The Jacobian, reflection arrangement and discriminant for reflection Hopf algebras arXiv: 1902.00421

Ellen Kirkman (Joint with James Zhang)

kirkman@wfu.edu

8 Wake Forest

university

Auslander Distinguished Lectures and Conference
Woods Hole, MA April 27, 2019

Classical and Noncommutative Invariant Theory

Classical Invariant Theory: Group G acting linearly on the algebra $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ and study $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]^{G}$.

Noncommutative Invariant Theory: Replace:
$\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ with appropriate noncommutative algebra A
G with a group (or Hopf algebra) that acts on A
to extend classical results.

Shephard-Todd-Chevalley Theorem

Let \mathbb{k} be a field of characteristic zero.
Theorem (1954). The ring of invariants $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]^{G}$ under a finite group G is a polynomial ring if and only if G is generated by reflections.

A linear map g on V is called a reflection of V if all but one of the eigenvalues of g are 1 ,
i.e. $\operatorname{dim} V^{g}=\operatorname{dim} V-1$.

Example: Transposition permutation matrices are reflections, and S_{n} is generated by reflections.

Examples of reflection groups:

(1). $G=S_{n}$ on $\mathbb{k}\left[x_{1} \ldots, x_{n}\right]$.
(2). $G=D_{2 n}=\left\{\rho, r: \rho^{n}=e=r^{2}, r \rho=\rho^{-1} r\right\}$ acts on $\mathbb{k}[x, y]$ as

$$
\rho=\left(\begin{array}{cc}
\epsilon_{n} & 0 \\
0 & \epsilon_{n}^{-1}
\end{array}\right), \quad r=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

(3). $G=\langle g\rangle$ acts on $\mathbb{k}[x, y]$ as

$$
g=\left(\begin{array}{cc}
1 & 0 \\
0 & \epsilon_{n}
\end{array}\right)
$$

Commutative Case $A=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$

The Jacobian

When $A=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ and G is a reflection group then $A^{G}=\mathbb{k}\left[f_{1}, \ldots, f_{n}\right]$, and the Jacobian is

$$
J:=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{i, j=1}^{n} .
$$

Steinberg's Theorem (1960): J is the product (with multiplicities) of the reflecting hyperplanes.

Examples: A commutative

S_{3} acts on $\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ then $f_{1}=x_{1}+x_{2}+x_{3}$, $f_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}, f_{3}=x_{1} x_{2} x_{3}$ and

$$
J=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right) .
$$

$D_{2 n}$ acts on $\mathbb{k}[x, y]$ then $f_{1}=x^{n}+y^{n}, f_{2}=x y$

$$
\begin{gathered}
J=n\left(x^{n}-y^{n}\right)=_{\mathbb{k}^{\times}} x^{n}-y^{n} \\
=(x-y)\left(x-\epsilon_{n} y\right) \ldots\left(x-\epsilon_{n}^{n-1} y\right) .
\end{gathered}
$$

Let g act on $A=\mathbb{k}[x, y]$ by $g \cdot x=x$ and $g \cdot y=\epsilon_{n} y$. Then $A^{\langle g\rangle}=\mathbb{k}\left[x, y^{n}\right]$, and $J==_{\mathbb{k}^{\times}} y^{n-1}$.

$A=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ and G is a reflection group:

$$
\begin{gathered}
\operatorname{deg} J=-n+\sum \operatorname{deg}\left(f_{i}\right)=\text { number of reflections } \\
g \cdot J=\operatorname{det}(g)^{-1} J \\
A_{\operatorname{det}^{-1}}=\left\{a \in A: g \cdot a=\operatorname{det} g^{-1} \cdot a\right\}=J A^{G}
\end{gathered}
$$

Example: S_{3} acts on $\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$

$$
\begin{gathered}
J=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right) . \\
\operatorname{deg} J=-3+\sum \operatorname{deg}\left(f_{i}\right) \\
-3+1+2+3=\text { number of reflections }
\end{gathered}
$$

