Derived Tame Nakayama Algebras

José A. Vélez-Marulanda

VALDOSTA STATE UNIVERSITY

JOINT-WORK WITH

Viktor Bekkert

Universidade Federal de Minas Gerais

& Hernán Giraldo

Universidad de Antioquia

MAURICE AUSLANDER DISTINGUISHED LECTURES AND INTERNATIONAL CONFERENCE

WOODS HOLE, MA, APRIL 25-30, 2018

• k is an algebraically closed field.

- k is an algebraically closed field.
- Λ denotes a fixed basic connected finite-dimensional k-algebra.

- k is an algebraically closed field.
- Λ denotes a fixed basic connected finite-dimensional k-algebra.
- Unless explicitly stated, all modules are finitely generated and from the left side.

Derived Tame Nakayama Algebras

• For all projective Λ -modules P, let $\mathbf{r}(P) = (p_1, p_2, \dots, p_n)$, where p_1, p_2, \dots, p_n are non-negative integers such that

$$P = \bigoplus_{i=1}^{n} p_i \Lambda \epsilon_i.$$

• For all projective Λ -modules P, let $\mathbf{r}(P) = (p_1, p_2, \dots, p_n)$, where p_1, p_2, \dots, p_n are non-negative integers such that

$$P = \bigoplus_{i=1}^{n} p_i \Lambda \epsilon_i.$$

For all complexes of projective Λ-modules (P[•], δ[•]), the vector rank r[•](P[•]) is defined as

$$\mathbf{r}^{\bullet}(P^{\bullet}) = (\dots, \mathbf{r}(P^{n-1}), \mathbf{r}(P^n), \mathbf{r}(P^{n+1}), \dots).$$

• For all projective Λ -modules P, let $\mathbf{r}(P) = (p_1, p_2, \dots, p_n)$, where p_1, p_2, \dots, p_n are non-negative integers such that

$$P = \bigoplus_{i=1}^{n} p_i \Lambda \epsilon_i.$$

For all complexes of projective Λ-modules (P[•], δ[•]), the vector rank r[•](P[•]) is defined as

$$\mathbf{r}^{\bullet}(P^{\bullet}) = (\dots, \mathbf{r}(P^{n-1}), \mathbf{r}(P^n), \mathbf{r}(P^{n+1}), \dots).$$

• A rational family of bounded minimal complexes over Λ is a bounded complex $(P^{\bullet}, \delta^{\bullet})$ of projective Λ -*R*-bimodules, where $R = \Bbbk[t, f(t)^{-1}]$ with f a non-zero polynomial, and $\operatorname{Im} \delta^n \subseteq \operatorname{rad} P^{n+1}$.

Derived Tame Nakayama Algebras

Derived Tame Nakayama Algebras

• For a rational family $(P^{\bullet}, \delta^{\bullet})$, we define the complex $P^{\bullet}(m, \lambda) = (P^{\bullet} \otimes_{\Bbbk} R/(t - \lambda)^m, \delta^{\bullet} \otimes 1)$ of projective Λ -modules, where $m \in \mathbb{N}, \lambda \in \Bbbk, f(\lambda) \neq 0$.

Derived Tameness

- For a rational family $(P^{\bullet}, \delta^{\bullet})$, we define the complex $P^{\bullet}(m, \lambda) = (P^{\bullet} \otimes_{\Bbbk} R/(t \lambda)^m, \delta^{\bullet} \otimes 1)$ of projective Λ -modules, where $m \in \mathbb{N}, \lambda \in \Bbbk, f(\lambda) \neq 0$.
- We set $\mathbf{r}^{\bullet}(P^{\bullet}) = \mathbf{r}^{\bullet}(P^{\bullet}(1,\lambda))$ (\mathbf{r}^{\bullet} does not depend on λ).

- For a rational family $(P^{\bullet}, \delta^{\bullet})$, we define the complex $P^{\bullet}(m, \lambda) = (P^{\bullet} \otimes_{\Bbbk} R/(t \lambda)^m, \delta^{\bullet} \otimes 1)$ of projective Λ -modules, where $m \in \mathbb{N}, \lambda \in \Bbbk, f(\lambda) \neq 0$.
- We set $\mathbf{r}^{\bullet}(P^{\bullet}) = \mathbf{r}^{\bullet}(P^{\bullet}(1,\lambda))$ (\mathbf{r}^{\bullet} does not depend on λ).

