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Uses of the discriminant of an algebra

The discriminant has been used in:

determining automorphism groups and solving isomorphism problems
for certain PI algebras. [Ceken, Palmieri, Wang, and Zhang]

solving the Zariski cancellation problem (A[T ] ' B[T ]⇒ A ' B) in
certain cases. [Bell and Zhang]

classifing the Azumaya locus of certain algebras. [Brown and
Yakimov]

Issue

The discriminant can be very difficult to compute directly.
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Discriminant dn(R/C )

Say R is a free, finite rank n module over a subalgebra C ⊂ Z (R).

Then the embedding R ↪→ Mn(C ) gives a trace map

tr : R ↪→ Mn(C )
trMn(C)−−−−→ C .

The discriminant of R over C is defined by

dn(R/C ) :=C× det
(
tr(yiyj)

)
where {y1, · · · ,yn} is a C -basis of R
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Quantum cluster algebras [Berenstein and Zelevinsky]

A(B̃) Aq(M, B̃)

Ambient field

Frac(Z[x1, . . . , xN ]) F = Frac(Tq(Λ))

Tq(Λ) = Z[q±
1
2 ]-algebra with basis X f , f ∈ ZN

and relations X f X g = q
Λ(f ,g)

2 X f +g

Seeds

(x̃, B̃) (M, B̃) with compatibility between M and B̃

M : ZN → F such that Tq(ΛM)
φ
↪−→ F

(1) M(f ) = φ(f )
(2) F ' Frac(Tq(Λm))
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Quantum cluster algebras [Berenstein and Zelevinsky]

A(B̃) Aq(M, B̃)

Mutation k ∈ ex ⊂ [1,N]

µk(x̃, B̃) = (x̃′, B̃ ′) µk(x̃, B̃) = (ρM
bk ,s

MEs ,Es B̃Fs)

xk replaced by µkM(ei ) = M(ei ), i 6= k∏
bik>0 x

bik
i +

∏
bik<0 x

|bik |
i

xk
µkM(ek) = M(−ek + [bk ]+) + M(−ek − [bk ]−)

The algebras inv ⊂ [1,N]\ex

A(B̃, inv) = Z-subalgebra Aq(M, B̃, inv) = Z[q±
1
2 ]-subalgebra of F

generators: x−1
j for j ∈ inv generators: M(ej)

−1 for j ∈ inv

x ′j ∈ x̃ for (x′, B̃ ′) ∼ (x, B̃) M ′(ej) for (M ′, B̃ ′) ∼ (M, B̃)
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Quantum cluster algebras at a root of unity

Replace q
1
2 by a primitive `th root of unity ε

1
2

Construct F = Frac(Tε(Λ)) and root of unity toric frames
M : ZN → F

Have seeds (M, B̃,Λ) with compatibility conditions.

Mutation similar to before µk(M, B̃,Λ) = (ρM
bk ,s

MEs ,Es B̃Fs ,E
T
s ΛEs)

Aε(M, B̃,Λ, inv) is the Z[ε±
1
2 ]-subalgebra of F generated by

M(ej)
−1, j ∈ inv and by all M ′(ej) of (M ′, B̃ ′,Λ′) ∼ (M, B̃,Λ)

Kurt Trampel (LSU) Disc. of Quantum Cluster Algebras Auslander Conference 2018 7 / 14



Quantum cluster algebras at a root of unity

Replace q
1
2 by a primitive `th root of unity ε

1
2

Construct F = Frac(Tε(Λ)) and root of unity toric frames
M : ZN → F

Have seeds (M, B̃,Λ) with compatibility conditions.

Mutation similar to before µk(M, B̃,Λ) = (ρM
bk ,s

MEs ,Es B̃Fs ,E
T
s ΛEs)

Aε(M, B̃,Λ, inv) is the Z[ε±
1
2 ]-subalgebra of F generated by

M(ej)
−1, j ∈ inv and by all M ′(ej) of (M ′, B̃ ′,Λ′) ∼ (M, B̃,Λ)

Kurt Trampel (LSU) Disc. of Quantum Cluster Algebras Auslander Conference 2018 7 / 14



Quantum cluster algebras at a root of unity

Replace q
1
2 by a primitive `th root of unity ε

1
2

Construct F = Frac(Tε(Λ)) and root of unity toric frames
M : ZN → F

Have seeds (M, B̃,Λ) with compatibility conditions.

