Cup products on curves over finite fields

Frauke Bleher joint with Ted Chinburg

Maurice Auslander Distinguished Lectures and International Conference April 28, 2019

→

Notation and étale cohomology.

- $k = \mathbb{F}_q$ finite field with q elements.
- C = smooth projective geometrically irreducible curve over k of genus g ≥ 1.
- \overline{k} = algebraic closure of k, and $\overline{C} = C \otimes_k \overline{k}$.
- ▶ $\ell = \text{odd prime}, \ q \equiv 1 \mod \ell \iff k^* \supseteq \tilde{\mu}_\ell \ (\ell \text{th roots of 1}).$

Let X be C or \overline{C} , let η be a geometric point on X corresponding to an algebraic closure $\overline{k(X)}$ of the function field k(X), and let $k(X)^{\text{sep}}$ be the separable closure of k(X) inside $\overline{k(X)}$.

The étale fundamental group $\pi_1(X, \eta)$ is the quotient group of $\operatorname{Gal}(k(X)^{\operatorname{sep}}/k(X))$ modulo the subgroup generated by all inertia groups associated to closed points of X. In other words, $\pi_1(X, \eta)$ is the profinite group that is the inverse limit of the Galois groups of all finite Galois covers of X that are flat and unramified (i.e. étale).

For all
$$r \ge 0$$
: $\underbrace{\operatorname{H}^{r}(X, \mathbb{Z}/\ell)}_{r} \cong$

étale cohomology

 $\underbrace{\mathrm{H}^{r}(\pi_{1}(X,\eta),\mathbb{Z}/\ell)}_{\text{profinite group cohomology}}$

Description of étale cohomology groups.

For $X \in \{C, \overline{C}\}$, let Div(X) be the divisor group of X, and let Pic(X) = Div(X)/PrinDiv(X) be the Picard group of X.

Assume: ℓ -torsion of the Jacobian of C over \overline{k} is defined over $k \\ \rightsquigarrow \operatorname{Pic}(C)[\ell] = \operatorname{Pic}(\overline{C})[\ell] \cong (\mathbb{Z}/\ell)^{2g}.$

 $1 \to k^* \to k(C)^* \xrightarrow{\operatorname{div}_C} \operatorname{Div}(C) \to \operatorname{Pic}(C) \to 0 \text{ is exact.}$ Define $D(C) := \{a \in k(C)^* \mid \operatorname{div}_C(a) \in \ell \operatorname{Div}(C)\}.$

We have: (μ_{ℓ} = sheaf of ℓ th roots of unity)

$$\begin{split} \mathrm{H}^{1}(\mathcal{C},\mathbb{Z}/\ell) &= \mathrm{Hom}(\mathrm{Pic}(\mathcal{C}),\mathbb{Z}/\ell) &\cong (\mathbb{Z}/\ell)^{2g+1}, \\ \mathrm{H}^{1}(\mathcal{C},\mu_{\ell}) &= D(\mathcal{C})/(k(\mathcal{C})^{*})^{\ell} &\cong (\mathbb{Z}/\ell)^{2g+1}, \\ \mathrm{H}^{2}(\mathcal{C},\mu_{\ell}) &= \mathrm{Pic}(\mathcal{C})/\ell \operatorname{Pic}(\mathcal{C}) &\rightsquigarrow \mathrm{H}^{2}(\mathcal{C},\mu_{\ell}^{\otimes 2}) = \operatorname{Pic}(\mathcal{C}) \otimes_{\mathbb{Z}} \tilde{\mu}_{\ell}, \\ \mathrm{H}^{3}(\mathcal{C},\mu_{\ell}) &= \mathbb{Z}/\ell & \rightsquigarrow \mathrm{H}^{3}(\mathcal{C},\mu_{\ell}^{\otimes 2}) = \tilde{\mu}_{\ell}. \\ \mathrm{H}^{1}(\overline{\mathcal{C}},\mu_{\ell}) &= \operatorname{Pic}(\overline{\mathcal{C}})[\ell] &\cong (\mathbb{Z}/\ell)^{2g}, \end{split}$$

$$\mathrm{H}^{2}(\overline{C},\mu_{\ell}) = \mathbb{Z}/\ell \qquad \rightsquigarrow \quad \mathrm{H}^{2}(\overline{C},\mu_{\ell}^{\otimes 2}) = \tilde{\mu}_{\ell}.$$

Triple cup products.

