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Notation and étale cohomology.
I k = Fq finite field with q elements.

I C = smooth projective geometrically irreducible curve over k
of genus g ≥ 1.

I k = algebraic closure of k , and C = C ⊗k k.

I ` = odd prime, q ≡ 1 mod `  k∗ ⊇ µ̃` (`th roots of 1).

Let X be C or C , let η be a geometric point on X corresponding
to an algebraic closure k(X ) of the function field k(X ), and let
k(X )sep be the separable closure of k(X ) inside k(X ).

The étale fundamental group π1(X , η) is the quotient group of
Gal(k(X )sep/k(X )) modulo the subgroup generated by all inertia
groups associated to closed points of X . In other words, π1(X , η) is
the profinite group that is the inverse limit of the Galois groups of
all finite Galois covers of X that are flat and unramified (i.e. étale).

For all r ≥ 0: Hr (X ,Z/`)︸ ︷︷ ︸
étale cohomology

∼= Hr (π1(X , η),Z/`)︸ ︷︷ ︸
profinite group cohomology
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Description of étale cohomology groups.
For X ∈ {C ,C}, let Div(X ) be the divisor group of X , and
let Pic(X ) = Div(X )/PrinDiv(X ) be the Picard group of X .

Assume: `-torsion of the Jacobian of C over k is defined over k
 Pic(C )[`] = Pic(C )[`] ∼= (Z/`)2g .

1→ k∗ → k(C )∗
divC−−−→ Div(C )→ Pic(C )→ 0 is exact.

Define D(C ) := {a ∈ k(C )∗ | divC (a) ∈ `Div(C )}.

We have: (µ` = sheaf of `th roots of unity)

H1(C ,Z/`) = Hom(Pic(C ),Z/`) ∼= (Z/`)2g+1,

H1(C , µ`) = D(C )/(k(C )∗)` ∼= (Z/`)2g+1,

H2(C , µ`) = Pic(C )/`Pic(C )  H2(C , µ⊗2
` ) = Pic(C )⊗Z µ̃`,

H3(C , µ`) = Z/`  H3(C , µ⊗2
` ) = µ̃`.

H1(C , µ`) = Pic(C )[`] ∼= (Z/`)2g ,
H2(C , µ`) = Z/`  H2(C , µ⊗2

` ) = µ̃`.
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Triple cup products.

Assume: q ≡ 1 mod ` and Pic(C )[`] = Pic(C )[`] ∼= (Z/`)2g .

We consider the triple cup product of étale cohomology groups

F : H1(C ,Z/`)×H1(C , µ`)×H1(C , µ`)
∪−→ H3(C , µ⊗2` ) ∼= µ̃`.

Significance of F :

I useful to get an explicit description of certain profinite groups
(`-adic completions of the étale fundamental group of C )
as quotients of pro-free groups modulo relations;

I potentially useful for cryptographic applications by restricting
to triples of cyclic groups of order ` to get a trilinear map
(if this map is “cryptographic” it would be a big step forward
in the security of intellectual property).
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Key sharing for 4 persons.
Restrict the triple cup product F to

f : G1 × G2 × G3 → H = µ̃`

where Gi is identified with a cyclic group G of order ` (i = 1, 2, 3).
Then f is trilinear in the sense that

f (gα1 , gα2 , gα3) = f (g , g , g)α1α2α3

when G = 〈g〉 and αi ∈ Z.

Public information: generators g of G and h of H, and map f .

Secrets: jth person (j = 1, . . . , 4) picks secret cj ∈ (Z/`)∗
and posts g cj .

Decode: each of the 4 persons can compute f (g , g , g)c1c2c3c4 :
e.g., 4th person can compute f (g c1 , g c2 , g c3)c4 .

f is “cryptographic” if f is “easy to compute” and “hard to break”
(this can be made precise in computer science terms).
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Theorem: (B-Chinburg) Assume q ≡ 1 mod ` and Pic(C)[`] = Pic(C)[`].

The trilinear map given by the triple cup product

F : H1(C ,Z/`)×H1(C , µ`)×H1(C , µ`)
∪−→ H3(C , µ⊗2` ) = µ̃`

is non-trivial. The total number of triples G = (G1,G2,G3) of
subgroups of order ` in H1(C ,Z/`), H1(C , µ`) and H1(C , µ`),

respectively, is N =

(
`2g+1 − 1

`− 1

)3

.

The number N(C ) of triples G for which the restriction FG is
non-degenerate satisfies N(C ) ≥ N · (1− `−1)2. More precisely,

`4g−1(`3 − 1)(`2g − 1)

(`− 1)2
≤ N(C ) ≤ `2g+1(`2g+1 − 1)(`2g − 1)

(`− 1)2
.

If k ′ is the extension of degree ` of k in k , then

N(C ⊗k k
′) =

`4g−1(`3 − 1)(`2g − 1)

(`− 1)2
.
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Example: elliptic curves.
Let C be an elliptic curve. On choosing an isomorphism between
Z/` and µ̃`, the previous theorem shows that the cup product

H1(C ,Z/`)×H1(C ,Z/`)×H1(C ,Z/`) ∪−→ H3(C , (Z/`)⊗3) = Z/`

is non-trivial. Since this cup product is alternating and H1(C ,Z/`)
has dimension 3 over Z/`, this trilinear map is, up to multiplication
by a non-zero scalar, the unique non-trivial alternating form of
degree three on H1(C ,Z/`).

