k[z,...,z,] and G is a reflection group then
A% =Kk[fi,..., f.], and the Jacobian is

J := det <af’i> .
Oz,

ij=1

Steinberg’s Theorem (1960): J is the product (with
multiplicities) of the reflecting hyperplanes.



Examples: A commutative

S3 acts on k[l‘l, T9, (L'g] then f1 =X + X9 + X3,
fo = 2129 + 1123 + T2x3, f3 = 17273 and
J = (CIIl — ZCQ)(QSl — 5133)(1’2 — 353).

Dy, acts on k|z,y| then f; = 2" + 4", [o = zy
J=n(x" —y") =gx 2" — y"

=(x—y)(r—ey)...(x— e ly).

gy =ey. Then A9 =k[z, 4], and J == y"~ .



Commutative Case: A = kJzq, ..., T

A =klxy, ..., x,] and G is a reflection group:

degJ = —n + > _ deg(f;) = number of reflections
g-J=det(g)"1J
A1 ={a€A:g-a=detgt-a} = JAY

Example: S; acts on k[zy, z, 23]
J = (r1 — z9) (11 — x3) (22 — x3).

deg J = =3+ > deg(f)
-3+ 1+ 24 3 =number of reflections



Commutative Case: A = k[z1,...,z,]

The Reflection Arrangement

Let a be the product of the distinct linear forms
corresponding to the reflecting hyperplanes,

then g - a = det(g)a
and Agee = alRi.

The Discriminant
0 =aJ e AC

Example: S3 acts on k[z, x4, 23]
a=J= (Il — [L’Q)(l’l - Ig)([l?g — l’g)
0= J2 = (IL’l - I2)2(ZL’1 — I3)2<I2 — Ig)Q € AG.



Setting — Invariant Theory of AS Regular Algebras

k=C Pairs (H,A)and action H on A.

o Ais a Noetherian AS regular domain
generated in degree 1

o H is a Hopf algebra acting on A:
o H is semisimple Hopf algebra
o H preserves the grading on A
o Ais an H-module algebra
» The action of H on A is inner-faithful

o Al ={ae A|ha=eh)aforallhe H}.



Reflection Hopf Algebras

We call H a reflection Hopf algebra for A if H
acts on A so that A is AS regular.

Examples:

(@)(kG,k|[xy,...,z,]) G classical reflection group
(Shephard- Todd Chevalley Theorem).
(b)(kG,k_1[z1,...,2,]) G mystic reflection group
(c

(d

) (kK k1 [z, 2][y; o]) with G = Dy
) (Hs,k_1[z,y]) and (Hs, ki[z, y]).



Noncommutative Setting
Assume H is a reflection Hopf algebra for A,
K =H*and R = A",
For every g € G(K) define
Ag:={a€Alpla)=a®g}

hdet € K
hdet € G(K).



Theorem: When R := A" AS regular,
there are elements in A unique up to scalars:

Jacobian iz € A:
A, -1 rank 1 free R-module generated by j4

Reflection Arrangement a, g € A:
Anget 1s rank 1 free 2-module generated by a4 i

Discriminant ¢4 € R:
OAH =JAHAAH




Candidates for reflecting hyperplanes:

R(f):={kv | ve A, vf, = f forsome f, e A}
R'(f) ={kv | ve A, f,o=f forsome [, € A}



o a, y divides j4 y from the left and the right.

o When gldim A =2 and H is either
commutative or cocommutative, then

R(aay) =R (aan) = R(an) =R (an)

o For H = k%, both j  and a4 ; are products
of elements of degree one.



H semisimple =

H=kok® - 0k® M, (k)& &M, k) &M, k)
where n summands are k and
H=pH® - - ®&p,HDp,1HD---,OpyH
for central idempotents p;,i =1..., N.

I =M,

Tn+1

(k) © My, _, (k) ® M, (k)

H/I ~kG*.
Let K = H*, then G 2 G(K) and g € G corresponds to a
central idempotent p, = p, fori =1,...n.



A=pA®  ®ppA® P AD - , BprA.
Then Ag:pgA'

Each 4, is free of rank 1 over R = A%,

Ahdet_l = jA,HR and Apget = aA7HR.



Group action case (H cocommutative)

Example 1: A=k [z,y] and G = M (2, o, )
Case a = 1 (Binary dihedral groups):

anyg =jan = (27 —y%).

deg j4 n = # mystic reflections
Further,

R (anm) =R (an) =R (aiy) =R (asn)
= {k(z +¢&y) | & = 1}.



Group coaction case (H commutative)

Example 2: A =k [z, z][y : o], Ds = (r, p),
v = —xz,yr = zy,yz = vy and H = kPs,

degg(r) =7, degg(y) =rp, dega(z) =rp”.
AP =K[2? 9%, 2?].  hdet = hdet™' = rp’

JAH = a4 H =kx 2TY =kx 2YZ =kx TYT =kx TIY

=kx Y21 e yaz, Oag = a7y s’
R (am) =R (aan) =R (an) =R (an)
= {kz, ky, kz}



H not cocommutative or commutative

Example 3: Hg representation on V' = ku & kuv:
N -1 0 . 1 0 _ 01
o 1)> Y7 \o 1) "7\t o)
determines the Hg-action on A = k;[u, v].

G(K)=1{1,9,9, 99"} the Klein-4 group,
hdet™ = hdet = g¢'



p A=A =R = k[u2 + 02, UQUQ]
pgA = (u> —v*)R
pg A= (uv)R
Pog A = (ugv + UZ)S)R = (uv(u2 - 712))]%-
= jam, =k wo(u’ — )
S Am, =kx w0 (u? — v*)?

_ u2,02[(u2 + 2)2)2 o 4/LL2’02] cR



ml(aAHg) (JA,HS)
= {ku, kv, k(u + es*v), k(u + e5*™v)}
and
R (an,ms) = R (Ja,15)
= {ku, ko, k(u + exC™0) k(u + es@0)},



Questions:
o Riaay) = Rl(an) =R (0an)?
o Is R!(j4 x) isomorphic to R"(j4.1)?
o Is there a noncommutative notion of
hyperplane arrangement?
o Classical case:

deg a = number of reflecting hyperplanes
and deg j = number of reflections in G.

Meaning of degrees in noncommutative
case”?



o Role of a4 i, j4.m, and d 4 i in representation
theory of H and classification (up to dual
cycle twists) of reflection Hopf algebra pairs
(H, A) for A of dimension 2.



THANKS!