Assume: $q \equiv 1 \mod \ell$ and $\operatorname{Pic}(C)[\ell] = \operatorname{Pic}(\overline{C})[\ell] \cong (\mathbb{Z}/\ell)^{2g}$.

We consider the triple cup product of étale cohomology groups

 $F: \ \mathrm{H}^1(\mathcal{C}, \mathbb{Z}/\ell) \times \mathrm{H}^1(\mathcal{C}, \mu_\ell) \times \mathrm{H}^1(\mathcal{C}, \mu_\ell) \overset{\cup}{\longrightarrow} \mathrm{H}^3(\mathcal{C}, \mu_\ell^{\otimes 2}) \cong \tilde{\mu}_\ell.$

Significance of *F*:

- useful to get an explicit description of certain profinite groups (*l*-adic completions of the étale fundamental group of *C*) as quotients of pro-free groups modulo relations;
- ▶ potentially useful for cryptographic applications by restricting to triples of cyclic groups of order ℓ to get a trilinear map (if this map is "cryptographic" it would be a big step forward in the security of intellectual property).

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Key sharing for 4 persons.

Restrict the triple cup product F to

$$f: G_1 \times G_2 \times G_3 \rightarrow H = \tilde{\mu}_\ell$$

where G_i is identified with a cyclic group G of order ℓ (i = 1, 2, 3). Then f is trilinear in the sense that

$$f(g^{\alpha_1},g^{\alpha_2},g^{\alpha_3})=f(g,g,g)^{\alpha_1\alpha_2\alpha_3}$$

when $G = \langle g \rangle$ and $\alpha_i \in \mathbb{Z}$.

Public information: generators g of G and h of H, and map f.

Secrets: *j*th person (j = 1, ..., 4) picks secret $c_j \in (\mathbb{Z}/\ell)^*$ and posts g^{c_j} .

Decode: each of the 4 persons can compute $f(g, g, g)^{c_1c_2c_3c_4}$: e.g., 4th person can compute $f(g^{c_1}, g^{c_2}, g^{c_3})^{c_4}$.

f is "cryptographic" if f is "easy to compute" and "hard to break" (this can be made precise in computer science terms).

Theorem: (B-Chinburg) Assume $q \equiv 1 \mod \ell$ and $\operatorname{Pic}(C)[\ell] = \operatorname{Pic}(\overline{C})[\ell]$. The trilinear map given by the triple cup product

$${\sf F}: \ \ {
m H}^1({\sf C},{\mathbb Z}/\ell) imes {
m H}^1({\sf C},\mu_\ell) imes {
m H}^1({\sf C},\mu_\ell) \stackrel{\cup}{\longrightarrow} {
m H}^3({\sf C},\mu_\ell^{\otimes 2}) = ilde{\mu}_\ell$$

is non-trivial. The total number of triples $\mathcal{G} = (G_1, G_2, G_3)$ of subgroups of order ℓ in $\mathrm{H}^1(\mathcal{C}, \mathbb{Z}/\ell)$, $\mathrm{H}^1(\mathcal{C}, \mu_\ell)$ and $\mathrm{H}^1(\mathcal{C}, \mu_\ell)$, respectively, is $N = \left(\frac{\ell^{2g+1}-1}{\ell-1}\right)^3$.