Mutation similar to before µk(M, B̃,Λ) = (ρM
bk ,s

MEs ,Es B̃Fs ,E
T
s ΛEs)

Aε(M, B̃,Λ, inv) is the Z[ε±
1
2 ]-subalgebra of F generated by

M(ej)
−1, j ∈ inv and by all M ′(ej) of (M ′, B̃ ′,Λ′) ∼ (M, B̃,Λ)

Kurt Trampel (LSU) Disc. of Quantum Cluster Algebras Auslander Conference 2018 7 / 14



Quantum cluster algebras at a root of unity

Replace q
1
2 by a primitive `th root of unity ε

1
2

Construct F = Frac(Tε(Λ)) and root of unity toric frames
M : ZN → F

Have seeds (M, B̃,Λ) with compatibility conditions.

Mutation similar to before µk(M, B̃,Λ) = (ρM
bk ,s

MEs ,Es B̃Fs ,E
T
s ΛEs)

Aε(M, B̃,Λ, inv) is the Z[ε±
1
2 ]-subalgebra of F generated by

M(ej)
−1, j ∈ inv and by all M ′(ej) of (M ′, B̃ ′,Λ′) ∼ (M, B̃,Λ)

Kurt Trampel (LSU) Disc. of Quantum Cluster Algebras Auslander Conference 2018 7 / 14



Quantum cluster algebras at a root of unity

Replace q
1
2 by a primitive `th root of unity ε

1
2

Construct F = Frac(Tε(Λ)) and root of unity toric frames
M : ZN → F

Have seeds (M, B̃,Λ) with compatibility conditions.

Mutation similar to before µk(M, B̃,Λ) = (ρM
bk ,s

MEs ,Es B̃Fs ,E
T
s ΛEs)

Aε(M, B̃,Λ, inv) is the Z[ε±
1
2 ]-subalgebra of F generated by

M(ej)
−1, j ∈ inv and by all M ′(ej) of (M ′, B̃ ′,Λ′) ∼ (M, B̃,Λ)

Kurt Trampel (LSU) Disc. of Quantum Cluster Algebras Auslander Conference 2018 7 / 14



Some central elements

Lemma

If (M ′, B̃ ′,Λ′) ∼ (M, B̃,Λ), then M ′(ej)
` ∈ Aε(M, B̃,Λ) is central.

Proposition

For a quantum seed (M, B̃,Λ) and ` coprime to a finite set of integers
dependent on B̃,

(µkM(ek))` =

∏
bik>0(M(ei )

`)bik +
∏

bik<0(M(ei )
`)|bik |

M(ek)`

Recall

x ′k =

∏
bik>0 x

bik
i +

∏
bik<0 x

|bik |
i

xk
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A familiar central subalgebra

Theorem (Nguyen–Yakimov–T.)

The (classical) cluster algebra A(B̃, inv) embeds into the center of
Aε(M, B̃,Λ, inv).

Moreover the exchange graphs of A(B̃, inv),
Aq(Mq, B̃, inv), and Aε(M, B̃,Λ, inv) all coincide.
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Certain subalgebras

Aε(Θ)

Θ is a set of seeds such that every two seeds are connected by
sequence of mutations and every nonfrozen direction is mutated at
least one time.

Aε(Θ) ⊂ Aε(M, B̃,Λ, inv) is the subalgebra that is generated by
cluster variables from seeds in Θ and the inverted frozen variables.

Cε(Θ) ⊂ Aε(Θ) is the central subalgebra generated by `th powers of
cluster variables from seeds in Θ and the inverted frozen variables.

µ3µ2(M, B̃)

µ1(M, B̃)µ2(M, B̃)

µ3(M, B̃)

(M, B̃)

Θ :
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Discriminant dn(Aε(Θ)/Cε(Θ))

The discriminant dn(R/C ) defined here if R is a free, finite rank n
module over a central subalgebra C .

Aε(Θ) is finitely generated over Cε(Θ).

Theorem (Nguyen–Yakimov–T.)

When Aε(Θ) is free over Cε(Θ), then

dn(Aε(Θ)/Cε(Θ)) =
∏(

noninverted frozen variables of Aε(Θ)
)powers
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Quantum Schubert cells (or quantum unipotent groups)

Definition (De Concini–Kac–Procesi and Lusztig)

Let g be a symmetrizable Kac-Moody algebra.

Let w ∈W with reduced
expression w = si1si2 . . . siN . U−ε [w ] is the subalgebra of Uε[g] generated by
Lusztig root vectors Fβj = Ti1 . . .Tij−1

(Fij ).

Theorem (Geiß–Leclerc–Schröer, Goodearl–Yakimov)

U−ε [w ] has a canonical cluster algebra structure. The frozen variables are
given by generalized minors ∆ωi ,wωi for i ∈ S(w).
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Discriminants of quantum Schubert cells

Theorem (Nguyen–Yakimov–T.)

For symmetrizable Kac-Moody algebra g, w ∈W , and ε a primitive `th

root of unity,

dn(U−ε [w ]/Cε) =
∏

i∈S(w)

∆
`N−1(`−1)
ωi ,wωi
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Thank you!
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