Cup products on curves over finite fields

Frauke Bleher
joint with Ted Chinburg

Maurice Auslander Distinguished Lectures and International Conference

April 28, 2019

Notation and étale cohomology.

- $k=\mathbb{F}_{q}$ finite field with q elements.
- $C=$ smooth projective geometrically irreducible curve over k of genus $g \geq 1$.
- $\bar{k}=$ algebraic closure of k, and $\bar{C}=C \otimes_{k} \bar{k}$.
- $\ell=$ odd prime, $q \equiv 1 \bmod \ell \rightsquigarrow k^{*} \supseteq \tilde{\mu}_{\ell}(\ell$ th roots of 1$)$.

Let X be C or \bar{C}, let η be a geometric point on X corresponding to an algebraic closure $\overline{k(X)}$ of the function field $k(X)$, and let $k(X)^{\text {sep }}$ be the separable closure of $k(X)$ inside $\overline{k(X)}$.
The étale fundamental group $\pi_{1}(X, \eta)$ is the quotient group of $\operatorname{Gal}\left(k(X)^{\text {sep }} / k(X)\right)$ modulo the subgroup generated by all inertia groups associated to closed points of X. In other words, $\pi_{1}(X, \eta)$ is the profinite group that is the inverse limit of the Galois groups of all finite Galois covers of X that are flat and unramified (i.e. étale).
For all $r \geq 0: \quad \underbrace{\mathrm{H}^{r}(X, \mathbb{Z} / \ell)}_{\text {étale cohomology }} \cong \underbrace{\mathrm{H}^{r}\left(\pi_{1}(X, \eta), \mathbb{Z} / \ell\right)}_{\text {profinite group cohomology }}$

Description of étale cohomology groups.

For $X \in\{C, \bar{C}\}$, let $\operatorname{Div}(X)$ be the divisor group of X, and let $\operatorname{Pic}(X)=\operatorname{Div}(X) / \operatorname{PrinDiv}(X)$ be the Picard group of X.

Assume: ℓ-torsion of the Jacobian of C over \bar{k} is defined over k

$$
\rightsquigarrow \operatorname{Pic}(C)[\ell]=\operatorname{Pic}(\bar{C})[\ell] \cong(\mathbb{Z} / \ell)^{2 g} .
$$

$1 \rightarrow k^{*} \rightarrow k(C)^{*} \xrightarrow{\operatorname{div}^{c}} \operatorname{Div}(C) \rightarrow \operatorname{Pic}(C) \rightarrow 0$ is exact.
Define $D(C):=\left\{a \in k(C)^{*} \mid \operatorname{div}_{C}(a) \in \ell \operatorname{Div}(C)\right\}$.
We have: ($\mu_{\ell}=$ sheaf of ℓ th roots of unity $)$

$$
\begin{aligned}
& H^{1}(C, \mathbb{Z} / \ell)=\operatorname{Hom}(\operatorname{Pic}(C), \mathbb{Z} / \ell) \cong(\mathbb{Z} / \ell)^{2 g+1}, \\
& \mathrm{H}^{1}\left(C, \mu_{\ell}\right)=D(C) /\left(k(C)^{*}\right)^{\ell} \cong(\mathbb{Z} / \ell)^{2 g+1}, \\
& \mathrm{H}^{2}\left(C, \mu_{\ell}\right)=\operatorname{Pic}(C) / \ell \operatorname{Pic}(C) \rightsquigarrow \mathrm{H}^{2}\left(C, \mu_{\ell}^{\otimes 2}\right)=\operatorname{Pic}(C) \otimes_{\mathbb{Z}} \tilde{\mu}_{\ell}, \\
& \mathrm{H}^{3}\left(C, \mu_{\ell}\right)=\mathbb{Z} / \ell \quad \rightsquigarrow \mathrm{H}^{3}\left(C, \mu_{\ell}^{\otimes 2}\right)=\tilde{\mu}_{\ell} \text {. } \\
& \mathrm{H}^{1}\left(\bar{C}, \mu_{\ell}\right)=\operatorname{Pic}(\bar{C})[\ell] \quad \cong(\mathbb{Z} / \ell)^{2 g} \text {, } \\
& \mathrm{H}^{2}\left(\bar{C}, \mu_{\ell}\right)= \\
& \mathbb{Z} / \ell \\
& \rightsquigarrow \quad \mathrm{H}^{2}\left(\bar{C}, \mu_{\ell}^{\otimes 2}\right)=\tilde{\mu}_{\ell} .
\end{aligned}
$$

Triple cup products.