(i) For each bounded vector $\mathbf{v}^{\bullet} = (\mathbf{v}_i)_{i \in \mathbb{Z}}$ of non-negative integers, the set $\mathfrak{P}(\mathbf{v}^{\bullet}) = \{P^{\bullet} \in \mathfrak{P} \mid \mathbf{r}^{\bullet}(P^{\bullet}) = \mathbf{v}^{\bullet}\}$ is finite.

- For a rational family $(P^{\bullet}, \delta^{\bullet})$, we define the complex $P^{\bullet}(m, \lambda) = (P^{\bullet} \otimes_{\Bbbk} R/(t \lambda)^m, \delta^{\bullet} \otimes 1)$ of projective Λ -modules, where $m \in \mathbb{N}, \lambda \in \Bbbk, f(\lambda) \neq 0$.
- We set $\mathbf{r}^{\bullet}(P^{\bullet}) = \mathbf{r}^{\bullet}(P^{\bullet}(1,\lambda))$ (\mathbf{r}^{\bullet} does not depend on λ).

- (i) For each bounded vector $\mathbf{v}^{\bullet} = (\mathbf{v}_i)_{i \in \mathbb{Z}}$ of non-negative integers, the set $\mathfrak{P}(\mathbf{v}^{\bullet}) = \{P^{\bullet} \in \mathfrak{P} \mid \mathbf{r}^{\bullet}(P^{\bullet}) = \mathbf{v}^{\bullet}\}$ is finite.
- (ii) For each vector \mathbf{v}^{\bullet} , all indecomposable complexes $(P'^{\bullet}, \delta'^{\bullet})$ of projective Λ modules with $\mathbf{r}^{\bullet}(P'^{\bullet}) = \mathbf{v}^{\bullet}$, except finitely many of them (up to isomorphism), are isomorphic to $P^{\bullet}(m, \lambda)$ for some $P^{\bullet} \in \mathfrak{P}$.

- For a rational family $(P^{\bullet}, \delta^{\bullet})$, we define the complex $P^{\bullet}(m, \lambda) = (P^{\bullet} \otimes_{\Bbbk} R/(t \lambda)^m, \delta^{\bullet} \otimes 1)$ of projective Λ -modules, where $m \in \mathbb{N}, \lambda \in \Bbbk, f(\lambda) \neq 0$.
- We set $\mathbf{r}^{\bullet}(P^{\bullet}) = \mathbf{r}^{\bullet}(P^{\bullet}(1,\lambda))$ (\mathbf{r}^{\bullet} does not depend on λ).

- (i) For each bounded vector $\mathbf{v}^{\bullet} = (\mathbf{v}_i)_{i \in \mathbb{Z}}$ of non-negative integers, the set $\mathfrak{P}(\mathbf{v}^{\bullet}) = \{P^{\bullet} \in \mathfrak{P} \mid \mathbf{r}^{\bullet}(P^{\bullet}) = \mathbf{v}^{\bullet}\}$ is finite.
- (ii) For each vector \mathbf{v}^{\bullet} , all indecomposable complexes $(P'^{\bullet}, \delta'^{\bullet})$ of projective Λ modules with $\mathbf{r}^{\bullet}(P'^{\bullet}) = \mathbf{v}^{\bullet}$, except finitely many of them (up to isomorphism), are isomorphic to $P^{\bullet}(m, \lambda)$ for some $P^{\bullet} \in \mathfrak{P}$.

Remark 3. The definition of derived tameness above is equivalent to the one given in (CH. GEISS, H. KRAUSE, 2002).

Derived Tame Nakayama Algebras

- For a rational family $(P^{\bullet}, \delta^{\bullet})$, we define the complex $P^{\bullet}(m, \lambda) = (P^{\bullet} \otimes_{\Bbbk} R/(t \lambda)^m, \delta^{\bullet} \otimes 1)$ of projective Λ -modules, where $m \in \mathbb{N}, \lambda \in \Bbbk, f(\lambda) \neq 0$.
- We set $\mathbf{r}^{\bullet}(P^{\bullet}) = \mathbf{r}^{\bullet}(P^{\bullet}(1,\lambda))$ (\mathbf{r}^{\bullet} does not depend on λ).