The number N(C) of triples \mathcal{G} for which the restriction $F_{\mathcal{G}}$ is non-degenerate satisfies $N(C) \geq N \cdot (1 - \ell^{-1})^2$. More precisely,

$$\frac{\ell^{4g-1}(\ell^3-1)(\ell^{2g}-1)}{(\ell-1)^2} \leq \mathsf{N}(\mathsf{C}) \leq \frac{\ell^{2g+1}(\ell^{2g+1}-1)(\ell^{2g}-1)}{(\ell-1)^2}.$$

If k' is the extension of degree ℓ of k in \overline{k} , then

$$N(C \otimes_k k') = rac{\ell^{4g-1}(\ell^3-1)(\ell^{2g}-1)}{(\ell-1)^2}.$$

Example: elliptic curves.

Let C be an elliptic curve. On choosing an isomorphism between \mathbb{Z}/ℓ and $\tilde{\mu}_{\ell}$, the previous theorem shows that the cup product

$$\mathrm{H}^{1}(\mathcal{C},\mathbb{Z}/\ell)\times\mathrm{H}^{1}(\mathcal{C},\mathbb{Z}/\ell)\times\mathrm{H}^{1}(\mathcal{C},\mathbb{Z}/\ell)\overset{\cup}{\longrightarrow}\mathrm{H}^{3}(\mathcal{C},(\mathbb{Z}/\ell)^{\otimes3})=\mathbb{Z}/\ell$$

is non-trivial. Since this cup product is alternating and $\mathrm{H}^1(C, \mathbb{Z}/\ell)$ has dimension 3 over \mathbb{Z}/ℓ , this trilinear map is, up to multiplication by a non-zero scalar, the unique non-trivial alternating form of degree three on $\mathrm{H}^1(C, \mathbb{Z}/\ell)$.

Hence the number N(C) of triples G for which the restriction F_G is non-degenerate is therefore

$$N(C) = \frac{\# \mathrm{GL}_3(\mathbb{Z}/\ell)}{(\ell-1)^3} = \frac{\ell^{4g-1}(\ell^3-1)(\ell^{2g}-1)}{(\ell-1)^2}$$

when g = 1.

医下颌 医下颌

A formula for the triple cup product $\mathrm{H}^{1}(\mathcal{C}, \mathbb{Z}/\ell) \times \mathrm{H}^{1}(\mathcal{C}, \mu_{\ell}) \times \mathrm{H}^{1}(\mathcal{C}, \mu_{\ell}) \xrightarrow{\cup} \mathrm{H}^{3}(\mathcal{C}, \mu_{\ell}^{\otimes 2}) \cong \tilde{\mu}_{\ell}.$

Assumptions: $q \equiv 1 \mod \ell$ and $\operatorname{Pic}(C)[\ell] = \operatorname{Pic}(\overline{C})[\ell]$.

Recall:
$$1 \to k^* \to k(C)^* \xrightarrow{\operatorname{div}_C} \operatorname{Div}(C) \to \operatorname{Pic}(C) \to 0$$
 is exact.
Define $D(C) := \{a \in k(C)^* \mid \operatorname{div}_C(a) \in \ell \operatorname{Div}(C)\}.$

We have:

•
$$\mathrm{H}^{1}(\mathcal{C}, \mathbb{Z}/\ell) = \mathrm{Hom}(\mathrm{Pic}(\mathcal{C}), \mathbb{Z}/\ell) \cong (\mathbb{Z}/\ell)^{2g+1}$$
 and
 $\mathrm{H}^{1}(\mathcal{C}, \mu_{\ell}) = D(\mathcal{C})/(k(\mathcal{C})^{*})^{\ell} \cong (\mathbb{Z}/\ell)^{2g+1}.$

 $\bullet \operatorname{H}^{2}(\mathcal{C},\mu_{\ell}) = \operatorname{Pic}(\mathcal{C})/\ell \operatorname{Pic}(\mathcal{C}) \rightsquigarrow \operatorname{H}^{2}(\mathcal{C},\mu_{\ell}^{\otimes 2}) = \operatorname{Pic}(\mathcal{C}) \otimes_{\mathbb{Z}} \tilde{\mu}_{\ell}.$

$$\blacktriangleright \operatorname{H}^{3}(\mathcal{C}, \mu_{\ell}) = \mathbb{Z}/\ell \rightsquigarrow \operatorname{H}^{3}(\mathcal{C}, \mu_{\ell}^{\otimes 2}) = \tilde{\mu}_{\ell}.$$

伺い イヨト イヨト 三日

Theorem: (B-Chinburg) Assume $q \equiv 1 \mod \ell$ and $\operatorname{Pic}(C)[\ell] \cong (\mathbb{Z}/\ell)^{2g}$.