Commutative Case: $A=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$

The Reflection Arrangement

Let a be the product of the distinct linear forms corresponding to the reflecting hyperplanes,

$$
\begin{aligned}
& \text { then } g \cdot \mathrm{a}=\operatorname{det}(g) \mathrm{a} \\
& \text { and } A_{\text {det }}=\mathrm{a} R .
\end{aligned}
$$

The Discriminant

$$
\delta=\mathrm{a} J \in A^{G}
$$

Example: S_{3} acts on $\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$

$$
\begin{aligned}
\mathrm{a} & =J=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right) . \\
\delta=J^{2} & =\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2} \in A^{G} .
\end{aligned}
$$

Setting - Invariant Theory of AS Regular Algebras

$\mathbb{k}=\mathbb{C} \quad$ Pairs (H, A) and action H on A.

- A is a Noetherian AS regular domain generated in degree 1
- H is a Hopf algebra acting on A :
- H is semisimple Hopf algebra
- H preserves the grading on A
- A is an H-module algebra
- The action of H on A is inner-faithful

$$
\text { - } A^{H}=\{a \in A \mid h . a=\epsilon(h) a \text { for all } h \in H\} \text {. }
$$

Reflection Hopf Algebras

We call H a reflection Hopf algebra for A if H acts on A so that A^{H} is AS regular. Examples:
(a) $\left(\mathbb{k} G, \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]\right) G$ classical reflection group (Shephard-Todd-Chevalley Theorem).
(b) $\left(\mathbb{k} G, \mathbb{k}_{-1}\left[x_{1}, \ldots, x_{n}\right]\right) G$ mystic reflection group
(c) $\left(\mathbb{k}^{G}, \mathbb{k}_{-1}[x, z][y ; \sigma]\right)$ with $G=D_{8}$
(d) $\left(H_{8}, \mathbb{k}_{-1}[x, y]\right)$ and $\left(H_{8}, \mathbb{k}_{ \pm i}[x, y]\right)$.

Noncommutative Setting

Assume H is a reflection Hopf algebra for A,

$$
K=H^{*} \text { and } R=A^{H}
$$

For every $g \in G(K)$ define

$$
\begin{gathered}
A_{g}:=\{a \in A \mid \rho(a)=a \otimes g\} \\
\text { hdet } \in K \\
\text { hdet } \in G(K)
\end{gathered}
$$

Theorem: When $R:=A^{H}$ AS regular, there are elements in A unique up to scalars:

Jacobian $j_{A, H} \in A$:
$A_{\text {hdet }^{-1}}$ rank 1 free R-module generated by $j_{A, H}$
Reflection Arrangement $a_{A, H} \in A$:
$A_{\text {hdet }}$ is rank 1 free R-module generated by a $A_{A, H}$

Discriminant $\delta_{A, H} \in R$:

$$
\delta_{A, H}=\mathrm{j}_{A, H} \mathrm{a}_{A, H}
$$

Candidates for reflecting hyperplanes:
$\mathfrak{R}^{l}(f):=\left\{\mathbb{k} v \mid v \in A_{1}, v f_{v}=f\right.$ for some $\left.f_{v} \in A\right\}$
$\mathfrak{R}^{r}(f):=\left\{\mathbb{k} v \mid v \in A_{1}, f_{v} v=f\right.$ for some $\left.f_{v} \in A\right\}$

- $a_{A, H}$ divides $\mathrm{j}_{A, H}$ from the left and the right.
- When gldim $A=2$ and H is either commutative or cocommutative, then

$$
\mathfrak{R}^{l}\left(\mathrm{a}_{A, H}\right)=\mathfrak{R}^{r}\left(\mathrm{a}_{A, H}\right)=\mathfrak{R}^{l}\left(\mathrm{j}_{A, H}\right)=\mathfrak{R}^{r}\left(\mathrm{j}_{A, H}\right) .
$$

- For $H=\mathbb{k}^{G}$, both $\mathrm{j}_{A, H}$ and $\mathrm{a}_{A, H}$ are products of elements of degree one.