Assume: $q \equiv 1 \bmod \ell$ and $\operatorname{Pic}(C)[\ell]=\operatorname{Pic}(\bar{C})[\ell] \cong(\mathbb{Z} / \ell)^{2 g}$.
We consider the triple cup product of étale cohomology groups

$$
F: \mathrm{H}^{1}(C, \mathbb{Z} / \ell) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \xrightarrow{\cup} \mathrm{H}^{3}\left(C, \mu_{\ell}^{\otimes 2}\right) \cong \tilde{\mu}_{\ell} .
$$

Significance of F :

- useful to get an explicit description of certain profinite groups (ℓ-adic completions of the étale fundamental group of C) as quotients of pro-free groups modulo relations;
- potentially useful for cryptographic applications by restricting to triples of cyclic groups of order ℓ to get a trilinear map (if this map is "cryptographic" it would be a big step forward in the security of intellectual property).

Key sharing for 4 persons.

Restrict the triple cup product F to

$$
f: \quad G_{1} \times G_{2} \times G_{3} \rightarrow H=\tilde{\mu}_{\ell}
$$

where G_{i} is identified with a cyclic group G of order $\ell(i=1,2,3)$. Then f is trilinear in the sense that

$$
f\left(g^{\alpha_{1}}, g^{\alpha_{2}}, g^{\alpha_{3}}\right)=f(g, g, g)^{\alpha_{1} \alpha_{2} \alpha_{3}}
$$

when $G=\langle g\rangle$ and $\alpha_{i} \in \mathbb{Z}$.

Public information: generators g of G and h of H, and map f.
Secrets: j th person $(j=1, \ldots, 4)$ picks secret $c_{j} \in(\mathbb{Z} / \ell)^{*}$ and posts $g^{c_{j}}$.

Decode: each of the 4 persons can compute $f(g, g, g)^{c_{1} c_{2} c_{3} c_{4}}$: e.g., 4th person can compute $f\left(g^{c_{1}}, g^{c_{2}}, g^{c_{3}}\right)^{C_{4}}$.
f is "cryptographic" if f is "easy to compute" and "hard to break" (this can be made precise in computer science terms).

Theorem: (B-Chinburg) Assume $q \equiv 1 \bmod \ell$ and $\operatorname{Pic}(C)[\ell]=\operatorname{Pic}(\bar{C})[\ell]$.
The trilinear map given by the triple cup product

$$
F: \quad \mathrm{H}^{1}(C, \mathbb{Z} / \ell) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \xrightarrow{\cup} \mathrm{H}^{3}\left(C, \mu_{\ell}^{\otimes 2}\right)=\tilde{\mu}_{\ell}
$$

is non-trivial. The total number of triples $\mathcal{G}=\left(G_{1}, G_{2}, G_{3}\right)$ of subgroups of order ℓ in $\mathrm{H}^{1}(C, \mathbb{Z} / \ell), \mathrm{H}^{1}\left(C, \mu_{\ell}\right)$ and $\mathrm{H}^{1}\left(C, \mu_{\ell}\right)$, respectively, is $N=\left(\frac{\ell^{2 g+1}-1}{\ell-1}\right)^{3}$.
The number $N(C)$ of triples \mathcal{G} for which the restriction $F_{\mathcal{G}}$ is non-degenerate satisfies $N(C) \geq N \cdot\left(1-\ell^{-1}\right)^{2}$. More precisely,

$$
\frac{\ell^{4 g-1}\left(\ell^{3}-1\right)\left(\ell^{2 g}-1\right)}{(\ell-1)^{2}} \leq N(C) \leq \frac{\ell^{2 g+1}\left(\ell^{2 g+1}-1\right)\left(\ell^{2 g}-1\right)}{(\ell-1)^{2}}
$$