- (i) For each bounded vector $\mathbf{v}^{\bullet} = (\mathbf{v}_i)_{i \in \mathbb{Z}}$ of non-negative integers, the set $\mathfrak{P}(\mathbf{v}^{\bullet}) = \{P^{\bullet} \in \mathfrak{P} \mid \mathbf{r}^{\bullet}(P^{\bullet}) = \mathbf{v}^{\bullet}\}$ is finite.
- (ii) For each vector \mathbf{v}^{\bullet} , all indecomposable complexes $(P'^{\bullet}, \delta'^{\bullet})$ of projective Λ modules with $\mathbf{r}^{\bullet}(P'^{\bullet}) = \mathbf{v}^{\bullet}$, except finitely many of them (up to isomorphism), are isomorphic to $P^{\bullet}(m, \lambda)$ for some $P^{\bullet} \in \mathfrak{P}$.

Remark 3. The definition of derived tameness above is equivalent to the one given in (CH. GEISS, H. KRAUSE, 2002).

Theorem 4 ((CH. GEISS, H. KRAUSE, 2002)). Derived tameness is preserved by derived equivalence. Derived Tame Nakayama Algebras J.A. Vélez-Marulanda

Derived Tame Nakayama Algebras

• Every derived discrete algebra (in the sense of (D. VOSSIECK, 2001)) is derived tame.

- Every derived discrete algebra (in the sense of (D. VOSSIECK, 2001)) is derived tame.
- If Λ has finite global dimension, then Λ is derived tame if and only if its repetitive algebra $\hat{\Lambda}$ is tame ((DE LA PEÑA, 1998) & (CH. GEISS, H. KRAUSE, 2002)).

- Every derived discrete algebra (in the sense of (D. VOSSIECK, 2001)) is derived tame.
- If Λ has finite global dimension, then Λ is derived tame if and only if its repetitive algebra $\hat{\Lambda}$ is tame ((DE LA PEÑA, 1998) & (CH. GEISS, H. KRAUSE, 2002)).
- If Λ is piecewise hereditary, then Λ is derived tame (CH. GEISS, 2002).

- Every derived discrete algebra (in the sense of (D. VOSSIECK, 2001)) is derived tame.
- If Λ has finite global dimension, then Λ is derived tame if and only if its repetitive algebra $\hat{\Lambda}$ is tame ((DE LA PEÑA, 1998) & (CH. GEISS, H. KRAUSE, 2002)).
- If Λ is piecewise hereditary, then Λ is derived tame (CH. GEISS, 2002).

Definition 5. Assume that Λ has finite global dimension. The **Euler form** χ_{Λ} of Λ is defined on the Grothendieck group of Λ by

$$\chi_{\Lambda}(\operatorname{dim} M) = \sum_{i=0}^{\infty} (-1)^{i} \operatorname{dim}_{\mathbb{k}} \operatorname{Ext}^{i}_{\Lambda}(M, M)$$

for every Λ -module M.

- Every derived discrete algebra (in the sense of (D. VOSSIECK, 2001)) is derived tame.
- If Λ has finite global dimension, then Λ is derived tame if and only if its repetitive algebra $\hat{\Lambda}$ is tame ((DE LA PEÑA, 1998) & (CH. GEISS, H. KRAUSE, 2002)).
- If Λ is piecewise hereditary, then Λ is derived tame (CH. GEISS, 2002).

Definition 5. Assume that Λ has finite global dimension. The **Euler form** χ_{Λ} of Λ is defined on the Grothendieck group of Λ by

$$\chi_{\Lambda}(\operatorname{dim} M) = \sum_{i=0}^{\infty} (-1)^{i} \operatorname{dim}_{\mathbb{k}} \operatorname{Ext}^{i}_{\Lambda}(M, M)$$

for every Λ -module M.

• If Λ is a tree algebra, then Λ is derived tame if and only if χ_{Λ} is non-negative ((J.A. DE LA PEÑA, 1998) & (TH. BRÜSTLE, 2001)).