H semisimple \Rightarrow

$H=\mathbb{k} \oplus \mathbb{k} \oplus \cdots \oplus \mathbb{k} \oplus M_{r_{n+1}}(\mathbb{k}) \oplus \cdots \oplus M_{r_{N-1}}(\mathbb{k}) \oplus M_{r_{N}}(\mathbb{k})$
where n summands are \mathbb{k} and

$$
H=p_{1} H \oplus \cdots \oplus p_{n} H \oplus p_{n+1} H \oplus \cdots, \oplus p_{N} H
$$ for central idempotents $p_{i}, i=1 \ldots, N$.

$$
\begin{gathered}
I=M_{r_{n+1}}(\mathbb{k}) \oplus M_{r_{N-1}}(\mathbb{k}) \oplus M_{r_{N}}(\mathbb{k}) \\
H / I \cong \mathbb{k} G^{*} .
\end{gathered}
$$

Let $K=H^{*}$, then $G \cong G(K)$ and $g \in G$ corresponds to a central idempotent $p_{g}=p_{i}$ for $i=1, \ldots n$.

$$
\begin{gathered}
A=p_{1} A \oplus \cdots \oplus p_{n} A \oplus p_{n+1} A \oplus \cdots, \oplus p_{N} A . \\
\text { Then } A_{g}=p_{g} A .
\end{gathered}
$$

Each A_{g} is free of rank 1 over $R=A^{H}$.

$$
A_{\text {hdet }^{-1}}=\mathrm{j}_{A, H} R \text { and } A_{\text {hdet }}=\mathrm{a}_{A, H} R .
$$

Group action case (H cocommutative)

Example 1: $A=\mathbb{k}_{-1}[x, y]$ and $G=M(2, \alpha, \beta)$ Case $\alpha=1$ (Binary dihedral groups):

$$
\begin{gathered}
\mathrm{a}_{A, H}=\mathrm{j}_{A, H}=\left(x^{\beta}-y^{\beta}\right) \\
\operatorname{deg} \mathrm{j}_{A, H}=\# \text { mystic reflections }
\end{gathered}
$$

Further,

$$
\begin{aligned}
\mathfrak{R}^{l}\left(\mathrm{j}_{A, H}\right)= & \mathfrak{R}^{r}\left(\mathrm{j}_{A, H}\right)=\mathfrak{R}^{l}\left(\mathrm{a}_{A, H}\right)=\mathfrak{R}^{r}\left(\mathrm{a}_{A, H}\right) \\
= & \left\{\mathbb{k}(x+\xi y) \mid \xi^{\beta}=1\right\} .
\end{aligned}
$$

Group coaction case (H commutative)

Example 2: $A=\mathbb{k}_{-1}[x, z][y: \sigma], D_{8}=\langle r, \rho\rangle$, $z x=-x z, y x=z y, y z=x y$ and $H=\mathbb{k}^{D_{8}}$, $\operatorname{deg}_{G}(x)=r, \quad \operatorname{deg}_{G}(y)=r \rho, \quad \operatorname{deg}_{G}(z)=r \rho^{2}$.
$A^{H}=\mathbb{k}\left[x^{2}, y^{2}, z^{2}\right] . \quad$ hdet $=\operatorname{hdet}^{-1}=r \rho^{3}$
$\mathrm{j}_{A, H}=\mathrm{a}_{A, H}=_{\mathfrak{k}^{\times}} z x y=_{\mathfrak{k}^{\times}} z y z==_{\mathfrak{k}^{\times}} x y x=_{\mathfrak{k}^{\times} \times} x z y$
$==_{k \times} y z x==_{k \times} y x z, \quad \delta_{A, H}=x^{2} y^{2} z^{2}$
$\mathfrak{R}^{l}\left(\mathrm{j}_{A, H}\right)=\mathfrak{R}^{l}\left(\mathrm{a}_{A, H}\right)=\mathfrak{R}^{r}\left(\mathrm{j}_{A, H}\right)=\mathfrak{R}^{r}\left(\mathrm{a}_{A, H}\right)$
$=\{\mathbb{k} x, \mathbb{k} y, \mathbb{k} z\}$