If k^{\prime} is the extension of degree ℓ of k in \bar{k}, then
$N\left(C \otimes_{k} k^{\prime}\right)=\frac{\ell^{4 g-1}\left(\ell^{3}-1\right)\left(\ell^{2 g}-1\right)}{(\ell-1)^{2}}$.

Example: elliptic curves.

Let C be an elliptic curve. On choosing an isomorphism between \mathbb{Z} / ℓ and $\tilde{\mu}_{\ell}$, the previous theorem shows that the cup product
$\mathrm{H}^{1}(C, \mathbb{Z} / \ell) \times \mathrm{H}^{1}(C, \mathbb{Z} / \ell) \times \mathrm{H}^{1}(C, \mathbb{Z} / \ell) \xrightarrow{\cup} \mathrm{H}^{3}\left(C,(\mathbb{Z} / \ell)^{\otimes 3}\right)=\mathbb{Z} / \ell$
is non-trivial. Since this cup product is alternating and $\mathrm{H}^{1}(C, \mathbb{Z} / \ell)$ has dimension 3 over \mathbb{Z} / ℓ, this trilinear map is, up to multiplication by a non-zero scalar, the unique non-trivial alternating form of degree three on $\mathrm{H}^{1}(C, \mathbb{Z} / \ell)$.

Hence the number $N(C)$ of triples \mathcal{G} for which the restriction $F_{\mathcal{G}}$ is non-degenerate is therefore

$$
N(C)=\frac{\# \mathrm{GL}_{3}(\mathbb{Z} / \ell)}{(\ell-1)^{3}}=\frac{\ell^{4 g-1}\left(\ell^{3}-1\right)\left(\ell^{2 g}-1\right)}{(\ell-1)^{2}}
$$

when $g=1$.

A formula for the triple cup product
$\mathrm{H}^{1}(C, \mathbb{Z} / \ell) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \xrightarrow{\cup} \mathrm{H}^{3}\left(C, \mu_{\ell}^{\otimes 2}\right) \cong \tilde{\mu}_{\ell}$.
Assumptions: $q \equiv 1 \bmod \ell$ and $\operatorname{Pic}(C)[\ell]=\operatorname{Pic}(\bar{C})[\ell]$.
Recall: $1 \rightarrow k^{*} \rightarrow k(C)^{*} \xrightarrow{\text { div } C} \operatorname{Div}(C) \rightarrow \operatorname{Pic}(C) \rightarrow 0$ is exact.

$$
\text { Define } D(C):=\left\{a \in k(C)^{*} \mid \operatorname{div} C(a) \in \ell \operatorname{Div}(C)\right\} .
$$

We have:

- $H^{1}(C, \mathbb{Z} / \ell)=\operatorname{Hom}(\operatorname{Pic}(C), \mathbb{Z} / \ell) \cong(\mathbb{Z} / \ell)^{2 g+1}$ and

$$
\mathrm{H}^{1}\left(C, \mu_{\ell}\right)=D(C) /\left(k(C)^{*}\right)^{\ell} \cong(\mathbb{Z} / \ell)^{2 g+1}
$$

- $\mathrm{H}^{2}\left(C, \mu_{\ell}\right)=\operatorname{Pic}(C) / \ell \operatorname{Pic}(C) \rightsquigarrow \mathrm{H}^{2}\left(C, \mu_{\ell}^{\otimes 2}\right)=\operatorname{Pic}(C) \otimes_{\mathbb{Z}} \tilde{\mu}_{\ell}$.
- $\mathrm{H}^{3}\left(C, \mu_{\ell}\right)=\mathbb{Z} / \ell \rightsquigarrow \mathrm{H}^{3}\left(C, \mu_{\ell}^{\otimes 2}\right)=\tilde{\mu}_{\ell}$.