Suppose $a, b \in D(C)$ define non-trivial classes $[a], [b] \in H^1(C, \mu_\ell)$. Choose $\alpha \in k(C)^{sep}$ with $\alpha^\ell = a$. Then $L = k(C)(\alpha)$ is the function field of an irreducible smooth projective curve C' over k. There is an element $\gamma \in L$ such that $b = \operatorname{Norm}_{L/k(C)}(\gamma)$. Write $\mathfrak{b} = \operatorname{div}_C(b)/\ell \in \operatorname{Div}(C)$, and let $\operatorname{Gal}(L/k(C)) = \langle \sigma \rangle$. Then there is a divisor $\mathfrak{c} \in \operatorname{Div}(C')$ such that

$$(1-\sigma) \cdot \mathfrak{c} = \operatorname{div}_{C'}(\gamma) - \pi^* \mathfrak{b}$$

where $\pi : C' \to C$ is the morphism associated with $k(C) \hookrightarrow L$. We have $\xi = \sigma(\alpha)/\alpha \in \tilde{\mu}_{\ell}$. We obtain

 $[a] \cup [b] = [\operatorname{Norm}_{C'/C}(\mathfrak{c})] \otimes \xi \quad \in \operatorname{Pic}(C) \otimes \tilde{\mu}_{\ell} = \operatorname{H}^{2}(C, \mu_{\ell}^{\otimes 2})$ where $[\mathfrak{d}]$ is the class in $\operatorname{Pic}(C)$ of a divisor \mathfrak{d} . If $t \in \operatorname{H}^{1}(C, \mathbb{Z}/\ell) = \operatorname{Hom}(\operatorname{Pic}(C), \mathbb{Z}/\ell)$, then

 $[t] \cup [a] \cup [b] = \xi^{t([\operatorname{Norm}_{C'/C}(\mathfrak{c})])} \quad \in \ \tilde{\mu}_{\ell} = \mathrm{H}^{3}(C, \mu_{\ell}^{\otimes 2}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Computability and restriction.

- This formula is based on a formula by McCallum-Sharifi for a cup product used in the context of Iwasawa theory.
- We do not know if this formula can in general be computed in polynomial time.

We now consider the restriction of the cup product

$$\mathrm{H}^{1}(\mathcal{C},\mathbb{Z}/\ell)\times\mathrm{H}^{1}(\mathcal{C},\mu_{\ell})\times\mathrm{H}^{1}(\mathcal{C},\mu_{\ell})\overset{\cup}{\longrightarrow}\mathrm{H}^{3}(\mathcal{C},\mu_{\ell}^{\otimes 2})\cong\tilde{\mu}_{\ell}$$

such that the third argument comes from $\mathrm{H}^1(k,\mu_\ell)$.

Note: The group $\mathrm{H}^1(k, \mu_\ell) = k^*/(k^*)^\ell$ has order ℓ and is the kernel of the surjective restriction map

$$r: \qquad H^{1}(\mathcal{C}, \mu_{\ell}) \xrightarrow{} H^{1}(\overline{\mathcal{C}}, \mu_{\ell}) \\ \parallel \qquad \qquad \parallel \\ \operatorname{Hom}(\operatorname{Pic}(\mathcal{C}), \tilde{\mu}_{\ell}) \qquad \operatorname{Hom}(\operatorname{Pic}(\overline{\mathcal{C}}), \tilde{\mu}_{\ell})$$

医下子 医下

Formula of the restriction of the triple cup product.