Derived Tame Nakayama Algebras

- Every derived discrete algebra (in the sense of (D. VOSSIECK, 2001)) is derived tame.
- If Λ has finite global dimension, then Λ is derived tame if and only if its repetitive algebra $\hat{\Lambda}$ is tame ((DE LA PEÑA, 1998) & (CH. GEISS, H. KRAUSE, 2002)).
- If Λ is piecewise hereditary, then Λ is derived tame (CH. GEISS, 2002).

Definition 5. Assume that Λ has finite global dimension. The **Euler form** χ_{Λ} of Λ is defined on the Grothendieck group of Λ by

$$\chi_{\Lambda}(\operatorname{dim} M) = \sum_{i=0}^{\infty} (-1)^{i} \operatorname{dim}_{\mathbb{k}} \operatorname{Ext}^{i}_{\Lambda}(M, M)$$

for every Λ -module M.

- If Λ is a tree algebra, then Λ is derived tame if and only if χ_{Λ} is non-negative ((J.A. DE LA PEÑA, 1998) & (TH. BRÜSTLE, 2001)).
- If Λ is either gentle or skewed-gentle, then Λ is derived tame (V. BEKKERT, H. MERKLEN, 2003) AND (V. BEKKERT, E. N. MARCOS, H. MERKLEN, 2003).

Derived Tame Nakayama Algebras

Derived Tame Nakayama Algebras

Definition 6 ((V. BEKKERT, YU. DROZD, ARXIV:MATH/0310352)). Let $\Sigma = \Bbbk \langle x, y \rangle$. We say that Λ is *derived wild* if there exists a bounded complex $(P^{\bullet}, \delta^{\bullet})$ of projective Λ - Σ -bimodules such that Im $\delta^n \subseteq \operatorname{rad} P_{n+1}$, and for all Σ -modules L and L' with finite dimension over \Bbbk , we have:

- (i) $P^{\bullet} \otimes_{\Sigma} L \cong P^{\bullet} \otimes_{\Sigma} L'$ if and only if $L \cong L'$;
- (ii) $P^{\bullet} \otimes_{\Sigma} L$ is indecomposable if and only if so is L.

Definition 6 ((V. BEKKERT, YU. DROZD, ARXIV:MATH/0310352)). Let $\Sigma = \mathbb{k}\langle x, y \rangle$. We say that Λ is *derived wild* if there exists a bounded complex $(P^{\bullet}, \delta^{\bullet})$ of projective Λ - Σ -bimodules such that Im $\delta^n \subseteq \operatorname{rad} P_{n+1}$, and for all Σ -modules L and L' with finite dimension over \mathbb{k} , we have:

- (i) $P^{\bullet} \otimes_{\Sigma} L \cong P^{\bullet} \otimes_{\Sigma} L'$ if and only if $L \cong L'$;
- (ii) $P^{\bullet} \otimes_{\Sigma} L$ is indecomposable if and only if so is L.

Theorem 7 ((V. BEKKERT, YU. DROZD, ARXIV:MATH/0310352)). A finite dimensional \Bbbk -algebra Λ is either derived tame or derived wild.

Definition 6 ((V. BEKKERT, YU. DROZD, ARXIV:MATH/0310352)). Let $\Sigma = \mathbb{k}\langle x, y \rangle$. We say that Λ is *derived wild* if there exists a bounded complex $(P^{\bullet}, \delta^{\bullet})$ of projective Λ - Σ -bimodules such that Im $\delta^n \subseteq \operatorname{rad} P_{n+1}$, and for all Σ -modules L and L' with finite dimension over \mathbb{k} , we have:

- (i) $P^{\bullet} \otimes_{\Sigma} L \cong P^{\bullet} \otimes_{\Sigma} L'$ if and only if $L \cong L'$;
- (ii) $P^{\bullet} \otimes_{\Sigma} L$ is indecomposable if and only if so is L.

Theorem 7 ((V. BEKKERT, YU. DROZD, ARXIV:MATH/0310352)). A finite dimensional \Bbbk -algebra Λ is either derived tame or derived wild.