Theorem: (B-Chinburg) Assume $q \equiv 1 \bmod \ell$ and $\operatorname{Pic}(C)[\ell] \cong(\mathbb{Z} / \ell)^{2 g}$.

Suppose $a, b \in D(C)$ define non-trivial classes $[a],[b] \in H^{1}\left(C, \mu_{\ell}\right)$. Choose $\alpha \in k(C)^{\text {sep }}$ with $\alpha^{\ell}=a$. Then $L=k(C)(\alpha)$ is the function field of an irreducible smooth projective curve C^{\prime} over k. There is an element $\gamma \in L$ such that $b=\operatorname{Norm}_{L / k(C)}(\gamma)$. Write $\mathfrak{b}=\operatorname{div}_{C}(b) / \ell \in \operatorname{Div}(C)$, and let $\operatorname{Gal}(L / k(C))=\langle\sigma\rangle$.
Then there is a divisor $\mathfrak{c} \in \operatorname{Div}\left(C^{\prime}\right)$ such that

$$
(1-\sigma) \cdot \mathfrak{c}=\operatorname{div}_{C^{\prime}}(\gamma)-\pi^{*} \mathfrak{b}
$$

where $\pi: C^{\prime} \rightarrow C$ is the morphism associated with $k(C) \hookrightarrow L$. We have $\xi=\sigma(\alpha) / \alpha \in \tilde{\mu}_{\ell}$. We obtain

$$
[a] \cup[b]=\left[\operatorname{Norm}_{C^{\prime} / C}(\mathfrak{c})\right] \otimes \xi \quad \in \operatorname{Pic}(C) \otimes \tilde{\mu}_{\ell}=\mathrm{H}^{2}\left(C, \mu_{\ell}^{\otimes 2}\right)
$$

where $[\mathfrak{d}]$ is the class in $\operatorname{Pic}(C)$ of a divisor \mathfrak{d}.
If $t \in \mathrm{H}^{1}(C, \mathbb{Z} / \ell)=\operatorname{Hom}(\operatorname{Pic}(C), \mathbb{Z} / \ell)$, then

$$
[t] \cup[a] \cup[b]=\xi^{t\left(\left[\operatorname{Norm}_{C^{\prime}} / c(c)\right]\right)} \quad \in \tilde{\mu}_{\ell}=\mathrm{H}^{3}\left(C, \mu_{\ell}^{\otimes 2}\right)
$$

Computability and restriction.

- This formula is based on a formula by McCallum-Sharifi for a cup product used in the context of Iwasawa theory.
- We do not know if this formula can in general be computed in polynomial time.

We now consider the restriction of the cup product

$$
\mathrm{H}^{1}(C, \mathbb{Z} / \ell) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \xrightarrow{\cup} \mathrm{H}^{3}\left(C, \mu_{\ell}^{\otimes 2}\right) \cong \tilde{\mu}_{\ell}
$$

such that the third argument comes from $\mathrm{H}^{1}\left(k, \mu_{\ell}\right)$.
Note: The group $\mathrm{H}^{1}\left(k, \mu_{\ell}\right)=k^{*} /\left(k^{*}\right)^{\ell}$ has order ℓ and is the kernel of the surjective restriction map

$$
\begin{array}{cc}
r: & \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \\
\| \mathrm{H}^{1}\left(\bar{C}, \mu_{\ell}\right) \\
& \| \\
\operatorname{Hom}\left(\operatorname{Pic}(C), \tilde{\mu}_{\ell}\right) & \operatorname{Hom}\left(\operatorname{Pic}(\bar{C}), \tilde{\mu}_{\ell}\right)
\end{array}
$$

Formula of the restriction of the triple cup product.

As above, $r: \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \rightarrow \mathrm{H}^{1}\left(\bar{C}, \mu_{\ell}\right)$ is the surjective restriction map with kernel $\mathrm{H}^{1}\left(k, \mu_{\ell}\right)=k^{*} /\left(k^{*}\right)^{\ell}$.

