The Jacobian, reflection arrangement and discriminant for reflection Hopf algebras arXiv: 1902.00421

Ellen Kirkman (Joint with James Zhang)

kirkman@wfu.edu

Auslander Distinguished Lectures and Conference

Woods Hole, MA April 27, 2019

Classical Invariant Theory: Group *G* acting linearly on the algebra $\Bbbk[x_1, \ldots, x_n]$ and study $\Bbbk[x_1, \ldots, x_n]^G$.

Noncommutative Invariant Theory: Replace:

 $k[x_1, \ldots, x_n]$ with appropriate noncommutative algebra A

G with a group (or Hopf algebra) that acts on A

to extend classical results.

Let \Bbbk be a field of characteristic zero.

Theorem (1954). The ring of invariants $\mathbb{k}[x_1, \dots, x_n]^G$ under a finite group *G* is a polynomial ring if and only if *G* is generated by reflections.

A linear map g on V is called a <u>reflection</u> of V if all but one of the eigenvalues of g are 1, i.e. dim $V^g = \dim V - 1$.

Example: Transposition permutation matrices are reflections, and S_n is generated by reflections.

Examples of reflection groups:

(1).
$$G = S_n$$
 on $k[x_1 \dots, x_n]$.
(2). $G = D_{2n} = \{\rho, r : \rho^n = e = r^2, r\rho = \rho^{-1}r\}$
acts on $k[x, y]$ as

$$\rho = \begin{pmatrix} \epsilon_n & 0\\ 0 & \epsilon_n^{-1} \end{pmatrix}, \quad r = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}.$$

(3). $G = \langle g \rangle$ acts on $\Bbbk[x, y]$ as

$$g = \begin{pmatrix} 1 & 0 \\ 0 & \epsilon_n \end{pmatrix}$$

٠

The Jacobian

When $A = \Bbbk[x_1, \dots, x_n]$ and G is a reflection group then $A^G = \Bbbk[f_1, \dots, f_n]$, and the Jacobian is

$$J := \det \left(\frac{\partial f_i}{\partial x_j}\right)_{i,j=1}^n.$$

Steinberg's Theorem (1960): J is the product (with multiplicities) of the reflecting hyperplanes.

 S_3 acts on $\Bbbk[x_1, x_2, x_3]$ then $f_1 = x_1 + x_2 + x_3$, $f_2 = x_1x_2 + x_1x_3 + x_2x_3$, $f_3 = x_1x_2x_3$ and $J = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$.

 $D_{2n} \text{ acts on } \mathbb{k}[x, y] \text{ then } f_1 = x^n + y^n, f_2 = xy$ $J = n(x^n - y^n) =_{\mathbb{k}^{\times}} x^n - y^n$ $= (x - y)(x - \epsilon_n y) \dots (x - \epsilon_n^{n-1} y).$

Let g act on $A = \Bbbk[x, y]$ by $g \cdot x = x$ and $g \cdot y = \epsilon_n y$. Then $A^{\langle g \rangle} = \Bbbk[x, y^n]$, and $J =_{\Bbbk^{\times}} y^{n-1}$.

 $A = \Bbbk[x_1, \ldots, x_n]$ and *G* is a reflection group:

$$\begin{split} \deg J &= -n + \sum \deg(f_i) = \text{number of reflections} \\ g \cdot J &= \det(g)^{-1}J \\ A_{\det^{-1}} &= \{a \in A : g \cdot a = \det g^{-1} \cdot a\} = JA^G \end{split}$$

Example: S_3 acts on $k[x_1, x_2, x_3]$ $J = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3).$ $\deg J = -3 + \sum \deg(f_i)$ -3 + 1 + 2 + 3 = number of reflections

The Reflection Arrangement

Let a be the product of the distinct linear forms corresponding to the reflecting hyperplanes,

then $g \cdot a = \det(g)a$ and $A_{det} = aR$.