H not cocommutative or commutative

Example 3: H_{8} representation on $V=\mathbb{k} u \oplus \mathbb{k} v$:

$$
x \rightarrow\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), y \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad z \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),
$$

determines the H_{8}-action on $A=\mathbb{k}_{i}[u, v]$.

$$
\begin{gathered}
G(K)=\left\{1, g, g^{\prime}, g g^{\prime}\right\} \text { the Klein-4 group, } \\
\operatorname{hdet}^{-1}=\operatorname{hdet}=g g^{\prime}
\end{gathered}
$$

$$
\begin{aligned}
& p_{1} A=A^{H_{8}}=R=\mathbb{k}\left[u^{2}+v^{2}, u^{2} v^{2}\right] \\
& p_{g} A=\left(u^{2}-v^{2}\right) R \\
& p_{g^{\prime}} A=(u v) R \\
& p_{g g^{\prime}} A=\left(u^{3} v+u v^{3}\right) R=\left(u v\left(u^{2}-v^{2}\right)\right) R . \\
& a_{A, H_{8}}=j_{A, H_{8}}={ }_{k_{k} \times} \times u v\left(u^{2}-v^{2}\right) \\
& \delta_{A, H_{8}}==_{k^{2} \times} u^{2} v^{2}\left(u^{2}-v^{2}\right)^{2} \\
&= u^{2} v^{2}\left[\left(u^{2}+v^{2}\right)^{2}-4 u^{2} v^{2}\right] \in R
\end{aligned}
$$

$$
\begin{gathered}
\mathfrak{R}^{l}\left(\mathrm{a}_{A, H_{8}}\right)=\mathfrak{R}^{l}\left(\mathrm{j}_{A, H_{8}}\right) \\
=\left\{\mathbb{k} u, \mathbb{k} v, \mathbb{k}\left(u+e^{\frac{3}{8}(2 \pi i)} v\right), \mathbb{k}\left(u+e^{\frac{7}{8}(2 \pi i)} v\right)\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
\mathfrak{R}^{r}\left(\mathrm{a}_{A, H_{8}}\right)=\mathfrak{R}^{r}\left(\mathrm{j}_{A, H_{8}}\right) \\
=\left\{\mathbb{k} u, \mathbb{k} v, \mathbb{k}\left(u+e^{\frac{1}{8}(2 \pi i)} v\right), \mathbb{k}\left(u+e^{\frac{5}{8}(2 \pi i)} v\right)\right\} .
\end{gathered}
$$

Questions:

- $\mathfrak{R}^{l}\left(\mathrm{a}_{A H}\right)=\mathfrak{R}^{l}\left(\mathrm{j}_{A, H}\right)=\mathfrak{R}^{l}\left(\delta_{A, H}\right)$?
- Is $\mathfrak{R}^{l}\left(\mathrm{j}_{A, H}\right)$ isomorphic to $\mathfrak{R}^{r}\left(\mathrm{j}_{A, H}\right)$?
- Is there a noncommutative notion of hyperplane arrangement?
- Classical case:
deg $a=$ number of reflecting hyperplanes and deg $\mathrm{j}=$ number of reflections in G. Meaning of degrees in noncommutative case?
- Role of $\mathrm{a}_{A, H}, \mathrm{j}_{A, H}$, and $\delta_{A, H}$ in representation theory of H and classification (up to dual cycle twists) of reflection Hopf algebra pairs (H, A) for A of dimension 2.

THANKS!

