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Recall from last year (1) that for a commutative Gorenstein ring, the
cohomology annihilator ideal is

ca(R) = ﬂ anngEnd, (M)

MeMCM(R)

- If R has finite global dimension, then ca(R) = R.
- Under mild assumptions, V(ca(R)) = sing(R).



Theorem

If R is the complete local coordinate ring of a reduced curve

singularity, then the cohomology annihilator ideal coincides with the
conductor ideal.

- The conductor of R is the ideal {r € R : rR C R} where R is the
integral closure of R in its total quotient ring.

- The conductor is also equal to anngEndg(R).

- In our case, the normalization is a module finite R-algebra, it is

maximal Cohen-Macaulay as an R-module, and it has finite
global dimension.



Let R be a Gorenstein ring, A be a noncommutative ringand f: R — A
be a ring homomorphism.

- fis a split monomorphism,

- Ais finitely generated as an R-module,

- A is maximal Cohen-Macaulay as an R-module,

- A has finite global dimension ¢,

Theorem
With these assumptions, we have

[annR@R(/\)]‘sJH C ca(R) C anngEndg(A).
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Let R be a Gorenstein ring of Krull dimension at most 2, A be a
noncommutative ring and f: R — A be a ring homomorphism.

- fis a split monomorphism,

- Ais finitely generated as an R-module,

- A is maximal Cohen-Macaulay as an R-module,

- A has finite global dimension 4,

- A* = Homg(A, R) has projective dimension n as a A-module.
Theorem
With these assumptions, we have

[anngEnd, (A)]"" C ca(R) C anngEndg(A).
In particular, if N* is projective, then

ca(R) = anngEnd,(A).



Definitions and Notations

- Ris a Cohen-Macaulay local ring with canonical module wg.

- Ais an R-order. That is, it is @ module-finite R-algebra which is
maximal Cohen-Macaulay as an R-module.

- MCM(A) = {X € A-mod : X € MCM(R)}.
- D = Homg(—, wg) : MCM(A) — MCM(A°P) - itis an exact duality.

« wp = DA is the canonical module of A.



The following are equivalent [lyama-Wemyss]:

1. wy Is projective and A has finite global dimension,
2. Every maximal Cohen-Macaulay A-module is projective.
3. gldimA, = dim R, for every prime ideal p of R.

4. gldimA, = dim R, where m is the maximal ideal of R.

If A satisfies one of the above conditions, then it is called a
non-singular order.



If wp is projective, then we have a version of Auslander-Buchsbaum
formula:

pdp\M + depthM = dim R

for any A-module M of finite projective dimension [lyama-Reiten,
lyama-Wemyss]. [Josh Stangle] generalizes this in his PhD thesis as
follows: If wp has projective dimension n, then

dimR < pdaM + depthM < n +dimR

for every A-module M of finite projective dimension.



- If Ais non-singular, then every maximal Cohen-Macaulay
module is projective.

- If A has finite global dimension with a canonical module wy of
positive projective dimension, there are non-projective maximal
Cohen-Macaulay modules.

- How do we understand the structure of the stable category of
maximal Cohen-Macaulay modules?

- For instance, how many indecomposable non-projective
maximal Cohen-Macaulay modules are there?
(Auslander-Roggenkamp).



Injectives in MCM(R)

- The canonical module wy is an injective object in MCM(A) and
in fact any MCM-relatively injective A-module is isomorphic to
a direct summand of finite direct sums of wp.

- The duality D = Homg(—,wg) takes projectives to
MCM-relatively injectives and vice versa.

- Dualizing a projective resolution of the maximal
Cohen-Macaulay A°®»-module DM gives a MCM-relatively

injective coresolution of the maximal Cohen-Macaulay
A-module M.

- The relative injective dimension of A is equal to the projective
dimension of wa.



Dominant Dimension

let0 5 A== "— ... = "= [F - .. . beaminimal
MCM-relatively injective coresolution of A. We say that A has
MCM-relative dominant dimension at least R if I°, ..., IF" are
projective.

- If Ais a non-singular order, then its MCM-relative dominant
dimension is cc.

- If Ais an order of the form Endg(M) where M € MCM(R), then
the MCM-relative dominant dimension is at least
max{2,dimR — 2}.

- If Ris a regular local ring and Q is a linearly directed A, quiver,
then the path algebra RQ has MCM-relative dominant
dimension 1.
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let0 A= 10 =1"— ... > 1 5 |F— . beaminimal
MCM-relatively injective coresolution of A. Denote the image of
V= V1 by K.

Lemma
Then, Kj,1 is also a maximal Cohen-Macaulay module.

Theorem
If N has relative dominant dimension at least k and j < k, then the
module

j
Ti=PreK
i=0

is a k-tilting A-module.



Theorem
Let T; = Enda(T;)°P where T; is the tilting module defined above and

suppose that A has finite global dimension. Then,
1. T is also an R-order of finite global dimension.

2. ***The projective dimension of wr, is at most the projective
dimension of wp.

Note: See [Pressland, Sauter] and [Nguyen, Reiten, Todorov, Zhu] for
the Artinian case.



THANK YOU!
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