The Discriminant $\delta = \mathbf{a} J \in A^G$

Example:
$$S_3$$
 acts on $\Bbbk[x_1, x_2, x_3]$
 $\mathbf{a} = J = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3).$
 $\delta = J^2 = (x_1 - x_2)^2(x_1 - x_3)^2(x_2 - x_3)^2 \in A^G.$

- $\mathbb{k} = \mathbb{C}$ Pairs (H, A) and action H on A.
 - *A* is a Noetherian AS regular domain generated in degree 1
 - H is a Hopf algebra acting on A:
 - H is semisimple Hopf algebra
 - *H* preserves the grading on *A*
 - A is an H-module algebra
 - The action of H on A is inner-faithful

• $A^H = \{a \in A \mid h.a = \epsilon(h)a \text{ for all } h \in H\}.$

We call *H* a reflection Hopf algebra for *A* if *H* acts on *A* so that A^H is AS regular. Examples:

(a)($\Bbbk G, \Bbbk [x_1, \ldots, x_n]$) *G* classical reflection group (Shephard-Todd-Chevalley Theorem).

(b)($\Bbbk G, \Bbbk_{-1}[x_1, \ldots, x_n]$) *G* mystic reflection group (c) ($\Bbbk^G, \Bbbk_{-1}[x, z][y; \sigma]$) with $G = D_8$ (d) ($H_8, \Bbbk_{-1}[x, y]$) and ($H_8, \Bbbk_{+i}[x, y]$).

Noncommutative Setting

Assume *H* is a reflection Hopf algebra for *A*, $K = H^*$ and $R = A^H$.

For every $g \in G(K)$ define $A_g := \{a \in A \mid \rho(a) = a \otimes g\}$ hdet $\in K$ hdet $\in G(K)$. Theorem: When $R := A^H$ AS regular, there are elements in A unique up to scalars:

<u>Jacobian</u> $j_{A,H} \in A$: $A_{hdet^{-1}}$ rank 1 free *R*-module generated by $j_{A,H}$

Reflection Arrangement $a_{A,H} \in A$: $\overline{A_{hdet}}$ is rank 1 free R-module generated by $a_{A,H}$

Candidates for reflecting hyperplanes: $\mathfrak{R}^l(f) := \{ \Bbbk v \mid v \in A_1, vf_v = f \text{ for some } f_v \in A \}$

 $\mathfrak{R}^r(f) := \{ \Bbbk v \mid v \in A_1, f_v v = f \text{ for some } f_v \in A \}$

- $a_{A,H}$ divides $j_{A,H}$ from the left and the right.
- When gldim A = 2 and H is either commutative or cocommutative, then ^R(a_{A,H}) = R^r(a_{A,H}) = R^l(j_{A,H}) = R^r(j_{A,H}).
- For $H = \mathbb{k}^{G}$, both $j_{A,H}$ and $a_{A,H}$ are products of elements of degree one.

H semisimple \Rightarrow

 $H = \Bbbk \oplus \Bbbk \oplus \cdots \oplus \Bbbk \oplus M_{r_{n+1}}(\Bbbk) \oplus \cdots \oplus M_{r_{N-1}}(\Bbbk) \oplus M_{r_N}(\Bbbk)$

where n summands are \Bbbk and

 $H = p_1 H \oplus \cdots \oplus p_n H \oplus p_{n+1} H \oplus \cdots, \oplus p_N H$

for central idempotents p_i , $i = 1 \dots, N$.

 $I = M_{r_{n+1}}(\Bbbk) \oplus M_{r_{N-1}}(\Bbbk) \oplus M_{r_N}(\Bbbk)$

 $H/I \cong \Bbbk G^*.$

Let $K = H^*$, then $G \cong G(K)$ and $g \in G$ corresponds to a central idempotent $p_g = p_i$ for i = 1, ..., n.

$A = p_1 A \oplus \cdots \oplus p_n A \oplus p_{n+1} A \oplus \cdots, \oplus p_N A.$ Then $A_g = p_g A.$

Each A_g is free of rank 1 over $R = A^H$.

 $A_{\text{hdet}^{-1}} = j_{A,H}R$ and $A_{\text{hdet}} = a_{A,H}R$.