Hence the number N(C ) of triples G for which the restriction FG is
non-degenerate is therefore

N(C ) =
#GL3(Z/`)

(`− 1)3
=
`4g−1(`3 − 1)(`2g − 1)

(`− 1)2

when g = 1.
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A formula for the triple cup product
H1(C ,Z/`)× H1(C , µ`)× H1(C , µ`)

∪−→ H3(C , µ⊗2` ) ∼= µ̃`.

Assumptions: q ≡ 1 mod ` and Pic(C )[`] = Pic(C )[`].

Recall: 1→ k∗ → k(C )∗
divC−−−→ Div(C )→ Pic(C )→ 0 is exact.

Define D(C ) := {a ∈ k(C )∗ | divC (a) ∈ `Div(C )}.

We have:

I H1(C ,Z/`) = Hom(Pic(C ),Z/`) ∼= (Z/`)2g+1 and
H1(C , µ`) = D(C )/(k(C )∗)` ∼= (Z/`)2g+1.

I H2(C , µ`) = Pic(C )/`Pic(C )  H2(C , µ⊗2` ) = Pic(C )⊗Z µ̃`.

I H3(C , µ`) = Z/`  H3(C , µ⊗2` ) = µ̃`.
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Theorem: (B-Chinburg) Assume q ≡ 1 mod ` and Pic(C )[`] ∼= (Z/`)2g .

Suppose a, b ∈ D(C ) define non-trivial classes [a], [b] ∈ H1(C , µ`).
Choose α ∈ k(C )sep with α` = a. Then L = k(C )(α) is the
function field of an irreducible smooth projective curve C ′ over k .
There is an element γ ∈ L such that b = NormL/k(C)(γ).
Write b = divC (b)/` ∈ Div(C ), and let Gal(L/k(C )) = 〈σ〉.
Then there is a divisor c ∈ Div(C ′) such that

(1− σ) · c = divC ′(γ)− π∗b
where π : C ′ → C is the morphism associated with k(C ) ↪→ L.
We have ξ = σ(α)/α ∈ µ̃`. We obtain

[a] ∪ [b] = [NormC ′/C (c)]⊗ ξ ∈ Pic(C )⊗ µ̃` = H2(C , µ⊗2` )

where [d] is the class in Pic(C ) of a divisor d.

If t ∈ H1(C ,Z/`) = Hom(Pic(C ),Z/`), then

[t] ∪ [a] ∪ [b] = ξt([NormC ′/C (c)]) ∈ µ̃` = H3(C , µ⊗2` ).
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Computability and restriction.
I This formula is based on a formula by McCallum-Sharifi for a

cup product used in the context of Iwasawa theory.

I We do not know if this formula can in general be computed in
polynomial time.

We now consider the restriction of the cup product

H1(C ,Z/`)×H1(C , µ`)×H1(C , µ`)
∪−→ H3(C , µ⊗2` ) ∼= µ̃`

such that the third argument comes from H1(k , µ`).

Note: The group H1(k , µ`) = k∗/(k∗)` has order ` and is the
kernel of the surjective restriction map

r : H1(C , µ`) // H1(C , µ`)

Hom(Pic(C ), µ̃`) Hom(Pic(C ), µ̃`)
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Formula of the restriction of the triple cup product.
As above, r : H1(C , µ`)→ H1(C , µ`) is the surjective restriction
map with kernel H1(k , µ`) = k∗/(k∗)`.

Theorem: (B-Chinburg) Assume q ≡ 1 mod ` and Pic(C)[`] ∼= (Z/`)2g .

Suppose a, b ∈ D(C ) define non-trivial classes [a], [b] ∈ H1(C , µ`),
and suppose b ∈ k∗. Let t ∈ H1(C ,Z/`) = Hom(Pic(C ),Z/`).

Then b(q−1)/` ∈ µ̃`
and w = t ⊗ b(q−1)/` ∈ H1(C ,Z/`)⊗ µ̃` = H1(C , µ`).

One has

[t] ∪ [a] ∪ [b] = 〈r(w), r([a])〉Weil ∈ H2(C , µ⊗2` ) = µ̃`

where
〈 , 〉Weil : H1(C , µ`)×H1(C , µ`) → H2(C , µ⊗2` ) = µ̃`

is the Weil pairing, i.e. the non-degenerate cup product pairing
associated to C .

Frauke Bleher Cup products on curves over finite fields



More precise connection to the (inverse) Weil pairing.
〈 , 〉Weil : H1(C , µ`) × H1(C , µ`) // H2(C , µ⊗2` ) non-degenerate

Pic(C)[`] Pic(C)[`] µ̃`

where, by our assumptions, Pic(C )[`] = Pic(C )[`] ∼= (Z/`)2g .

Miller’s algorithm computes the Weil pairing in polynomial time.

Given w ∈ H1(C , µ`) = Hom(Pic(C ), µ̃`), then r(w) ∈ H1(C , µ`)
is produced using the so-called inverse Weil identifications

Pic(C )[`] = H1(C , µ`) = Hom(Pic(C )[`], µ̃`).

Concretely, suppose r(w) is identified as a homomorphism to µ̃` by
giving its values on generators of Pic(C )[`] = Pic(C )[`] as
specified by w : Pic(C )→ µ̃`. Then realizing r(w) as an element
of H1(C , µ`) = Pic(C )[`] amounts to inverting the Weil pairing.

Issue: No polynomial time algorithm is known for inverting the
Weil pairing.
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