As above, $r : H^1(C, \mu_\ell) \to H^1(\overline{C}, \mu_\ell)$ is the surjective restriction map with kernel $H^1(k, \mu_\ell) = k^*/(k^*)^\ell$.

Theorem: (B-Chinburg) Assume $q \equiv 1 \mod \ell$ and $\operatorname{Pic}(C)[\ell] \cong (\mathbb{Z}/\ell)^{2g}$. Suppose $a, b \in D(C)$ define non-trivial classes $[a], [b] \in \operatorname{H}^1(C, \mu_\ell)$, and suppose $b \in k^*$. Let $t \in \operatorname{H}^1(C, \mathbb{Z}/\ell) = \operatorname{Hom}(\operatorname{Pic}(C), \mathbb{Z}/\ell)$. Then $b^{(q-1)/\ell} \in \tilde{\mu}_\ell$ and $w = t \otimes b^{(q-1)/\ell} \in \operatorname{H}^1(C, \mathbb{Z}/\ell) \otimes \tilde{\mu}_\ell = \operatorname{H}^1(C, \mu_\ell)$. One has

 $[t] \cup [a] \cup [b] = \langle r(w), r([a]) \rangle_{\text{Weil}} \quad \in \text{H}^2(\overline{C}, \mu_{\ell}^{\otimes 2}) = \tilde{\mu}_{\ell}$

where

$$\langle , \rangle_{Weil} : H^1(\overline{C}, \mu_\ell) \times H^1(\overline{C}, \mu_\ell) \rightarrow H^2(\overline{C}, \mu_\ell^{\otimes 2}) = \tilde{\mu}_\ell$$

is the Weil pairing, i.e. the non-degenerate cup product pairing

associated to \overline{C} .

• E •

More precise connection to the (inverse) Weil pairing. $\langle , \rangle_{\text{Weil}} : \operatorname{H}^{1}(\overline{C}, \mu_{\ell}) \times \operatorname{H}^{1}(\overline{C}, \mu_{\ell}) \longrightarrow \operatorname{H}^{2}(\overline{C}, \mu_{\ell}^{\otimes 2}) \text{ non-degenerate}$ $\stackrel{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\parallel}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{\operatorname{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})[\ell]}{\overset{\vdash}{\underset{Pic}(\overline{C})}{\underset{Pic}(\overline{C})}{\overset{\vdash}{\underset{Pic}(\overline{C})$

where, by our assumptions, $\operatorname{Pic}(C)[\ell] = \operatorname{Pic}(\overline{C})[\ell] \cong (\mathbb{Z}/\ell)^{2g}$. Miller's algorithm computes the Weil pairing in polynomial time.

Given $w \in H^1(\mathcal{C}, \mu_\ell) = \operatorname{Hom}(\operatorname{Pic}(\mathcal{C}), \tilde{\mu}_\ell)$, then $r(w) \in H^1(\overline{\mathcal{C}}, \mu_\ell)$ is produced using the so-called inverse Weil identifications

$$\operatorname{Pic}(\overline{C})[\ell] = \operatorname{H}^{1}(\overline{C}, \mu_{\ell}) = \operatorname{Hom}(\operatorname{Pic}(\overline{C})[\ell], \tilde{\mu}_{\ell}).$$

Concretely, suppose r(w) is identified as a homomorphism to $\tilde{\mu}_{\ell}$ by giving its values on generators of $\operatorname{Pic}(C)[\ell] = \operatorname{Pic}(\overline{C})[\ell]$ as specified by $w : \operatorname{Pic}(C) \to \tilde{\mu}_{\ell}$. Then realizing r(w) as an element of $\operatorname{H}^1(\overline{C}, \mu_{\ell}) = \operatorname{Pic}(\overline{C})[\ell]$ amounts to inverting the Weil pairing.

Issue: No polynomial time algorithm is known for inverting the Weil pairing.