Example 1: $A = \Bbbk_{-1}[x, y]$ and $G = M(2, \alpha, \beta)$ Case $\alpha = 1$ (Binary dihedral groups):

 $\mathsf{a}_{A,H} = \mathsf{j}_{A,H} = (x^eta - y^eta).$ deg $\mathsf{j}_{A,H}$ = # mystic reflections Further,

$$\mathfrak{R}^{l}(\mathbf{j}_{A,H}) = \mathfrak{R}^{r}(\mathbf{j}_{A,H}) = \mathfrak{R}^{l}(\mathbf{a}_{A,H}) = \mathfrak{R}^{r}(\mathbf{a}_{A,H})$$
$$= \{\mathbf{k}(x+\xi y) \mid \xi^{\beta} = 1\}.$$

Example 2: $A = \mathbb{k}_{-1}[x, z][y:\sigma], D_8 = \langle r, \rho \rangle$, zx = -xz, yx = zy, yz = xy and $H = \mathbb{k}^{D_8}$, $\deg_C(x) = r$, $\deg_C(y) = r\rho$, $\deg_C(z) = r\rho^2$. $A^{H} = \Bbbk[x^{2}, y^{2}, z^{2}].$ hdet = hdet⁻¹ = $r\rho^{3}$ $J_{A,H} = \mathsf{a}_{A,H} =_{\Bbbk^{\times}} zxy =_{\Bbbk^{\times}} zyz =_{\Bbbk^{\times}} xyx =_{\Bbbk^{\times}} xzy$ $=_{\mathbf{k}^{\times}} yzx =_{\mathbf{k}^{\times}} yxz, \quad \delta_A H = x^2 y^2 z^2$ $\mathfrak{R}^{l}(\mathbf{j}_{A,H}) = \mathfrak{R}^{l}(\mathbf{a}_{A,H}) = \mathfrak{R}^{r}(\mathbf{j}_{A,H}) = \mathfrak{R}^{r}(\mathbf{a}_{A,H})$ $= \{ kx, ky, kz \}$

Example 3: H_8 representation on $V = \Bbbk u \oplus \Bbbk v$:

$$x \to \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \ y \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ z \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

determines the H_8 -action on $A = \Bbbk_i[u, v]$.

 $G(K) = \{1, g, g', gg'\}$ the Klein-4 group, $hdet^{-1} = hdet = gg'$

$$p_{1}A = A^{H_{8}} = R = \mathbb{k}[u^{2} + v^{2}, u^{2}v^{2}]$$

$$p_{g}A = (u^{2} - v^{2})R$$

$$p_{g'}A = (uv)R$$

$$p_{gg'}A = (u^{3}v + uv^{3})R = (uv(u^{2} - v^{2}))R.$$

$$a_{A,H_{8}} = j_{A,H_{8}} =_{\mathbb{k}^{\times}} uv(u^{2} - v^{2})$$

$$\delta_{A,H_{8}} =_{\mathbb{k}^{\times}} u^{2}v^{2}(u^{2} - v^{2})^{2}$$

$$= u^{2}v^{2}[(u^{2} + v^{2})^{2} - 4u^{2}v^{2}] \in R$$

$$\begin{split} \mathfrak{R}^{l}(\mathsf{a}_{A,H_{8}}) &= \mathfrak{R}^{l}(\mathsf{j}_{A,H_{8}}) \\ &= \{ \Bbbk u, \Bbbk v, \Bbbk (u + e^{\frac{3}{8}(2\pi i)}v), \Bbbk (u + e^{\frac{7}{8}(2\pi i)}v) \} \\ \text{and} \\ &\mathfrak{R}^{r}(\mathsf{a}_{A,H_{8}}) = \mathfrak{R}^{r}(\mathsf{j}_{A,H_{8}}) \end{split}$$

 $=\{\Bbbk u, \Bbbk v, \Bbbk (u+e^{\frac{1}{8}(2\pi i)}v), \Bbbk (u+e^{\frac{5}{8}(2\pi i)}v)\}.$

Questions:

- $\mathfrak{R}^l(\mathsf{a}_{AH}) = \mathfrak{R}^l(\mathsf{j}_{A,H}) = \mathfrak{R}^l(\delta_{A,H})$?
- Is $\mathfrak{R}^{l}(\mathbf{j}_{A,H})$ isomorphic to $\mathfrak{R}^{r}(\mathbf{j}_{A,H})$?
- Is there a noncommutative notion of hyperplane arrangement?
- Classical case:

deg a = number of reflecting hyperplanes and deg j = number of reflections in G. Meaning of degrees in noncommutative case? Role of a_{A,H}, j_{A,H}, and δ_{A,H} in representation theory of *H* and classification (up to dual cycle twists) of reflection Hopf algebra pairs (*H*, *A*) for *A* of dimension 2. **THANKS**!