Theorem: (B-Chinburg) Assume $q \equiv 1 \bmod \ell$ and $\operatorname{Pic}(C)[\ell] \cong(\mathbb{Z} / \ell)^{2 g}$.
Suppose $a, b \in D(C)$ define non-trivial classes $[a],[b] \in H^{1}\left(C, \mu_{\ell}\right)$, and suppose $b \in k^{*}$. Let $t \in \mathrm{H}^{1}(C, \mathbb{Z} / \ell)=\operatorname{Hom}(\operatorname{Pic}(C), \mathbb{Z} / \ell)$.
Then $b^{(q-1) / \ell} \in \tilde{\mu}_{\ell}$
and $w=t \otimes b^{(q-1) / \ell} \in \mathrm{H}^{1}(C, \mathbb{Z} / \ell) \otimes \tilde{\mu}_{\ell}=\mathrm{H}^{1}\left(C, \mu_{\ell}\right)$.
One has

$$
[t] \cup[a] \cup[b]=\langle r(w), r([a])\rangle_{\text {Weil }} \quad \in \mathrm{H}^{2}\left(\bar{C}, \mu_{\ell}^{\otimes 2}\right)=\tilde{\mu}_{\ell}
$$

where

$$
\langle,\rangle_{\text {Weil }}: \mathrm{H}^{1}\left(\bar{C}, \mu_{\ell}\right) \times \mathrm{H}^{1}\left(\bar{C}, \mu_{\ell}\right) \rightarrow \mathrm{H}^{2}\left(\bar{C}, \mu_{\ell}^{\otimes 2}\right)=\tilde{\mu}_{\ell}
$$

is the Weil pairing, i.e. the non-degenerate cup product pairing associated to \bar{C}.

More precise connection to the (inverse) Weil pairing.

$\langle,\rangle_{\text {Weil }}: \mathrm{H}^{1}\left(\bar{C}, \mu_{\ell}\right) \times \mathrm{H}^{1}\left(\bar{C}, \mu_{\ell}\right) \rightarrow \mathrm{H}^{2}\left(\bar{C}, \mu_{\ell}^{\otimes 2}\right)$ non-degenerate
$\stackrel{\|}{\operatorname{Pic}(\bar{C})[\ell]} \quad \stackrel{\operatorname{Pic}(\bar{C})[\ell]}{\|} \quad \|$
where, by our assumptions, $\operatorname{Pic}(C)[\ell]=\operatorname{Pic}(\bar{C})[\ell] \cong(\mathbb{Z} / \ell)^{2 g}$.
Miller's algorithm computes the Weil pairing in polynomial time.
Given $w \in \mathrm{H}^{1}\left(C, \mu_{\ell}\right)=\operatorname{Hom}\left(\operatorname{Pic}(C), \tilde{\mu}_{\ell}\right)$, then $r(w) \in \mathrm{H}^{1}\left(\bar{C}, \mu_{\ell}\right)$ is produced using the so-called inverse Weil identifications

$$
\operatorname{Pic}(\bar{C})[\ell]=\mathrm{H}^{1}\left(\bar{C}, \mu_{\ell}\right)=\operatorname{Hom}\left(\operatorname{Pic}(\bar{C})[\ell], \tilde{\mu}_{\ell}\right) .
$$

Concretely, suppose $r(w)$ is identified as a homomorphism to $\tilde{\mu}_{\ell}$ by giving its values on generators of $\operatorname{Pic}(C)[\ell]=\operatorname{Pic}(\bar{C})[\ell]$ as specified by $w: \operatorname{Pic}(C) \rightarrow \tilde{\mu}_{\ell}$. Then realizing $r(w)$ as an element of $\mathrm{H}^{1}\left(\bar{C}, \mu_{\ell}\right)=\operatorname{Pic}(\bar{C})[\ell]$ amounts to inverting the Weil pairing.

Issue: No polynomial time algorithm is known for inverting the Weil pairing.