• If Λ is self-injective, then Λ is either derived discrete or derived wild (R. BAUTISTA, 2007).

Definition 6 ((V. BEKKERT, YU. DROZD, ARXIV:MATH/0310352)). Let $\Sigma = \mathbb{k}\langle x, y \rangle$. We say that Λ is *derived wild* if there exists a bounded complex $(P^{\bullet}, \delta^{\bullet})$ of projective Λ - Σ -bimodules such that Im $\delta^n \subseteq \operatorname{rad} P_{n+1}$, and for all Σ -modules L and L' with finite dimension over \mathbb{k} , we have:

- (i) $P^{\bullet} \otimes_{\Sigma} L \cong P^{\bullet} \otimes_{\Sigma} L'$ if and only if $L \cong L'$;
- (ii) $P^{\bullet} \otimes_{\Sigma} L$ is indecomposable if and only if so is L.

Theorem 7 ((V. BEKKERT, YU. DROZD, ARXIV:MATH/0310352)). A finite dimensional \Bbbk -algebra Λ is either derived tame or derived wild.

- If Λ is self-injective, then Λ is either derived discrete or derived wild (R. BAUTISTA, 2007).
- If Λ is a <u>self-injective</u> Nakayama algebra with Loewy length *ll*(Λ) ≥ 3, then Λ is derived wild (C. ZHANG, 2018).

Definition 6 ((V. BEKKERT, YU. DROZD, ARXIV:MATH/0310352)). Let $\Sigma = \Bbbk \langle x, y \rangle$. We say that Λ is *derived wild* if there exists a bounded complex $(P^{\bullet}, \delta^{\bullet})$ of projective Λ - Σ -bimodules such that Im $\delta^n \subseteq \operatorname{rad} P_{n+1}$, and for all Σ -modules L and L' with finite dimension over \Bbbk , we have:

- (i) $P^{\bullet} \otimes_{\Sigma} L \cong P^{\bullet} \otimes_{\Sigma} L'$ if and only if $L \cong L'$;
- (ii) $P^{\bullet} \otimes_{\Sigma} L$ is indecomposable if and only if so is L.

Theorem 7 ((V. BEKKERT, YU. DROZD, ARXIV:MATH/0310352)). A finite dimensional \Bbbk -algebra Λ is either derived tame or derived wild.

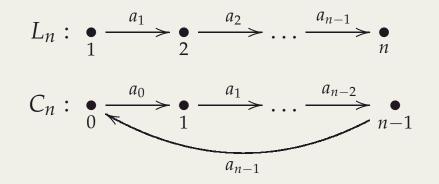
- If Λ is self-injective, then Λ is either derived discrete or derived wild (R. BAUTISTA, 2007).
- If Λ is a <u>self-injective</u> Nakayama algebra with Loewy length *ll*(Λ) ≥ 3, then Λ is derived wild (C. ZHANG, 2018).

Question: Which Nakayama algebras Λ are derived tame?

Derived Tame Nakayama Algebras

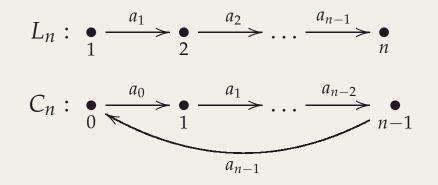
Derived Tame Nakayama Algebras

Theorem 8. Λ is a Nakayama algebra if and only if $\Lambda = kQ/I$, where Q is one of the following quivers:



for some $n \ge 1$, and I is an admissible ideal of $\Bbbk Q$.

Theorem 8. Λ is a Nakayama algebra if and only if $\Lambda = kQ/I$, where Q is one of the following quivers:

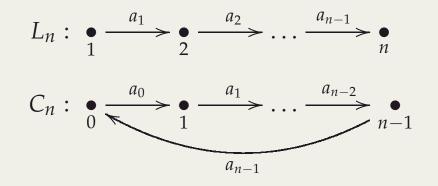


for some $n \ge 1$, and I is an admissible ideal of $\Bbbk Q$.

Assume that $\Lambda = kQ/I$ is a Nakayama algebra.

• If $Q = L_n$, then we say that Λ is a **line algebra**.

Theorem 8. Λ is a Nakayama algebra if and only if $\Lambda = kQ/I$, where Q is one of the following quivers:



for some $n \ge 1$, and I is an admissible ideal of $\Bbbk Q$.

Assume that $\Lambda = kQ/I$ is a Nakayama algebra.

- If $Q = L_n$, then we say that Λ is a **line algebra**.
- If $Q = C_n$, then we say that Λ is a **cycle algebra**.

Derived Tame Nakayama Algebras

Derived Tame Nakayama Algebras

Theorem 9. (V. BEKKERT, H. GIRALDO, V-M, IN PROGRESS) Assume that Λ is a Nakayama algebra. Then Λ is derived tame if and only if one of the following conditions holds:

- (i) Λ is a line algebra whose Euler form is non-negative.
- (ii) Λ is either gentle or derived equivalent to some skewed-gentle algebra.

Theorem 9. (V. BEKKERT, H. GIRALDO, V-M, IN PROGRESS) Assume that Λ is a Nakayama algebra. Then Λ is derived tame if and only if one of the following conditions holds:

- (i) Λ is a line algebra whose Euler form is non-negative.
- (ii) Λ is either gentle or derived equivalent to some skewed-gentle algebra.

Definition 10. (E. ENOCHS, O. JENDA, 1995) A Λ -module V is said to be **Gorensteinprojective** if there exists an acyclic complex of projective Λ -modules

$$P^{\bullet}: \cdots \to P^{-2} \xrightarrow{\delta^{-2}} P^{-1} \xrightarrow{\delta^{-1}} P^{0} \xrightarrow{\delta^{0}} P^{1} \xrightarrow{\delta^{1}} P^{2} \to \cdots$$

such that $\operatorname{Hom}_{\Lambda}(P^{\bullet}, \Lambda)$ is also acyclic and $V = \operatorname{coker} \delta^{0}$. We denote by Λ -Gproj the category of Gorenstein-projective Λ -modules that are finitely generated, and by Λ -Gproj its stable category.

Derived Tame Nakayama Algebras

$$\mathcal{D}_{sg}(\Lambda\text{-mod}) = \mathcal{D}^b(\Lambda\text{-mod})/\mathcal{K}^b(\Lambda\text{-proj}).$$

$$\mathcal{D}_{sg}(\Lambda\operatorname{-mod}) = \mathcal{D}^b(\Lambda\operatorname{-mod})/\mathcal{K}^b(\Lambda\operatorname{-proj}).$$

Recall that Λ is **Gorenstein** if the injective dimensions of Λ as a left Λ -module and as a right Λ -module are finite.

$$\mathcal{D}_{sg}(\Lambda\operatorname{-mod}) = \mathcal{D}^b(\Lambda\operatorname{-mod})/\mathcal{K}^b(\Lambda\operatorname{-proj}).$$

Recall that Λ is **Gorenstein** if the injective dimensions of Λ as a left Λ -module and as a right Λ -module are finite.

• Gorensteinness is preserved by derived equivalence (A. BELIGIANNIS, 2005).

$$\mathcal{D}_{sg}(\Lambda\operatorname{-mod}) = \mathcal{D}^b(\Lambda\operatorname{-mod})/\mathcal{K}^b(\Lambda\operatorname{-proj}).$$

Recall that Λ is **Gorenstein** if the injective dimensions of Λ as a left Λ -module and as a right Λ -module are finite.

- Gorensteinness is preserved by derived equivalence (A. BELIGIANNIS, 2005).
- Gentle and skewed-gentle algebras are Gorenstein ((Сн. GEISS & I. REITEN, 2005) and (Х. Снем & М. Lu, 2017)).

$$\mathcal{D}_{sg}(\Lambda\operatorname{-mod}) = \mathcal{D}^b(\Lambda\operatorname{-mod})/\mathcal{K}^b(\Lambda\operatorname{-proj}).$$

Recall that Λ is **Gorenstein** if the injective dimensions of Λ as a left Λ -module and as a right Λ -module are finite.

- Gorensteinness is preserved by derived equivalence (A. BELIGIANNIS, 2005).
- Gentle and skewed-gentle algebras are Gorenstein ((Сн. GEISS & I. REITEN, 2005) and (Х. Снем & М. Lu, 2017)).
- If Λ is Gorenstein, then $\mathcal{D}_{sg}(\Lambda \text{-mod}) = \Lambda \text{-}\underline{\text{Gproj}}$ ((R.O. BUCHWEITZ, PREPRINT) and (D. HAPPEL, 1992)).

$$\mathcal{D}_{sg}(\Lambda\operatorname{-mod}) = \mathcal{D}^b(\Lambda\operatorname{-mod})/\mathcal{K}^b(\Lambda\operatorname{-proj}).$$

Recall that Λ is **Gorenstein** if the injective dimensions of Λ as a left Λ -module and as a right Λ -module are finite.

- Gorensteinness is preserved by derived equivalence (A. BELIGIANNIS, 2005).
- Gentle and skewed-gentle algebras are Gorenstein ((CH. GEISS & I. REITEN, 2005) and (X. CHEN & M. LU, 2017)).
- If Λ is Gorenstein, then $\mathcal{D}_{sg}(\Lambda \text{-mod}) = \Lambda \text{-}\underline{\text{Gproj}}$ ((R.O. BUCHWEITZ, PREPRINT) and (D. HAPPEL, 1992)).

Corollary 12. If Λ is a derived tame Nakayama algebra, then Λ is Gorenstein, and consequently, if Λ is further a cycle algebra, then $\mathcal{D}_{sg}(\Lambda\text{-mod}) = \Lambda\text{-}\mathsf{Gproj}$.

Derived Tame Nakayama Algebras

Corollary 13. Let $\Lambda = kQ/I$ is a derived tame cycle algebra, and let $|R_{\Lambda}|$ the minimal number of relations defining I. If Λ has infinite global dimension, then there exists an equivalence of triangulated categories

 $\mathcal{D}_{sg}(\Lambda\operatorname{-mod})\cong\mathcal{D}^{b}(\Bbbk\operatorname{-mod})/[|R_{\Lambda}|],$

where $\mathcal{D}^{b}(\Bbbk\text{-mod})/[|R_{\Lambda}|]$ denotes the **orbit category** (in the sense of (B. KELLER, 2005)).

Corollary 13. Let $\Lambda = kQ/I$ is a derived tame cycle algebra, and let $|R_{\Lambda}|$ the minimal number of relations defining I. If Λ has infinite global dimension, then there exists an equivalence of triangulated categories

 $\mathcal{D}_{sg}(\Lambda\operatorname{-mod})\cong\mathcal{D}^{b}(\Bbbk\operatorname{-mod})/[|R_{\Lambda}|],$

where $\mathcal{D}^{b}(\Bbbk\text{-mod})/[|R_{\Lambda}|]$ denotes the **orbit category** (in the sense of (B. KELLER, 2005)).

The following result classifies the isomorphism class of versal deformation rings of Gorenstein-projective modules (in the sense of (F. M. BLEHER, V-M, 2012)) over derived tame Nakayama algebras.

Corollary 13. Let $\Lambda = kQ/I$ is a derived tame cycle algebra, and let $|R_{\Lambda}|$ the minimal number of relations defining I. If Λ has infinite global dimension, then there exists an equivalence of triangulated categories

 $\mathcal{D}_{sg}(\Lambda\operatorname{-mod})\cong\mathcal{D}^{b}(\Bbbk\operatorname{-mod})/[|R_{\Lambda}|],$

where $\mathcal{D}^{b}(\Bbbk\text{-mod})/[|R_{\Lambda}|]$ denotes the **orbit category** (in the sense of (B. KELLER, 2005)).

The following result classifies the isomorphism class of versal deformation rings of Gorenstein-projective modules (in the sense of (F. M. BLEHER, V-M, 2012)) over derived tame Nakayama algebras.

Corollary 14. Let Λ be a derived tame Nakayama algebra, and let V be in Λ -Gproj. If V is indecomposable, then the versal deformation ring $R(\Lambda, V)$ of V is universal and isomorphic either to \Bbbk or to $\Bbbk[[t]]/(t^2)$.

Derived Tame Nakayama Algebras

THANKS FOR YOUR ATTENTION!

Derived Tame Nakayama Algebras